Алюминий для ремонта автомобилей

Содержание
  1. Ремонт алюминиевого кузова
  2. Характеристики алюминия
  3. Инструмент, используемый для ремонта повреждений алюминиевых деталей
  4. Сварка алюминия
  5. Исправление вмятин на алюминиевых деталях
  6. Замена алюминиевых деталей
  7. Заключение
  8. Ремонт алюминиевого кузова
  9. Алюминий хорошо выправляется под воздействием тепла
  10. Осуществляя ремонт алюминиевого кузова нужно использовать отдельные инструменты
  11. Сварка алюминия отличается от сварки стальных деталей
  12. Алюминиевые сплавы в автомобиле
  13. Зачем применять алюминий в автомобиле
  14. Малая плотность
  15. Модуль Юнга
  16. И деформируемые, и литейные
  17. Литейные алюминиевые сплавы
  18. Сплавы с кремнием
  19. Сплавы с медью
  20. Деформируемые алюминиевые сплавы
  21. Алюминиевые сплавы для теплообменников
  22. Листовые алюминиевые сплавы
  23. Алюминиевые сплавы для профилей
  24. Кузов: алюминиевый и стальной
  25. Штамповка алюминия по сравнению со сталью
  26. Особенности сварки алюминия

Ремонт алюминиевого кузова

Многие производители используют алюминий для изготовления кузова автомобиля, а так же для изготовления отдельных его элементов и деталей. Алюминиевые детали, в отличие от стальных, не подвергаются коррозии. Алюминий легче, чем сталь. Его использование в конструкции позволяет значительно снизить общую массу автомобиля. Однако ремонт деталей из алюминия отличается от ремонта обычных стальных деталей.

Характеристики алюминия

Алюминий, используемый для изготовления кузовных деталей, может иметь различную степень твердости. От очень мягкого и пластичного, до настолько твердого, что при деформации ломается. Это определяется конструкционными особенностями данной детали.

В отличие от стальных деталей, детали из алюминия не стремятся вернуться к своему первоначальному состоянию после деформации.

При нагревании алюминий становится более мягким и эластичным. Он теряет жесткость при температуре 300 °C, а при температуре 640 °C плавится.

Алюминий значительно быстрее нагревается и остывает относительно стали. Не краснеет перед плавлением.

При попадании на алюминий частичек стали, может возникнуть гальваническая коррозия алюминия. Что бы этого не случилось, необходимо использовать специально предназначенные для ремонта инструменты.

Инструмент, используемый для ремонта повреждений алюминиевых деталей

Как правило, для ремонта алюминиевых деталей используются молотки, контропоры, гладилки, подставки и другие инструменты, сделанные из алюминия, титана или пластика. Так же могут использоваться инструменты, изготовленные из нержавеющей стали. Некоторые инструменты из стали, подвергающиеся специальной обработке, так же могут использоваться при ремонте алюминиевых деталей. При этом нет никакого риска дальнейшей гальванической коррозии.

Сварка алюминия

При сварке алюминия, необходимо учитывать его свойство быстро нагреваться. Постоянный контроль процесса сваривания деталей, позволит избежать перегрева и прожога в сопрягаемых областях. Для сварки алюминия используют аргонно-дуговую сварку.

Исправление вмятин на алюминиевых деталях

Перед тем как начать исправлять вмятину, необходимо разогреть поврежденную область. Как только алюминий потеряет свою жесткость можно начать выравнивать повреждение. Пытаясь выпрямить вмятину на холодную, можно порвать деталь в районе воздействия.

Замена алюминиевых деталей

Для ремонта автомобилей из алюминия необходимо знать, что многие детали соединяются между собой не только при помощи сварки. Некоторые соединения осуществляются при помощи клея и специальных заклепок. В процессе замены кузовных деталей, необходимо использовать такое же соединение, которое использовалось до демонтажа данного элемента.

Заключение

Алюминий не совместим со сталью. Осуществляя ремонт алюминиевых деталей необходимо избегать попадания на него частичек стали. В противном случае может начаться гальваническая коррозия алюминия.

Для ремонта алюминиевых деталей используют специальный инструмент.

Для исправления деформированных элементов необходимо нагревать поврежденные участки до 300 °C.

Для соединения алюминиевых деталей используют аргонно-дуговую сварку и соединение с помощью заклепок и клея.


Источник

Ремонт алюминиевого кузова

При­вет­ствую Вас на бло­ге kuzov.info!

В этой ста­тье рас­смот­рим неко­то­рые аспек­ты ремон­та алю­ми­ни­е­во­го кузова.

Алю­ми­ний не новый металл в авто­мо­би­ле­стро­е­нии. Неко­то­рые авто­мо­би­ли 1930 – х годов уже име­ли части кузо­ва, изго­тов­лен­ные из алю­ми­ния. Исполь­зо­ва­ние алю­ми­ния в авто­мо­би­ле­стро­е­нии сни­жа­ет вес авто­транс­пор­та и при этом это очень проч­ный металл.

Ford F‑150 с алю­ми­ни­е­вым кузовом

Алю­ми­ний в соста­ве кон­струк­ции кузо­ва име­ют, напри­мер, такие авто­мо­би­ли, как, Mercedes-Benz S, CL и SL , BMW 5- и 6‑серий, Chevy Corvette, Jaguar XJ , Range Rover, Porsche Panamera, 991, 981, и 918; Audi TT , A8 и R8 ; Acura NSX ’s, Ferrari, Maserati, Lamborghini, Bentley, Rolls Royce, Aston Martin, Lotus и Tesla. Так­же, алю­ми­ни­е­вые эле­мен­ты име­ют неко­то­рые авто­мо­би­ли Honda и Ford (Ford F‑150).

Читайте также:  Приспособления для ремонта автомобиля камаз

Ремонт кузо­ва, име­ю­ще­го дета­ли из алю­ми­ния нель­зя назвать более слож­ным, чем вос­ста­нов­ле­ние кузо­ва из ста­ли, он про­сто отли­ча­ет­ся. Перед нача­лом ремон­та кузо­ва из алю­ми­ния нуж­но полу­чить опре­де­лён­ные зна­ния и сле­до­вать опре­де­лён­ным пра­ви­лам. При рабо­те с алю­ми­ни­ем мож­но лег­ко допу­стить ошиб­ку. Повре­жде­ния при непра­виль­ном ремон­те будут более зна­чи­тель­ные и труд­но испра­ви­мые, чем при рабо­те со ста­лью. Соблю­дая опре­де­лён­ные пра­ви­ла и обре­тя необ­хо­ди­мые зна­ния, рабо­ту с алю­ми­ни­ем мож­но назвать даже более лёк­гой, чем со ста­лью. Алю­ми­ний более подат­ли­вый металл, чем сталь.

Внеш­ние алю­ми­ни­е­вые пане­ли кузо­ва изго­тав­ли­ва­ют из тер­мо­об­ра­бо­тан­но­го алю­ми­ния. Такой алю­ми­ний варьи­ру­ет­ся по твёр­до­сти от T0 (очень мяг­кий и пла­стич­ный) до T6 (настоль­ко твёр­дый, что при попыт­ке согнуть деталь из тако­го алю­ми­ния, она лома­ет­ся). Боль­шин­ство внеш­них алю­ми­ни­е­вых пане­лей кузо­ва име­ют твёр­дость T4 . Они доста­точ­но твёр­дые и устой­чи­вые к появ­ле­нию вмятин.

Кузов­ные дета­ли из алю­ми­ния, в отли­чие от сталь­ных, не име­ют «памя­ти». Они, так ска­зать, не стре­мят­ся вер­нуть­ся в свою пер­во­на­чаль­ную фор­му после повре­жде­ния. Поэто­му нуж­но исполь­зо­вать дру­гие тех­ни­ки для воз­вра­та их в пер­во­на­чаль­ное состояние.

Алю­ми­ний ста­но­вит­ся более жёст­ким и твёр­дым, если его выпра­вить после повреждения.

Алюминий хорошо выправляется под воздействием тепла

Вмя­ти­ну луч­ше все­гда нагре­вать. Если начать вытя­ги­вать вмя­ти­ну алю­ми­ни­е­вой пане­ли на холод­ную, то панель может порваться.

Тем­пе­ра­ту­ра нагре­ва долж­на варьи­ро­вать­ся от 200 до 300 гра­ду­сов по Цель­сию. Таким обра­зом, алю­ми­ний теря­ет жёст­кость, при нагре­ве до 300 гра­ду­сов и ста­но­вит­ся мяг­ким. Рас­плав­ля­ет­ся он при тем­пе­ра­ту­ре 640 гра­ду­сов по Цельсию.

Нуж­но пом­нить, что алю­ми­ний нагре­ва­ет­ся и осты­ва­ет очень быст­ро, быст­рее ста­ли. Это нуж­но учи­ты­вать в про­цес­се ремон­та. Алю­ми­ний не крас­не­ет перед плав­ле­ни­ем и непод­го­тов­лен­ный мастер может запро­сто про­жечь металл.

При нагре­ве, вмя­ти­на будет терять напря­же­ние и немно­го выпра­вит­ся сама.

Осуществляя ремонт алюминиевого кузова нужно использовать отдельные инструменты

Частич­ки, остав­ши­е­ся на инстру­мен­тах от преды­ду­ще­го ремон­та сталь­но­го кузо­ва, могут стать при­чи­ной галь­ва­ни­че­ской кор­ро­зии алю­ми­ния в даль­ней­шем. Гово­ря об инстру­мен­тах, сто­ит уточ­нить, что для рих­тов­ки алю­ми­ни­е­вых пане­лей кузо­ва нуж­но при­ме­нять рих­то­воч­ные инстру­мен­ты, пред­на­зна­чен­ные спе­ци­аль­но для рабо­ты с алю­ми­ни­ем. Обыч­но это молот­ки, кон­тро­по­ры, кузов­ные гла­дил­ки, сде­лан­ные из алю­ми­ния, пла­сти­ка, тита­на или нержа­ве­ю­щей ста­ли. Неко­то­рые, спе­ци­аль­но обра­бо­тан­ные инстру­мен­ты из ста­ли, могут при­ме­нять­ся при ремон­те алю­ми­ни­е­во­го кузо­ва, не вызы­вая галь­ва­ни­че­ской кор­ро­зии. Обыч­но это инстру­мен­ты с отпо­ли­ро­ван­ной поверх­но­стью и нержа­ве­ю­щей ста­лью. К тому же, глад­кая отпо­ли­ро­ван­ная поверх­ность рих­то­воч­но­го инстру­мен­та более акку­рат­но воз­дей­ству­ет на более мяг­кий, чем сталь алюминий.

Для ремон­та алю­ми­ни­е­во­го кузо­ва тре­бу­ет­ся спе­ци­аль­ное оборудование

Если рядом ремон­ти­ру­ют­ся два авто­мо­би­ля, сде­лан­ные из раз­ных метал­лов, то луч­ше пыле­со­сить мусор от ремон­та, а не сду­вать сжа­тым воз­ду­хом. При сду­ва­нии, части­цы ста­ли могут попасть на алю­ми­ни­е­вые дета­ли. К тому же, это умень­шит пожа­ро­опас­ность. Это свя­за­но с тем, что алю­ми­ни­е­вая пыль лег­ко возгорается.

Луч­ше обу­стро­ить отдель­ную зону для ремон­та авто­мо­би­лей с алю­ми­ни­е­вым кузовом.

Сварка алюминия отличается от сварки стальных деталей

Как было напи­са­но выше, алю­ми­ний нагре­ва­ет­ся очень быст­ро и нуж­но вни­ма­тель­но сле­дить за про­цес­сом свар­ки, что­бы не про­жечь алю­ми­ни­е­вую деталь кузо­ва насквозь. Для ремон­та алю­ми­ни­е­вых кузо­вов тре­бу­ет­ся спе­ци­аль­ное сва­роч­ное обо­ру­до­ва­ние. Для свар­ки тон­ких листов алю­ми­ния при­ме­ня­ют аргон­но-дуго­вую свар­ку TIG .

Итак, систе­ма­ти­зи­руя выше­ска­зан­ное, назо­вём три основ­ных отли­чия алю­ми­ния от стали.

Источник

Алюминиевые сплавы в автомобиле

Для автомобиля наиболее важным преимуществом алюминия и алюминиевых сплавов над сталями является их низкая плотность или, как часто говорят, удельный вес.

Читайте также:  Планирование текущего ремонта автомобилей

Зачем применять алюминий в автомобиле

Малая плотность

Плотность алюминиевых сплавов составляет в среднем 2,7 в граммах на кубический сантиметр по сравнению с 7,87 для сталей. Таким образом, плотность алюминиевых сплавов составляет только около 35 % от плотности сталей.

Модуль Юнга

Однако модуль упругости алюминиевых сталей равняется всего лишь 70 ГПа по сравнению с 207 ГПа для сталей. Это значит, что для одинаковой жесткости на изгиб алюминиевая балка должна быть на 43,5 % толще, чем стальная балка. Дело в том, что жесткость конструкционного элемента – балки, профиля или листа – из какого-либо материала прямо пропорциональна произведению модуля упругости этого материала на момент инерции поперечного сечения (Е·I) этого элемента. В результате, снижение веса, которое можно получить от применения алюминия по сравнению со сталью не будет пропорционально разнице в плотности этих двух материалов. В общем случае замена стальной балки на алюминиевую балку дает снижение веса примерно на 50 % (см. подробнее здесь).

И деформируемые, и литейные

Как литейные, так и деформируемые алюминиевые сплавы весьма широко применяются в автомобилях. Литейные алюминиевые сплавы применяются в основном для двигателя, трансмиссии и элементов подвески, тогда как деформируемые сплавы в виде листов и прессованных профилей применяются широко в конструкции кузова. Некоторые модели автомобилей, например Ауди А8 и Ауди А2, имеют полностью алюминиевый кузов.

Литейные алюминиевые сплавы

Сплавы с кремнием

Литейными алюминиевыми сплавами, которые применяют в автомобиле, являются в основном сплавы серии 300 (Al-Si-Cu или Al-Si-Mg), такие как:

  • сплав 319 для впускного коллектора, головки цилиндра и корпуса трансмиссии;
  • сплав 383 для блока цилиндров;
  • сплав 356 для головки цилиндров и
  • сплав А356 для колесных дисков и для рычагов подвески.

Главным легирующим элементом в этих сплавах является кремний, который обеспечивает им хорошие литейные свойства, в том числе, высокую жидкотекучесть. Эти сплавы отливают с применением ряда обычных методов от литья в песчаные формы и литья в стальные разъемные формы до более сложных методов литья, таких как, литье в постоянные формы и литье по выплавляемым моделям. Если к алюминиевой отливке предъявляются высокие требования по герметичности и количеству литейных дефектов, то применяют такие методы литья, как вакуумное литье под высоким давлением или литье в полужидком состоянии.

Сплавы с медью

Кроме литейных алюминиевых сплавов серии 3хх в автомобилях применяют также некоторые сплавы серии 2хх (Al-Cu). К ним относятся сплавы 201, 204 и 206, из которых отливают детали шасси, подвески и некоторые компоненты двигателя. Литейные алюминиевые сплавы обеих серий – и 2хх, и 3хх – являются термически упрочняемыми сплавами.

Таблица 2 – Химический состав литейных алюминиевых сплавов

Деформируемые алюминиевые сплавы

Алюминиевые сплавы для теплообменников

Такие алюминиевые сплавы, как 1200 и 3005 применяются в теплообменниках, которые включают радиатор, трубы испарителя и ребра. Преимущества применения алюминия в таких изделиях состоит не только в том, что у алюминия очень высокая теплопроводность, но и в том, что у него значительно более высокое отношение прочность/плотность, чем у сплавов на основе меди, которые являются традиционными материалами для изготовления теплообменников.

Таблица 1 – Химический состав алюминиевых сплавов для теплообменников

Листовые алюминиевые сплавы

Листовыми алюминиевыми сплавами, которые применяют для панелей кузова, являются нагартовываемые сплавы серии 5ххх (Al-Mg), такие, как сплавы 5182, 5454 и 5754, а также термически упрочняемые сплавы серии 6ххх (Al-Mg-Si), такие как, 6009, 6061 и 6111.

Таблица 2 – Химический состав листовых алюминиевых сплавов

Сплавы серии 5ххх являются термически не упрочняемыми, то есть их практически невозможно упрочнить термической обработкой. Листы из этих сплавов поставляются в отожженном состоянии «О» и они получают деформационное упрочнение при выполнении операции штамповки из них листовых деталей.

Читайте также:  Оказание услуг по ремонту автомобилей юридическим лицами

Листы из сплавов серии 6ххх поставляются состоянии Т4, то есть в состоянии после закалки и естественного старения. Затем они получают упрочненное состояние Т6 за счет искусственного старения, которое происходит при нагреве в печи отверждения краски в ходе операции окраски.

Сплавы серии 5ххх хорошо поддаются формовке путем пластического деформирования. Однако, в ходе формовки листовых деталей из этих сплавов на их поверхности могут появляться следы пластической деформации растяжением (полосы Людера). Поэтому эти сплавы не применяют для наружных панелей, но применяют для внутренних панелей и деталей каркаса кузова. Листовые сплавы серии 6ххх не подвержены образованию полос Людера и поэтому их применяют как для внутренних и наружных панелей, так и для элементов каркаса кузова.

Алюминиевые сплавы для профилей

Сплавами для алюминиевых профилей – экструзионными алюминиевыми сплавами, которые применяются в конструкции автомобилей, являются:

  • сплавы серии 6ххх (Al-Mg-Si) 6005, 6061, 6063 и 6082;
  • сплавы серии 7ххх (Al-Zn-Mg): 7004, 7116, 7029 и 7129.

Профили из этих алюминиевых сплавов применяются для изготовления различных элементов каркаса кузова, усиления передних крыльев, опорной рамы двигателя, рамы сидений, балки бампера, детали рулевого управления.

Таблица 3 – Химический состав алюминиевых сплавов для профилей

Алюминиевые сплавы обеих серий – 6ххх и 7ххх – являются термически упрочняемыми путем нагрева под закалку (обработки на твердый раствор) с последующим естественным или искусственным старением. Сплавы серии 7ххх являются более трудными для прессования, чем сплавы серии 6ххх, особенно в случае сложных полых профилей. Они – сплавы серии 7ххх – кроме того, менее коррозионно стойкие и хуже свариваются.

Кузов: алюминиевый и стальной

Детали каркаса кузова автомобиля, такие как несущие элементы крыши, требуют многократной штамповки и сварки, когда их делают из стали. Если применять алюминий, то можно применять только один цельный прессованный алюминиевый профиль, который подвергают специальной обработке, например, гидроформингу. Применение только одного прессованного профиля вместо штампованного и сварного дает возможность сокращения количества необходимого оборудования и стоимости сборочных работ.

Штамповка алюминия по сравнению со сталью

В общем случае, способность алюминиевых сплавов к пластическому деформированию – пластической формовке – составляет около двух третей от такой способности у стали. Из-за более низкой способности к формовке сложные алюминиевые панели кузова могут потребовать несколько штамповочных операций или сборки из нескольких штампованных деталей.

Кроме того, из-за более низкого модуля упругости алюминия алюминиевые детали проявляют более высокую упругую отдачу после выполнения операции формовки, например, гибки. Поэтому алюминиевые штампованные детали труднее штамповать: они не так точно повторяют форму штампа, как стальные детали. В дополнение к этому алюминиевые сплавы имеют более высокую склонность к образованию царапин и следов инструмента, чем сталь и поэтому требуют большего количества смазки и большей чистоты поверхности штампового инструмента.

Особенности сварки алюминия

Хотя алюминиевые сплавы можно сваривать точечной сваркой сопротивления, как и сталь, существуют некоторые отличия ее применения для алюминия. При точечной сварке алюминия необходимо применять более высокую силу тока из-за его низкого электрического сопротивления и высокой теплопроводности. Сварочная сила тока для алюминиевых сплавов составляет 15-30 килоампер по сравнению с 8-10 килоампер для стали.

Это значит, что для контактной сварки алюминия нужны сварочные аппараты увеличенных размеров, а также повышенный расход электрической энергии.

Дуговая сварка плавлением (TIG и MIG) также могут применяться к алюминиевым сплавам. Однако из-за их высокой теплопроводности они требуют для сварки повышенного расхода энергии.

Из других методов соединения материалов, которые применяют для деталей из алюминиевых сплавов являются:

  • самопробивные заклепки,
  • запрессовка,
  • клеевые соединения и
  • комбинация контактной сварки с клеевым соединением.

Источник: Advanced Materials in Automotive Engineering, ed. Jason Rowe, Woodhead Publishing, 2012

Источник

Оцените статью