Дефектация трансформатора перед ремонтом

Дефектация и разборка трансформаторов

Поступивший в ремонт трансформатор тщательно осматривают, чтобы выявить все дефекты. Этот процесс является первой стадией ремонта и называется дефектацией трансформатора.

Рабочий, производящий дефектацию, должен хорошо знать не только признаки неисправностей и способы их выявления, но и их причины. Наиболее характерные неисправности трансформаторов и причины их возникновения приведены в таблице.

Повреждение внешних деталей трансформатора (расширителя, бака, арматуры, наружной части вводов, пробивного предохранителя) легко обнаружить при внешнем осмотре. Повреждения внутренних деталей можно выявить путем различных испытаний.

Однако результаты испытания не всегда дают возможность точно установить действительный характер повреждения, так как одно какое-либо выявленное в результате испытания отклонение от нормы, например повышенный ток холостого хода, может быть вызвано витковым замыканием обмотки, замкнутым контуром через стяжные болты и прессующие плиты, неправильным включением параллельных обмоток и т. д.

Кроме того, испытания не дают возможности определить размеры повреждений.
Поэтому при дефектации, как правило, разбирают трансформатор, поднимая сердечник, что позволяет не только точно установить характер, причины и масштабы повреждения, но и определить необходимые для ремонта материалы, инструменты и приспособления.

Наиболее характерные неисправности силовых трансформаторов

Элементы трансформатора Наименование неисправности Причины неисправности
Обмотки Витковое замыкание Естественное старение и износ изоляции; систематические перегрузки трансформатора; динамические усилия при сквозных коротких замыканиях
Замыкание на корпус (пробой); междуфазное замыкание Старение изоляции, увлажнение масла и понижение его уровня; внутренние и внешние перенапряжения; деформация обмоток вследствие динамических нагрузок при сквозных коротких замыканиях
Обрыв цепи Отгорание отводов обмотки в результате низкого качества соединения или электродинамических нагрузок при коротких замыканиях
Переключатели напряжения Отсутствие контакта Нарушение регулировки переключающего устройства
Оплавление контактной поверхности Термическое воздействие сверхтоков на контакт при коротких замыканиях
Вводы Перекрытие на корпус Трещины в изоляторах; понижение уровня масла в трансформаторе при одновременном загрязнении внутренней поверхности изолятора
Перекрытие между вводами отдельных фаз Повреждение изоляции отводов к вводам или переключателю
Магнитопровод Увеличение тока холостого хода Ослабление шихтованного пакета магнитопровода
«Пожар стали» Нарушение изоляции между отдельными пластинами стали или изоляции стяжных болтов; слабая прессовка пластин; образование коротко — замкнутого контура при повреждении изоляционных прокладок между ярмом и магнитопроводом; образование короткозамкнутого контура при выполнении заземления магнитопровода со стороны выводов обмоток ВН и НН
Бак и арматура Течь масла из сварных швов, кранов и фланцевых соединений Нарушение сварного шва от механических или температурных воздействий; плохо притерта пробка крана; повреждена прокладка под фланцем

«Ремонт электрооборудования промышленных предприятий»,
В.Б.Атабеков

Источник

Технология дефектации и предремонтные испытания трансформатора.

В процессе осмотра собранного трансформатора проверяют его комплектность, а также состояние его наружных частей: целостность сварных швов и соединений, отсутствие течи масла из фланцевых со- единений арматуры с баком, механических повреждений циркуляци- онных труб, расширителя, трещин в армировочных швах и сколов фарфора выводов. Замеченные неисправности отмечают в дефектиро- вочной ведомости [3, 26, 36].

Предремонтные испытания трансформатора. Проверка целостности и сопротивления изоляции обмоток осуществляется при помощи мегомметра или контрольной лампы.

Сопротивление изоляции обмоток измеряют мегомметром на

2,5 кВ всех фаз относительно корпуса и между обмотками разных на- пряжений. За сопротивление изоляции принимают одноминутное значение измеренного сопротивления R60. Значение сопротивления

изоляции не нормируется, но не должно быть ниже чем на 30% от ус- тановленного в результате статистических наблюдении или полученного при предыдущем ремонте.

Степень увлажнения изоляции определяют по коэффициенту абсорбции Kабс, представляющему со5ой отношение сопротивления

изоляции, измеренное через 1 мин (R60) > к сопротивлению изоляции, измеренному через 15 с R15 : Kабс = R60/ R15.

Измерения сопротивлений изоляцииотносительно корпуса про-

водят мегомметром на 2,5 кВ. Для трансформаторов с напряжением до 35 кВ включительно величина коэффициента абсорбции должна быть не ниже 1,3 при температуре 10—30 °С.

Измерение коэффициента трансформации (k) проводят с целью обнаружения витковых замыканий в обмотках и замыканий в анцапф- ном переключателе. Для определения k на обмотку высокого напряжения подают пониженное напряжение, обычно сетевое. Измеряют три линейных напряжения со стороны ВН и НН на всех ответвлениях фаз (положениях анцапфного переключателя). В соответствий с ГОСТ 11677—

85 значение коэффициента трансформации не должно отличаться более чем на 12% от значений, полученных на соответствующих ответвлениях других фаз или от заводских (паспортных) значений.

Измерение сопротивления обмоток постоянному току осуществляется с целью проверки состояния цепей, контактов, паек. Сопро- тивление обмоток измеряют с помощью измерительного моста или методом, вольтметра—амперметра. В последнем случае во избежание нагрева обмотки и внесения ошибок в результаты измерения, ток при измерении не должен превышать 20% номинального. Сопротивления измеряют на всех выводах трансформатора для всех ответвлений обмоток всех фаз. При наличии выведенной нейтрали (нуля) измерения проводят между фазовым выводом и нулевым. Измеренное линейное значение сопротивления между линейными выводами пересчитывают на фазовое: соединение обмоток «звездой» rф = 3/2rизм. Соединение обмоток «треугольником»

Измеренное сопротивление пересчитывают на температуру 75 °С по выражению

(2.62)

Читайте также:  Капитальный ремонт начисляется ндс

где rtсопротивление фазы, измеренное при температуре обмотки t °С.

Результаты измерений считают удовлетворительными, если со- противления фаз одной и той же обмотки отличаются друг от друга и от данных заводских измерений не более чем на 2%.

Технология дефектации трансформатора при разборке (выемной части)

Проверка обмотки.При осмотре обмоток трансформатора об- ращают внимание на: состояние витковой изоляции (визуально); от- сутствие деформации и смещения обмоток в радиальном и осевом направлениях относительно магнитопровода и относительно одна другой; состояние паек на обмотках и соединений на анцапфном переключателе; состояние охлаждающих каналов между обмотками, а также между обмоткой НН и магнитопроводом [22]. Изоляционные и дистанционные детали: цилиндры, перегородки,прокладки изготавливают преимущественно из электрокартона, а планки и рейки — из твердых пород дерева, обычно бука. При их осмотре необходимо проверить прочность крепления, отсутствия усушки, пробоев изоляции, которые сопровождаются появлением прожогов, трещин, обугливанием и растрескиванием.Для определения состояния изоляции, например электрокартона,из нескольких мест (изоляции ярма, изоляции между слоями, витками и т.д.) вырезают образец в виде полоски, которую сгибают под прямым углом и затем свободно складывают вдвое без сдавливания места сгиба. Если при полном сгибании вдвое электрокартон не ломается, изоляция хорошая (свежая); если при полном сгибании образуются трещины, изоляция удовлетворительная; когда при полном сгибании изоляция ломается, она ограниченно годная; изоляция, которая ломается при сгибе до прямого угла, негодная.

Изоляцию по ее состоянию подразделяют на четыре класса: I класс —изоляция хорошая (при нажатии рукой мягкая и не дает трещин, II класс — изоляция удовлетворительная (при нажатии рукой сухая, твердая, но трещин не образует); III класс — изоляция ненадежная (при надавливании рукой на ней появляются мелкие трещины или расслоения); IV класс — изоляция плохая и к дальнейшей эксплуатации непригодна (при нажатии рукой осыпается).

Если при ремонте требуется изготовление новых обмоток, а заводская техническая документация отсутствует, необходимо составить подробный эскиз установки обмоток на магнитопроводе. При этом следует указать размеры окна и магнитопровода, а также катушек, изоляции и каналов в радиальном и осевом направлениях.

Проверка магнитопровода. При дефектации магнитопровода обращают внимание на: отсутствие отслаивания листов активной стали; отсутствие цветов побежалости и ржавчины на стали, что свидетельствует об удовлетворительном состоянии межлистовой изоляции и магнитопровода (отсутствие перегрева); качество шихтовки (отсутствие перекоса стержней, увеличенных зазоров в местах стыков); состояние изоляции стяжных шпилек и ярмовых балок; качество прессовки активного железа.

Состояние изоляции стяжных шпилек и ярмовых балок оценивают по значению сопротивления изоляции их относительно магнитопровода. Сопротивление изоляции измеряется мегомметром на 1—2,5 кВ. Значение сопротивления изоляции не нормировано. Исходя из опыта ремонта и эксплуатации трансформаторов считают, что сопротивление изоляции этих частей относительно магнитопровода должно быть не ниже 10 МОм.

Качество прессовки магнитопровода проверяют остро заточенным ножом: кончик его лезвия при среднем усилии нажатия не должен входить между листами стали на глубину более 3 мм.

Источник

Осмотр и дефектовка силовых трансформаторов

Понятие и причины внеочередного осмотра трансформатора. Виды дефектов силовых трансформаторов (повреждение высоковольтных вводов, изоляции обмотки металлических частей), опасные воздействия на него: перенапряжение, короткое замыкание, перегрузка по току.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 14.05.2014
Размер файла 23,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

ГБОУ Стерлитамакский Технологический Колледж

Осмотр и дефектовка силовых трансформаторов

Выполнил: Сергеев В.П.

Проверил: Ряхин В. Р.

трансформатор дефект обмотка высоковольтный

Осмотры трансформаторов являются средством визуального контроля их состояния при эксплуатации. Осмотры проводятся без отключения трансформаторов со следующей периодичностью: главных понижающих трансформаторов подстанций с постоянным дежурством персонала — 1 раз в сутки; остальных трансформаторов электроустановок с постоянным и без постоянного дежурства персонала — не реже 1 раза в месяц.

Внеочередные осмотры трансформаторов производятся: после неблагоприятных климатических воздействий, например, после резкого изменения температуры окружающего воздуха; после срабатывания газовой защиты на сигнал; после отключения трансформатора газовой или дифференциальной защитой.

При осмотрах трансформаторов проверяются: показания всех измерительных приборов (термометров, термосигнализаторов, мановакуумметров и других); состояние внешней изоляции трансформатора (отсутствие трещин и сколов фарфора, степень загрязнения поверхности); состояние ошиновки, кабельных вводов и доступных для наблюдения контактных соединений; состояние фланцевых соединений маслопроводов и отсутствие течи масла; наличие и уровень масла в расширителе и маслонаполненных вводах; состояние контура заземления; состояние маслоприемных устройств (гравийной засыпки).

2. Виды дефектов силовых трансформаторов

Трансформаторы входят в состав основного оборудования электростанций, повышающих, понижающих и распределительных подстанций, различного вида преобразовательных устройств и т.д. Различное назначение, нередко связанное с различиями в конструкции, разнообразные условия работы и другие особенности требуют различного подхода к эксплуатации трансформаторов.

Но где бы ни находились и как бы ни эксплуатировались трансформаторы, «болезни» у них, как правило, общие. Уровень эксплуатации определяет не характер возможных повреждений, а возможность как можно более раннего выявления проявляющихся отклонений от нормы, проведения требуемого объема профилактических работ, качественного ремонта. Естественно, что чем выше уровень эксплуатации, тем меньше неприятностей доставляют трансформаторы.

Рассмотрим наиболее характерные повреждения, которые могут возникнуть в любых масляных трансформаторах. Повреждения или отклонения от нормального режима работы могут быть вызваны различными причинами; недоработкой конструкции, скрытыми дефектами изготовления, нарушениями правил перевозки, технологии монтажа или правил эксплуатации, некачественным ремонтом. В большинстве случаев повреждение происходит не сразу, а после более или менее длительного воздействия неблагоприятного фактора. Своевременное выявление возникающего дефекта позволяет принять меры по предупреждению его развития и сохранению работоспособного состояния трансформатора.

Читайте также:  Ремонт тросика двери ауди 80

Наиболее распространенным видом повреждения силовых трансформаторов напряжением 110 кВ и более является повреждение высоковольтных вводов. В настоящее время эксплуатируются негерметичные и герметичные маслонаполненные вводы, а также вводы с твердой изоляцией.

Наиболее слабым узлом негерметичных вводов является система защиты масла от воздействия влаги с помощью масляного гидрозатвора и силикагелевого воздухоосушителя. При длительной эксплуатации, особенно в случае несвоевременной замены силакагеля, масло увлажняется, ухудшаются его изоляционные характеристики, в результате чего могут возникнуть частичные разряды в масле. В дальнейшем по поверхности бумажной изоляции начинает образовываться так называемый «ползущий» разряд, при приближении которого к заземленной части происходит пробой изоляции с возникновением короткого замыкания.

Герметичные вводы менее трудоемки в эксплуатации и более надежны, чем негерметичные. В первые годы эксплуатации наблюдались повреждения вводов из-за образования алюминиевой пыли в сильфонах баков давления.

Как в негерметичных, так и в герметичных вводах может иметь место нарушение герметичности в зоне крепления верхней контактной шпильки. При неплотностях влага может из атмосферы просачиваться в масло, создавая увлажнение изоляции трансформатора. Другим распространенным видом повреждения трансформаторов является повреждение устройств регулирования напряжения под нагрузкой (РПН). Нарушения в контактной системе избирателя могут возникать от неправильной регулировки контактов (недостаточное или чрезмерное нажатие, перекосы и др.), вследствие образования на контактах пленки окисла при редких переключениях и несвоевременно выполненных прокрутках устройства, при нарушениях в кинематической схеме.

Контактор устройства РПН может повреждаться при неправильной регулировке его контактной системы и кинематической схемы, а также вследствие несвоевременной замены трансформаторного масла. Время между срабатыванием вспомогательных и дугогасящих контактов контактора при переключении исчисляется десятыми долями секунды. Если масло в контакторе потеряло свои дугогасящие свойства, процесс гашения дуги затягивается и соседние отпайки (ответвления) регулировочной обмотки трансформатора могут оказаться замкнутыми не через дугогасящий резистор, а через электрическую дугу, что приводит к тяжелым авариям с деформацией обмоток трансформатора.

К повреждениям устройств РПН могут приводить увлажнение и загрязнение изолирующих деталей, изготовление этих деталей из материалов, не предусмотренных технической документацией, ослабление креплений и т.д. Нередки отказы вследствие нарушений в работе приводов.

К наиболее тяжелым последствиям приводят повреждения обмоток и главной изоляции трансформаторов. Плохо просушенные электрокартон или витковая бумажная изоляция, грязное или увлажненное трансформаторное масло вызывают местное ослабление твердой изоляции с возникновением ползущего разряда или без него с последующим пробоем. К нарушению работы твердой изоляции приводит также несоблюдение размеров (между листами электрокартона и др.), разбухание слабо намотанной изоляции, нарушения в работе системы охлаждения, чрезмерные перегрузки трансформатора по току и напряжению и др. В связи с разнообразием причин и тяжелыми последствиями от повреждений витковой и главной изоляции своевременному выявлению этого вида нарушений в работе трансформаторов уделяется наибольшее внимание.

В связи с постоянным ростом энергетических мощностей растут мощности короткого замыкания (КЗ), Вследствие этого роста, а также при ослабленной запрессовке обмоток электродинамическая стойкость обмоток к воздействию внешних КЗ (называемых также «сквозными» КЗ), может оказывается недостаточной. В результате при внешних КЗ, обмотка может деформироваться или разрушиться, хотя ее изоляция перед повреждением находилась в хорошем состоянии.

Повреждения в активной стали трансформатора приводят к менее тяжелым последствиям и связаны, как правило, с образованием короткозамкнутых контуров внутри бака. Контур может образоваться как внутри пакета магнитопровода, так и через какую-либо конструктивную металлическую деталь, например через прессующее кольцо и элементы заземления магнитопровода. При современных бесшпилечных магнитопроводах короткозамкнутый контур обычно сцеплен не с главным потоком (замыкающимся только по активной стали), а с потоком рассеяния. Короткозамкнутый контур вызывает повышенный местный нагрев (местный перегрев), обычно в местах контактов, ухудшающий свойства трансформаторного масла. Если своевременно не устранить дефект, то может произойти повреждение твердой изоляции трансформатора.

Существенное влияние на общую работоспособность трансформатора оказывают также вспомогательные узлы и устройства. Так, например, повреждение маслонасоса в трансформаторах с системой охлаждения Ц и ДЦ приводит к попаданию металлических частиц и других примесей в трансформаторное масло и, будучи несвоевременно выявленным, вызывает серьезные аварии. При нарушении резиновых и других уплотнений увлажняется трансформаторное масло. Неисправность стрелочного маслоуказателя приводит к недопустимому снижению или превышению уровня масла и тд.

Приведенный краткий обзор основных видов повреждений показывает, что в большинстве случаев они развиваются постепенно. Следовательно, если правильно поставить работу по проверке состояния трансформаторов, возникающие дефекты можно выявить до того момента, когда будет превышена какая-то критическая точка. Тогда можно будет своевременно вывести трансформатор в ремонт, предотвратив возникновение аварии или отказа, не допустить недоотпуск электроэнергии, снизить время и расходы на ремонт.

Силовой трансформатор является ответственным элементом сети, на работу которого влияют как сильные внешние воздействия, так и анормальные режимы работы энергосистемы. Рассмотрим эти воздействия и их последствия.

Грозовые и коммутационные перенапряжения, вызывающие повреждения главной и витковой изоляции при недостаточных запасах их электрической прочности.

Повышения рабочего напряжения из-за некомпенсированной емкости ВЛ СВН и УВН, приводящие к перевозбуждению трансформаторов.

Длительное повышение напряжения становится в последнее время весьма актуальным.

Недостаточный объем средств компенсации реактивной мощности и регулирования напряжения в сетях 330-750 кВ ЕЭС стран СНГ в условиях спада производства электроэнергии в последние годы создает трудности с поддержанием допустимых уровней напряжения, особенно в режимах минимальных нагрузок. Подъем напряжения из-за недостаточной компенсации на ВЛ 500 кВ может достигать 550 кВ. Повышение напряжения ведет к длительному перевозбуждению магнитопровода.

Читайте также:  Ремонт магнитного замка apecs

Еще один неблагоприятный фактор в нынешних сетях 330-750 кВ — распространенная практика неиспользования устройств РПН (или использования его только для сезонных переключений). В таких случаях к возможному перевозбуждению от некомпенсированных линий может добавиться еще 3-5 % и оно станет еще более опасным.

Перевозбуждение магнитной системы вызывает повышенный нагрев как самого сердечника, так и конструкционных стальных деталей, что опасно для контактирующей с ними изоляции.

Токи КЗ, оказывающие ударные механические воздействия на обмотки. Серьезным влиянием со стороны сети является воздействие на трансформатор токов КЗ, вызывающих деформацию обмоток при их динамической нестойкости. В настоящее время такие повреждения трансформаторов занимают заметное место. По расчетам примерно 1,7 % автотрансформаторов 220-500 кВ I раз в год может подвергаться опасным воздействиям тока КЗ, особо опасных для автотрансформаторов е пониженной электродинамической стойкостью. Такая группа «риска» оценивается в 25 % общего количества автотрансформаторов 330-750 кВ подстанций стран СНГ.

Токи намагничивания при включении, вызывающие повреждения обмоток из-за электрических и механических переходных процессов. Включение трансформатора в сеть само, но себе является причиной броска тока при намагничивании сердечника. Так, из-за броска тока при включении со стороны ВН трансформатора блока АЭС мощностью 1000 МВ-А на несколько секунд для генераторов создается режим форсировки возбуждения. Бросок тока включения зависит в первую очередь от остаточной индукции в сердечнике трансформатора, которая в свою очередь зависит от конструкции сердечника. Разрабатываются способы ликвидации и снижения бросков тока.

Сейсмические воздействия на трансформатор. Большое внимание в последнее время уделяется сейсмостойкости мощных трансформаторов, разработке методов испытания их на сейсмостойкость. Примером трансформатора с повышенной сейсмостойкостью может служить трансформатор для Рогунской ГЭС, спроектированный ПО «Запорожтрансформатор». Он рассчитан на сейсмичность до 9 баллов по 12-балльной шкале.

Воздействия геомагнитных токов на трансформатор. После нескольких серьезных аварий трансформаторов в сетях Северной Америки были исследованы воздействия геомагнитных бурь, вызывающих появление в длинных линиях токов порядка сотен ампер очень низкой частоты, которые действуют аналогично постоянному току. Это относится к протяженным ЛЭП, ориентированным в меридиональном направлении. Геомагнитные токи в первую очередь воздействуют на измерительные трансформаторы тока, что ведет к массовым ложным срабатываниям релейной зашиты. Однако при анализе последствий таких аварий отмечались также и местные перегревы массивных деталей и бака силовых трансформаторов из-за перенасыщения сердечника при протекании больших постоянных токов по обмотке.

Перегрузка трансформатора по току. Большое влияние на срок службы трансформатора из-за старения изоляции оказывает режим нагрузки. Максимально допустимую температуру наиболее нагретых точек определяют два ограничивающих фактора старение целлюлозно-бумажной изоляции под воздействием продолжительного нагрева и возникновение газовых пузырьков на поверхности бумажной изоляции при быстром повышении температуры. Например, по рекомендациям института электроэнергетики США ЕРШ кратковременно допускается температура 180°С, выше которой возможно возникновение пузырьков газа; продолжительно допускается температура 140 °С, выше которой существует опасность быстрого старения бумажной изоляции. Большинство зарубежных специалистов считают возможным допускать температуру не выше 140°С из общих соображений надежности трансформатора.

Влияние тепловых перегрузок для украинских трансформаторов не критично для условий нашей страны с зимним максимумом нагрузки и сравнительно холодным климатом. При правильном выборе трансформаторов классический тепловой износ витковой изоляции на практике не проявляется. Кроме того, нагрузки наших трансформаторов за последние пять лет из-за резкого спада промышленного производства снизились в среднем с 60-70 % до 20-40 %. Сохранилось незначительное количество подстанций с нагрузками 60-70 %.

Имевшие место 30-35 лет назад многочисленные аварии из-за полного теплового износа витковой изоляции торцевых частей обмоток трансформаторов 110-500 кВ происходили при нагрузке ниже номинальной и были обусловлены грубым дефектом конструкции обмоток.

Опасные тепловые воздействия перегрузок, особенно в жаркое время года, могут стать причиной повреждений герметичных вводов ВН, нижняя часть которых находится в наиболее нафетых верхних слоях масла. Такие повреждения, характерные образованием внутри покрышки желтого налета, наблюдались в последнее время довольно часто.

Размещено на Allbest.ru

Подобные документы

Конструктивная схема силовых трансформаторов. Обмотка как важнейший элемент трансформатора. Ток холостого хода трансформатора. Т-образная схема замещения. Упрощенная векторная диаграмма (активно-индуктивная нагрузка). АВС треугольник короткого замыкания.

презентация [721,5 K], добавлен 09.11.2013

Диагностические характеристики мощных трансформаторов. Виды дефектов мощных силовых трансформаторов. Диагностика механического состояния обмоток методом частотного анализа. Определение влаги в изоляции путем измерения частотной зависимости tg дельта.

практическая работа [1,2 M], добавлен 10.05.2013

Схемы измерения характеристик силовых трансформаторов. Значения коэффициентов для пересчета характеристик обмоток и масла. Перевернутая (обратная) схема включения моста переменного тока. Порядок определения влажности изоляции силовых трансформаторов.

лабораторная работа [721,5 K], добавлен 31.10.2013

Монтаж силовых трансформаторов, системы охлаждения и отдельных узлов. Испытание изоляции обмоток повышенным напряжением промышленной частоты. Включение трансформатора под напряжением. Отстройка дифференциальной защиты от бросков тока намагничивания.

реферат [343,8 K], добавлен 14.02.2013

Определение степени полимеризации маслосодержащей изоляции, с развивающимися дефектами в процессе эксплуатации силовых трансформаторов. Анализ технического состояния изоляции силовых трансформаторов с учетом результатов эксплуатационного мониторинга.

курсовая работа [227,4 K], добавлен 06.01.2016

Источник

Оцените статью