- Актуальность ремонта тормозной системы
- Разработка рекомендаций по выбору оборудования для диагностирования тормозной системы автомобилей
- Принцип действия и основные элементы тормозной системы автомобиля. Схема работы главного цилиндра и вакуумного усилителя тормозов. Сравнение технических характеристик, ценовой категории, затрат на ремонт и срока службы диагностического оборудования.
Актуальность ремонта тормозной системы
Библиографическая ссылка на статью:
Захаров Ю.А., Шарагин А.Е. Обоснование актуальности работ по восстановлению макрогеометрии тормозных дисков автомобилей // Современные научные исследования и инновации. 2015. № 1. Ч. 1 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2015/01/46165 (дата обращения: 18.06.2021).
Тормозная система является одной из наиболее важных систем управления и обеспечения безопасной эксплуатации автомобиля. Эта система относится к системам активной безопасности автомобиля и при появлении, каких либо дефектов тормозной системы эксплуатация автомобиля запрещается вплоть до их устранения. Кроме того, тормозная система современного автомобиля тесно взаимосвязана с другими штатными системами активной безопасности автомобиля, обеспечивающими безопасное и комфортное управление 3.
К таким системам относят:
1) антиблокировочную систему (ABS), антипробуксовочную систему (ASR, ASC, A-TRAC, DSA, DTC, ETC, ETS, STC, TCS, TRC – в зависимости от производителя автомобиля);
2) систему курсовой устойчивости (ESP, ESC, DSC, DTSC, VSA, VSC, VDC);
3) систему распределения тормозных усилий (EBD, EBV);
4) систему экстренного торможения (BA, BAS, EBA, AFU);
5) систему обнаружения пешеходов (Pedestrian Detection System, Advanced Pedestrian Detection System, EyeSight);
6) систему электронной блокировки дифференциала (EDS).
Кроме систем активной безопасности с тормозной системой тесно увязаны, так называемые, вспомогательные системы активной безопасности (ассистенты), которые помогают водителю при вождении, используя при этом тормозную систему и рулевое управление автомобиля.
К таким системам относят: парковочную систему; систему кругового обзора; адаптивный круиз-контроль; систему аварийного рулевого управления; систему помощи движению по полосе; систему помощи при перестроении; автомобильную систему ночного видения; систему распознавания дорожных знаков; систему контроля усталости водителя; систему помощи при спуске; систему помощи при подъеме и другие системы.
Таким образом, от тормозной системы зависит работа множества основных и вспомогательных систем безопасности автомобиля, соответственно обеспечение надлежащего технического состояния тормозной системы является весьма актуальной задачей авторемонтного производства.
Тормозная система современного автомобиля в общем случае включает в себя несколько подсистем – механическую (тросы, тяги, тормозные диски и барабаны, суппорта, тормозные колодки и т.д.), гидравлическую и (или) пневматическую (гидравлические и вакуумные усилители, тормозные цилиндры, распределители, трубопроводы и т.д.), электронную (блоки управления, контрольные датчики, сигнализаторы и т.д.). Соответственно, все они взаимосвязаны и имеют свои специфические дефекты, образующиеся при эксплуатации автомобиля.
Особое место в тормозной системе занимает механическая составляющая, элементы которой подвержены максимальным нагрузкам и получают наибольшие повреждения и износ при эксплуатации. Как правило, деталям механической части тормозной системы присущи такие эксплуатационные дефекты, как трещины, сколы, коробление (нарушение макрогеометрии), износ рабочих поверхностей. Очень распространённым дефектом тормозной системы является нарушение макрогеометрии тормозных дисков, ввиду интенсивного изнашивания рабочих поверхностей и коробления из-за цикличного нагрева-охлаждения.
В процессе эксплуатации автомобиля тормозные диски изнашиваются от трения с антифрикционными накладками тормозных колодок. Величина этого изнашивания зависит от условий эксплуатации автомобиля, от класса автомобиля и от квалификации водителя. В конечном итоге наступает такой момент, когда выработка рабочей поверхности тормозного диска достигает критических значений (1-2 мм на сторону) и дальнейшая эксплуатация автомобиля становится не безлопастной. Изнашивание рабочих поверхностей приводит к уменьшению толщины тормозного диска, его ослаблению, снижению эффективности взаимодействия с тормозными колодками, появлению бурта по краям зоны изнашивания, появлению скрипов при торможении и увеличению вероятности коробления дисков.
Вместе с изнашиванием рабочих поверхностей при эксплуатации возникает нарушение их плоскостей, вызываемое короблением под воздействием температуры и нагружения. Такое коробление очень часто возникает в режиме городской эксплуатации автомобиля, когда происходят частые интенсивные торможения, влекущие за собой перегрев тормозных дисков. А если автомобиль с перегретыми тормозными дисками преодолевает водную преграду (лужи, ручьи и т.д.), то в результате резкого охлаждения коробление практически неминуемо. Также и при эксплуатации в зимний период происходит частая смена температуры тормозных дисков от интенсивного нагрева при торможении (зимой водители значительно чаще используют тормоза, опасаясь заносов и скольжения) до, не менее интенсивного, охлаждения окружающей средой [4].
Кроме того, при эксплуатации автомобилей возникает микродеформация тормозных дисков от ударных нагрузок, передающихся от дорожного покрытия через связующие элементы (колесо, ступичный подшипник, ступица).
В результате деформаций и коробления рабочие поверхности становятся волнообразными, что приводит к изменению работы всей тормозной системы. При этом уменьшается площадь контакта рабочих поверхностей диска с антифрикционными накладками тормозных колодок, возникают вибрации, предающиеся на все рулевое управление и автомобиль в целом, происходит ускоренный износ накладок тормозных колодок, снижается эффективность и равномерность торможения автомобиля, что, в конечном итоге, отрицательно сказывается на безопасности эксплуатации автомобиля.
В современном автомобилестроении к макрогеометрии тормозных дисков автомобилей предъявляются весьма строгие требования: отклонения от плоскости рабочих поверхностей тормозного диска не более 0,1 мм, а боковое биение допускается не более 0,05 мм [3]. Такие высокие требования обусловлены все возрастающими требованиями по обеспечению безопасности дорожного движения, увеличением скоростных режимов, мощностей и совершенствованием систем управления автомобилем.
От состояния макрогеометрии тормозных дисков автомобилей напрямую зависит эффективность и надежность работы всей тормозной системы, а также других основных и вспомогательных систем активной безопасности. Эти системы в своей работе используют данные датчиков, показания которых, в основном, зависят от эффективности взаимодействия пары трения тормозной диск – тормозные колодки. От этого зависит точность и своевременность срабатывание этих систем безопасности, слаженность их взаимодействия, эффективность каждой системы в отдельности и управляемость автомобиля в целом, будут эти системы помогать водителю или создавать помехи и, в конечном итоге, скажется на безопасности и долговечности автомобиля.
Таким образом, нарушение макрогеометрии тормозных дисков ведет к снижению безопасности управления автомобилем, преждевременному износу элементов тормозной системы, отрицательно сказывается на работе остальных штатных систем активной безопасности современного автомобиля. Соответственно работы по предотвращению появления и устранению появившихся дефектов макрогеометрии тормозных дисков автомобилей является актуальной задачей.
Устранение дефектов макрогеометрии тормозных дисков автомобилей возможно при небольших значениях отклонений от нормы. При достижении критических значений износа рабочих поверхностей, а также при сильном короблении диска, восстановление технически исправного состояния невозможно или не рационально (не рентабельно). В авторемонтном производстве для восстановления макрогеометрии тормозных дисков автомобилей применяются, в основном, технологии и оборудование, позволяющее устранить дефекты при помощи механической обработки (снятия слоя материала).
Несмотря на то, что при снятии слоя материала с рабочих поверхностей тормозного диска происходит снижение общей прочности ресурс тормозного диска (и тормозных колодок) при этом увеличивается ввиду устранения отрицательного воздействия дефектов макрогеометрии диска на все системы активной безопасности и восстановления эффективности их работы.
Механическая обработка осуществляется, как правило, на металлорежущем оборудовании с применением специализированных приспособлений или на специальных станках, предназначенных только для таких операций. Основной проблемой такого оборудования и приспособлений является обеспечение требуемой геометрической точности механической обработки тормозных дисков. Для этого прибегают к позиционированию обрабатываемых дисков относительно базовых поверхностей. Точного позиционирования и механической обработки тормозных дисков добиваются применением разнообразных средств и систем измерения, начиная от механических (индикаторные головки) до электронных, световых и их комбинации. Существуют даже устройства позволяющие проводить механическую обработку тормозных дисков непосредственно на автомобиле, без демонтажа дисков со ступицы.
Основными направлениями совершенствования оборудования для восстановления макрогеометрии тормозных дисков автомобилей является повышение точности обработки, снижение отрицательного воздействия такой обработки на ресурс дисков, повышение производительности технологического процесса обработки, снижение трудоёмкости и себестоимости восстановления макрогеометрии тормозных дисков.
Исходя из выше изложенного, заключаем – восстановление макрогеометрии тормозных дисков и совершенствование оборудования для его реализации является актуальной задачей авторемонтного производства на сегодняшний день.
Библиографический список
- Захаров, Ю.А. Восстановление металлизацией деталей транспортно-технологических машин и комплексов [Текст] / Захаров, Е.В. Ремизов, Г.А. Мусатов // Молодой ученый. – 2014. – №19. – С. 199-201.
- Голубев, И.Г. Мониторинг технологических процессов восстановления деталей [Текст] / И.Г. Голубев, В.В. Быков, А.Н. Батищев, В.В. Серебровский, И.А. Спицын, Ю.А. Захаров // Технический сервис в лесном комплексе / Сб. материалов. науч.-практ. конф. – Москва: МГУЛ, 2000.– С.31.
- Родионов, Ю.В. Производственно-техническая инфраструктура и основы проектирования станций технического обслуживания автомобилей и автотранспортных предприятий: учебное пособие [текст] / Ю.В. Родионов. – Пенза: ПГУАС, 2012. – 267 с.
- Рылякин, Е.Г. Влияние эксплуатационных факторов на изменение надежности гидроагрегатов мобильных машин [Текст] / Е.Г. Рылякин // Молодой ученый. – 2014. – №4. – С. 247-249.
Количество просмотров публикации: Please wait
Источник
Разработка рекомендаций по выбору оборудования для диагностирования тормозной системы автомобилей
Принцип действия и основные элементы тормозной системы автомобиля. Схема работы главного цилиндра и вакуумного усилителя тормозов. Сравнение технических характеристик, ценовой категории, затрат на ремонт и срока службы диагностического оборудования.
Рубрика | Транспорт |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.06.2015 |
1. Устройство тормозной системы
1.1 Принцип действия тормозной системы
1.2 Виды тормозных систем автомобиля
1.3 Основные элементы тормозной системы автомобиля
2. Методы и оборудование для диагностики тормозных систем
2.1 Основные неисправности тормозной системы
2.2 Требования к тормозным системам автомобиля
2.3 Методы диагностирования тормозных систем
3. Рекомендации по выбору оборудования диагностирования тормозной системы
3.1 Выбор диагностического оборудования
3.2 Технические характеристики выбранного оборудования
Список использованных источников
Количество автомобилей становится все больше и больше, их число увеличивается по всему миру, с каждым годом. А с количеством автомобилей, увеличивается и количество ДТП, из-за которых гибнет большее количество людей и еще больше остаются инвалидами и калеками. Ненадлежащее техническое состояние и эксплуатация автомобилей, является одной из основных причин возникновения многих ДТП. Аварии, возникающие из-за отказа различных систем автомобиля, несут за собой самые тяжкие последствия.
Актуальность темы курсовой работы заключается в том, что наиболее важная система, отвечающая за безопасность автомобиля, является тормозная система. Конструкции автомобилей постоянно совершенствуется, но неизменным остаётся наличие тормозной системы, которая способствует при необходимости остановить авто, что сохраняет жизни пешеходов, водителей и пассажиров, а также остальных участников дорожного движения. Ремонт тормозной системы необходим на всех автомобилях, однако, необходимо проводить диагностику технического состояния тормозной системы каждые несколько тысяч километров, это необходимо для снижения вероятности возникновения отказа тормозов автомобиля.
Цель курсовой работы — повышение эффективности диагностирования тормозной системы автомобиля, за счет разработать рекомендации по выбору диагностического оборудования тормозных систем.
Для этого необходимо решить следующие задачи:
· выполнить анализ устройства тормозной системы автомобилей;
· изучить методы диагностирования тормозной системы;
· изучить используемое оборудование при диагностике тормозных систем.
Объектом исследования является технология диагностирования тормозной системы автомобилей.
Предмет исследования представляет собой средства и методы диагностирования тормозной системы автомобиля.
Методами исследования, используемыми в данной работе, являются методы обобщения, сравнения, анализа и аналогии.
Структура курсовой работы состоит из введения, трех глав, заключения и списка 10 использованных источников.
1. Устройство тормозной системы
1.1 Принцип действия тормозной системы
Несложно понять на примере гидравлической системы. При надавливании на педаль тормоза, сила давления на педаль тормоза, передается на главный тормозной цилиндр (рис.1.1).
Этот узел преобразует усилие, которое прикладывается к педали тормоза, в давление в гидравлической тормозной системе, для замедления и остановки автомобиля [2].
Рис. 1.1. Устройство главного цилиндра
Сегодня, для повышения надежности тормозной системы, на всех автомобилях устанавливаются двухсекционные главные цилиндры, которые разделяют тормозную систему на два контура. Тормозной двухсекционный цилиндр может обеспечить работоспособность тормозной системы, даже если произойдёт разгерметизация одного из контуров.
При наличии в автомобиле вакуумного усилителя, то главный тормозной цилиндр крепится над самим цилиндром или бывает в другом месте, где находится бачок с тормозной жидкостью, который соединяется с секциями главного тормозного цилиндра через гибкие трубки. Резервуар необходим для контроля и восполнения тормозной жидкости в системе, при необходимости. На стенках бака имеются для просмотра уровня жидкости. А также, в бачок вмонтирован датчик, следящий за уровнем тормозной жидкости.
Рис. 1.2. Схема главного тормозного цилиндра: 1 — шток вакуумного усилителя тормозов; 2 — стопорное кольцо; 3 — перепускное отверстие первого контура; 4 — компенсационное отверстие первого контура; 5 — первая секция бачка; 6 — вторая секция бачка; 7 — перепускное отверстие второго контура; 8 — компенсационное отверстие второго контура; 9 — возвратная пружина второго поршня; 10 — корпус главного цилиндра; 11 — манжета; 12 — второй поршень; 13 — манжета; 14 — возвратная пружина первого поршня; 15 — манжета; 16 — наружная манжета; 17 — пыльник; 18 — первый поршень.
В корпусе главного тормозного цилиндра имеется 2 поршня с двумя возвратными пружинами и с уплотнительными резиновыми манжетами. Поршня, при помощи тормозной жидкости, создают давление в рабочих контурах системы. Затем, возвратные пружины возвращают поршня в исходное положение.
Некоторые автомобили оборудуются датчиком, на главном тормозном цилиндре, который контролирует перепад давления в контурах. При возникновении не герметичности, он своевременно предупреждает водителя.
О работе главного тормозного цилиндра [9]:
1. При нажимании на педаль тормоза, шток вакуумного усилителя приводит в движение 1-ый поршень (рис. 1.3.)
Рис. 1.3. Работа главного тормозного цилиндра
2. Компенсационное отверстие закрывается, движущимся по цилиндру поршнем и создается давление, которое действует на 1-ый контур и двигает 2-ой поршень следующего контура. Также двигаясь вперед 2-ой поршень в своем контуре закрывает компенсационное отверстие и тоже создает давление в системе 2-ого контура.
3. Давление, создаваемое в контурах, обеспечивает срабатывание рабочих тормозных цилиндров. А пустота, что образовалась при движении поршней тут же заполняется жидкостью тормозной через специальные перепускные отверстия, тем самым предотвращая попадания в систему, ненужного воздуха.
4. При окончании торможения, поршни за счет действия возвратных пружин, возвращаются в исходное положение. При этом компенсационные отверстия получают сообщения с резервуаром и благодаря этому давление ровняется с атмосферным. А в это время, колеса автомобиля, растормаживаются.
Поршень в главном тормозном цилиндре, в свою очередь, который начинает двигаться и тем самым повышает давление в системе гидравлических трубок, ведущих ко всем колесам автомобиля. Тормозная жидкость под большим давлением, на всех колесах автомобиля, оказывая воздействие на поршень колесного тормозного механизма.
И который, уже в свою очередь, двигает тормозные колодки и те, прижимаются к тормозному диску или тормозному барабану автомобиля. Вращение колес сильно замедляется и автомобиль останавливается за счет силы трения.
После того, как мы отпускаем педаль тормоза, возвратная пружина возвращает педаль тормоза в исходное положение. Усилие, которое действует на поршень в главном барабане, тоже ослабевает, то и его поршень, также возвращается на свое место, заставляя тормозные колодки с находящимися на них фрикционным накладкам разжаться, тем самым, освобождая барабанные колеса или диски.
Также ещё есть вакуумный усилитель тормозов, применяемый в тормозных системах автомобилей. Его использование, существенно облегчает всю работу тормозной системы автомобиля.
1.2 Виды тормозных систем автомобиля
автомобиль тормоз вакуумный
Тормозная система необходима для замедления транспортного средства и полной остановки автомобиля, а также его удержания на месте.
Для этого на автомобиле используют некоторые тормозные система, как — стояночная, рабочая, вспомогательная система и запасная.
Рабочая тормозная система используется постоянно, на любой скорости, для замедления и остановки автомобиля. Рабочая тормозная система, приводится в действие, путем нажатия на педаль тормоза. Она является самой эффективной системой из всех остальных.
Запасная тормозная система используется при неисправности основной. Она бывает в виде автономной системы или её функцию выполняет часть исправной рабочей тормозной системы.
Стояночная тормозная система нужна для удержания автомобиля на одном месте. Стояночную систему использую во избежание самопроизвольного движения автомобиля.
Вспомогательная тормозная система применяется на авто с повышенной массой. Вспомогательную систему используют для торможения на склонах и спусках. Не редко бывает, что на автомобилях роль вспомогательной системы играет двигатель, где выпускной трубопровод перекрывает заслонка.
Тормозная система — это важнейшая неотъемлемая часть автомобиля, служащая для обеспечения активной безопасности водителей и пешеходов. На многих автомобилях применяют различные устройства и системы, повышающие эффективность системы при торможении — это антиблокировочная система (ABS), усилитель экстренного торможения (BAS), усилитель тормозов [3].
1.3 Основные элементы тормозной системы автомобиля
Тормозная система автомобиля состоит из тормозного привода и тормозного механизма [5].
Рис.1.3. Схема гидропривода тормозов: 1 — трубопровод контура «левый передний-правый задний тормоз«; 2-сигнальное устройство; 3 — трубопровод контура «правый передний — левый задний тормоз«; 4 — бачок главного цилиндра; 5 — главный цилиндр гидропривода тормозов; 6 — вакуумный усилитель; 7 — педаль тормоза; 8 — регулятор давления задних тормозов; 9 — трос стояночного тормоза; 10 — тормозной механизм заднего колеса; 11 — регулировочный наконечник стояночного тормоза; 12 — рычаг привода стояночного тормоза; 13 — тормозной механизм переднего колеса.
Тормозным механизмом блокируются вращения колес автомобиля и в следствии чего, появляется тормозная сила, которая является причиной остановки автомобиля. Тормозные механизмы находятся на передних и задних колесах автомобиля.
Проще говоря, все тормозные механизмы можно назвать колодочными. И уже в свою очередь, их можно разделять по трению — барабанные и дисковые. Тормозной механизм основной системы монтируется в колесо, а за раздаточной коробкой или коробкой передач находится механизм стояночной системы.
Тормозные механизмы, как правило состоят из двух частей, из неподвижной и вращающейся. Неподвижная часть — это тормозные колодки, а вращающаяся часть барабанного механизма — это тормозной барабан.
Барабанные тормозные механизмы (рис. 1.4.) чаще всего стоят на задних колесах автомобиля. В процессе эксплуатации из-за износа, зазор между колодкой и барабаном увеличивается и для его устранения используют механические регуляторы.
Рис. 1.4. Барабанный тормозной механизм заднего колеса: 1 — чашка; 2 — прижимная пружина; 3 — приводной рычаг; 4 — тормозная колодка; 5 — верхняя стяжная пружина; 6 — распорная планка; 7 — регулировочный клин; 8 — колесный тормозной цилиндр; 9 — тормозной щит; 10 — болт; 11 — стержень; 12 — эксцентрик; 13 — нажимная пружина; 14 — нижняя стяжная пружина; 15 — прижимная пружина распорной планки.
На автомобилях могут применять различные комбинации тормозных механизмов:
· два барабанных задних, два дисковых передних;
В тормозном дисковом механизме (рис. 1.5.) — диск вращается, а внутри суппорта установлены, две неподвижные колодки. В суппорте установлены рабочие цилиндры, при торможении они прижимают тормозные колодки к диску, а сам суппорт надежно закреплен на кронштейне. Для увеличения отвода тепла от рабочей зоны часто используются вентилируемые диски [8].
Рис. 1.5. Схема дискового тормозного механизма: 1 — колесная шпилька; 2 — направляющий палец; 3 — смотровое отверстие; 4 — суппорт; 5 — клапан; 6 — рабочий цилиндр; 7 — тормозной шланг; 8 — тормозная колодка; 9 — вентиляционное отверстие; 10 — тормозной диск; 11 — ступица колеса; 12 — грязезащитный колпачок.
2. Методы и оборудование для диагностики тормозных систем
2.1 Основные неисправности тормозной системы
Тормозная система требует к себе самого пристального внимания, т.к. запрещено эксплуатировать автомобиль, с неисправной тормозной системой. В данной главе рассмотрены основные неисправности тормозной системы, их причины и способы их устранения [6].
Увеличенный, большой рабочий ход педали тормоза. Возникает из-за недостатка, либо утечки тормозной жидкости из рабочих цилиндров. При этом следует заменить, вышедшие из строя рабочие цилиндры, промыть колодки, диски, барабаны и долить тормозную жидкость при необходимости. А также этому способствует попадание воздуха в тормозную систему, в этом случае, просто необходимо удалить его, прокачав систему.
Недостаточная эффективность торможения. Недостаточная эффективность тормозов возникает при замасливании или износе накладок тормозных колодок, также возможно заклинивание поршней в рабочих цилиндрах, перегрев тормозных механизмов, разгерметизация одного из контуров, применение некачественных колодок, нарушение в работе ABS и т.д.
Неполное растормаживание колес автомобиля. Данная проблема возникает, когда у педали тормоза нет свободного хода, необходимо просто отрегулировать положение педали. Также проблема может быть и в самом главном цилиндре, из-за заклинивания поршней. Может быть увеличенным выступание штока вакуумного усилителя, либо резиновые уплотнители, просто разбухли, из-за попадания бензина или масла, тогда в этом случае необходимо заменить все резиновые детали, а также промыть и прокачать всю систему гидропривода.
Притормаживание одного из колес, при отпущенной педали. Скорей всего ослабла стяжная пружина колодок заднего колеса, или из-за коррозии, либо просто загрязнения — заело поршень в колесном цилиндре, тогда необходимо заменить рабочий цилиндр. Также возможно нарушение положения суппорта относительно тормозного диска переднего колеса, при ослабевании болтов крепления. Еще может быть нарушение в работе ABS, разбухание уплотнительных колец колесного цилиндра, неправильная регулировка стояночной системы и т.д.
Занос, либо отклонение от прямолинейного движения при торможении. Если автомобиль, двигаясь по ровной и сухой дороге, во время торможения начал отклонятся в какую-либо сторону, то этому может способствовать заклинивание поршня главного цилиндра, закупоривание трубок вследствие засорения, загрязнение или замасливание тормозных механизмов, разное давление в колесах, а также возможно не работает один из контуров тормозной системы.
Увеличенное усилие на педали тормоза при торможении. Если для остановки автомобиля необходимо приложить большое усилие на педаль тормоза, то скорей всего просто неисправен вакуумный усилитель, но также еще бывает и поврежден шланг, который соединяет впускную трубу двигателя с вакуумным усилителем. А также возможно заедание поршня главного цилиндра, износ колодок и еще могут быть установлены новые колодки, которые просто еще не приработались.
Повышенный шум при торможении. Когда тормозные колодки изношены, возникает визжащий звук при торможении, из-за трения индикатора износа, трущегося о диск. Также колодки, либо диск могут быть засалены или загрязнены.
2.2 Требования к тормозным системам автомобиля
Тормозная система автомобиля, кроме общих требований к конструкции, имеет повышенные специальные требования, т.к. она обеспечивает безопасность движения автомобилей на дороге. Поэтому тормозная система в соответствии с этими требованиями, должна обеспечивать:
· минимальный тормозной путь;
· устойчивость автомобиля во время торможения;
· стабильность тормозных параметров при частом торможении;
· быстрое срабатывание тормозной системы;
· пропорциональность усилия на тормозную педаль и на колеса автомобиля;
К тормозным системам автомобиля, имеются требования, которые регламентируются правилами № 13 ЕЭК ООН, применяемые и у нас в России:
Минимальный тормозной путь. Тормозная система на автомобилях должна быть высокоэффективной. Число аварий и ДТП будет меньше, если максимальное значение замедления будет высоким и примерно равным у различных по массе и типу автомобилей, движущихся в интенсивном потоке.
А также и тормозные пути автомобилей должны быть одновременно близкими друг к другу, с разницей около 15%. Если минимальный тормозной путь сократится, то будет обеспечиваться не только высокая безопасность движения, но и увеличение средней скорости автомобиля.
Необходимые условия для получения минимального тормозного пути — это наименьшее время, необходимое для срабатывания тормозного привода автомобиля, а также торможение всех колес одновременно и возможность доведения тормозных сил до максимального значения по сцеплению и обеспечению нужного распределения тормозных сил между колесами автомобиля в соответствии с нагрузкой.
Устойчивость при торможении. Это требование повышает эффективность торможения автомобиля на дороге с малыми коэффициентами сцепления (обледенелые, скользкие и т. д.) и тем самым повышает уровень безопасности всех участников движения на дорогах.
При соблюдении пропорциональности между тормозными силами и нагрузками на задних и передних колесах, обеспечивается торможение автомобиля с максимальным замедлением при любых дорожных условиях.
Стабильное торможение. Данное требование связано с нагревом тормозного механизма во время торможения и возможными нарушениями их действий при нагреве. Так, при нагреве между тормозным барабаном (диском) и фрикционными накладками колодок, коэффициент трения уменьшается. Кроме этого, при нагреве тормозных накладок, их изнашивание значительно увеличивается.
Стабильность тормозных параметров при частых торможениях автомобиля достигается с коэффициентом трения тормозных накладок, равным около 0.3-0.35, практически не зависящий от скорости скольжения, нагрева и попадания воды.
От времени срабатывания тормозной системы автомобиля, будет зависеть тормозной путь, что существенно влияет на безопасность движения. Главным образом, от типа тормозного привода, зависит время срабатывание тормозной системы. У автомобилей с гидравлическим приводом будет 0.2-0.5, у автомобилей с пневматическим приводом 0.6-0.8 и у автопоездов с пневматическим приводом 1-2. При выполнении указанных требований, обеспечивается значительное повышение безопасности движения автомобилей в различных дорожных условиях.
Усилие на тормозную педаль во время торможения автомобиля должно быть 500 — 700 Н (минимальное значение, для легковых автомобилей) при ходе педали 80 — 180 мм [1].
2.3 Методы диагностирования тормозных систем
Для диагностирования тормозных систем автомобилей, применяют два основных метода диагностирования — дорожный и стендовый [7].
· дорожный метод диагностирования предназначен для определения длинны тормозного пут; установившегося замедления; устойчивость автомобиля вовремя торможения; время срабатывания тормозной системы; уклон дороги, на которой должен неподвижно стоять автомобиль;
· стендовый метод испытаний необходим для расчета общей удельной тормозной силы; коэффициента неравномерности (относительной неравномерности) тормозных сил колес оси.
На сегодняшний день существует множество различных стендов и приборов, для измерения тормозных качеств различными методами и способами:
· силовые роликовые стенды;
· приборы, измеряющие замедление автомобиля во время дорожных испытаний.
Инерционный платформенный стенд. Принцип действия этого стенда основывается на измерении сил инерции (от вращательно и поступательно движущихся масс), возникающие во время торможения автомобиля и приложенные в местах сопряжения колес автомобиля с динамометрическими платформами.
Статические силовые стенды. Данные стенды представляют собой роликовые и платформенные устройства, которые предназначены для проворачивания «срыва» заторможенного колеса и измерения прикладываемой при этом силы. Статистические силовые стенды имеют, пневматические, гидравлические или механические приводы. Тормозная сила измеряется при вывешивании колеса или при его опоре на гладкие беговые барабаны. У данного метода есть недостаток диагностирования тормозов — это неточность результатов, в результате чего не повторяются условия настоящего динамического процесса торможения.
Инерционные роликовые стенды. Они имеют ролики, имеющие привод от электродвигателя или от двигателя автомобиля. Во втором примере, за счет задних (ведущих) колес автомобиля, вращаются ролики стенда, а от них с помощью механической передачи — и передние (ведомые) колеса.
После того, как автомобиль установлен на инерционный стенд, линейную скорость колес доводят до 50-70 км/ч и резко тормозят, одновременно разобщая все каретки стенда путем выключения электромагнитных муфт. При этом в местах контакта колес с роликами (лентами) стенда возникают силы инерции, противодействующие тормозным силам. Спустя некоторое время вращение барабанов стенда и колес автомобиля прекращают. Пути, пройденные каждым колесом автомобиля за это время (или угловое замедление барабана), будут эквивалентны тормозным путям и тормозным силам.
Тормозной путь определяется по частоте вращения роликов стенда, фиксируемой счетчиком, или по продолжительности их вращения, измеряемой секундомером, а замедление — угловым деселерометром.
Силовые роликовые стенды с использованием сил сцепления колеса с роликом позволяют измерить тормозную силу в процессе его вращения со скоростью 2,10 км/ч. Вращение колес осуществляется роликами стенда от электродвигателя. Тормозные силы определяют по реактивному моменту, возникающему на статоре мотор редуктора стенда при торможении колес.
Роликовые тормозные стенды позволяют получать достаточно точные результаты проверки тормозных систем. При каждом повторении испытания они способны создать условия (прежде всего скорость вращения колес), абсолютно одинаковые с предыдущими, что обеспечивается точным заданием начальной скорости торможения внешним приводом. Кроме того, при испытании на силовых роликовых тормозных стендах предусмотрено измерение так называемой «овальности» — оценка неравномерности тормозных сил за один оборот колеса, т.е. исследуется вся поверхность торможения.
При испытании на роликовых тормозных стендах, когда усилие передается извне (от тормозного стенда), физическая картина торможения не нарушается. Тормозная система должна поглотить поступающую извне энергию даже несмотря на то, что автомобиль не обладает кинетической энергией.
Есть еще одно важное условие — безопасность испытаний. Самые безопасные испытания — на силовых роликовых тормозных стендах, поскольку кинетическая энергия испытуемого автомобиля на стенде равна нулю. В случае отказа тормозной системы при дорожных испытаниях или на площадочных тормозных стендах вероятность аварийной ситуации очень высока [8].
Следует отметить, что по совокупности своих свойств именно силовые роликовые стенды являются наиболее оптимальным решением как для диагностических линий станций техобслуживания, так и для диагностических станций, проводящих гостехосмотр.
Современные силовые роликовые стенды для проверки тормозных систем могут определять следующие параметры:
1) По общим параметрам транспортного средства и состоянию тормозной системы — сопротивление вращению незаторможенных колес; неравномерность тормозной силы за один оборот колеса; массу, приходящуюся на колесо; массу, приходящуюся на ось.
2) По рабочей и стояночной тормозным системам — наибольшую тормозную силу; время срабатывания тормозной системы; коэффициент неравномерности (относительную неравномерность) тормозных сил колес оси; удельную тормозную силу; усилие на органе управления.
Данные контроля (рис. 2.3.) выводятся на дисплей в виде цифровой или графической информации. Результаты диагностирования могут выводиться на печать и храниться в памяти компьютера в базе данных диагностируемых автомобилей.
Рис. 2.3. Данные контроля тормозной системы автомобиля: 1 — индикация проверяемой оси; ПО — рабочий тормоз передней оси; СТ — стояночная тормозная система; ЗО — рабочий тормоз задней оси
Результаты проверки тормозных систем могут выводиться также на приборную стойку (рис. 2.4.)
Динамику процесса торможения (рис. 2.5.) можно наблюдать в графической интерпретации. График показывает тормозные силы (по вертикали) относительно усилия на педали тормоза (по горизонтали). На нем отражены зависимости тормозных сил от усилия нажатия на педаль тормоза как для левого колеса (верхняя кривая), так и для правого (нижняя кривая).
Рис. 2.4. Приборная стойка тормозного стенда
Рис. 2.5. Графическое отображение динамики процесса торможения
С помощью графической информации можно наблюдать также разницу в тормозных силах левого и правого колес (рис. 2.6.). На графике показано соотношение тормозных сил левого и правого колес. Кривая торможения не должна выходить за границы нормативного коридора, которые зависят от конкретных нормативных требований. Наблюдая характер изменения графика, оператор-диагност может сделать заключение о состоянии тормозной системы [10].
Рис. 2.6. Значения тормозных сил левого и правого колес
3. Рекомендации по выбору оборудования диагностирования тормозной системы
3.1 Выбор диагностического оборудования
Тормозные стенды SPACE [4] имеют сертификат качества системы управления согласно UNI EN ISO 9001-2000 подтверждает применение передовых технологий, использования современных покрытий, высококачественных материалов и комплектующих, что даёт возможность экспортировать оборудование более чем в сорок стран мира.
Диагностирование тормозной системы автомобиля осуществляют ролики, которые разделяются на 3 типа. Тормозные стенды имеют разную конструкцию и мощность двигателя, но главной основной чертой является максимальное значение тормозной силы (табл. 3.1).
Таблица 3.1. Роликовые агрегаты для тормозных стендов
Источник