Ewm 1000 plus схема ремонт

Устройство и ремонт электронного контроллера EWM1000, используемого в стиральных машинах ELECTROLUX и ZANUSSI (часть 2)

Особенности схемотехнических решений контроллера

В модуле EWM1000 имеется развитая система контроля работоспособности элементов — как входящих в его состав, так и внешних. На основе информации, полученной от элементов системы контроля, управляющая программа микропроцессора соответствующим образом «реагирует» на сбои в работе СМ и неисправности элементов в ее составе — отображает коды ошибок и завершает (или нет) текущую операцию (стирки, отжима, нагрева воды и др.).

Рассмотрим работу некоторых элементов системы контроля компонентов модуля. Контроль работоспособности силовых симисторов TY1 (замок люка), TY5 (помпа) и TY6 (приводной мотор)

Если микропроцессор U4 формирует сигнал включения помпы DRAIN TY (на выв. 5), симистор TY5 открывается и включает помпу. Сигнал DRAIN TY S, формируемый схемой контроля (R205, R33, R34, C10), поступает на выв. 23 U4 низким уровнем. И наоборот, при исправных электронных компонентах цепи слива низкому уровню сигнала DRAIN TY должен соответствовать высокий уровень сигнала DRAIN TY S.

В случае, когда сигнал DRAIN TY S постоянно низкого уровня при любых состояниях сигнала DRAIN TY это может быть вызвано короткими замыканиями между выводами симистора TY5 (A1-A2), варистора VDR5 или неисправностью вентиля U11D. В этом случае система диагностики СМ прерывает программу и формирует коды ошибок Е23 или Е24.

Также возможен вариант, когда сигнал DRAIN TY S постоянно высокого уровня, независимо от состояния сигнала DRAIN TY Это возможно при отказе симистора TY5 (обрыва между его выводами) или из-за нарушений в цепи питания помпы (неконтакт в соединителе J3 или обрыв обмотки помпы). В этом случае система диагностики СМ через 10 минут после подачи команды на слив воды (сигнал DRAIN остается активным) прерывает программу стирки и формирует код ошибки Е21. На самом деле процесс слива контролируется также прессостата-ми первого и защитного уровней. Их показания также учитываются при формировании кодов ошибок.

Аналогичным образом контролируется работа симисторов (TY1, TY6), а также элементов их цепей. Контроль системы питания СМ

В рассматриваемом модуле используется двухуровневая система подачи сетевого питания на элементы схемы. Сетевое напряжение вначале поступает на сетевой фильтр, а с него — на сетевой выключатель (в составе селектора программ). После замыкания контактных групп последнего, сетевое напряжение поступает на импульсный источник питания. Одновременно фаза сети (сигнал LINE ON/OFF) поступает на следующие элементы:

— замок блокировки люка (выв. 5);

— один из выводов прессостата уровня перелива;

— выпрямитель-формирователь сигнала ZC на транзисторе Q16 (для контроля частоты питающей сети);

— делитель напряжения на резисторах R210, R217(для контроля уровня питающей сети);

— через гасящие резисторы R90-R92 — на питание цепи контроля симистора TY6.

После того как выбрана программа стирки и закрыта дверца люка, включается замок дверцы и его контактная группа подает фазу питающей сети (в виде шины DOOR CLOSED) на следующие элементы:

— прессостат 1 уровня;

— клапаны залива воды основной и предварительной стирки;

— сливной насос (помпа);

— контрольную лампу блокировки люка;

— через одну из контактных групп реле реверса, на ротор приводного мотора.

Как уже отмечалось выше, активный сигнал шины DOOR CLOSED (или LINE DOOR) через формирователь на транзисторе Q23 поступает на микропроцессор U4 (выв. 2).

Подобная двухуровневая система позволяет повысить степень защиты компонентов модуля, и, в целом — самой СМ. Например, если не будет включена блокировка двери, приводной мотор, клапаны залива воды и помпа просто не будут работать (на них не будет подано питающее напряжение).

Работа остальных элементов контроллера понятна из описания, приведенного выше.

Рассмотрим возможные неисправности контроллера EWM1000 и способы их устранения.

Возможные неисправности контроллера и способы их устранения

Примечание. Прежде чем принимать решение по ремонту платы контроллера, следует убедиться, что возникший дефект не вызван неисправностью других элементов СМ: датчиков, клапанов залива воды, приводного мотора и др.

Довольно часто неисправности СМ возникают по причине плохих контактов в соединителях как самого электронного контроллера, так и его внешних элементов, а также в случае попадания на него влаги (пены). К сожалению, на контакты соединителей платы контроллера не нанесены специальные антико-розийные покрытия (например, из золота или серебра), что значительно снижает их надежность. Определить работоспособность элементов СМ можно отдельной проверкой — например, на клапан залива воды напрямую подают сетевое напряжение 220 В. Что же касается проверки приводного мотора, то методика его диагностики и восстановления была приведена в [2].

Читайте также:  Сиреневый бульвар капитальные ремонты

Также при поиске дефектов контроллера следует использовать возможности системы внутренней диагностики СМ — работоспособность многих узлов можно проверить в диагностическом (тестовом) режиме или использовать индикацию кодов ошибок (см.[1]). СМ не включается

В подобном случае вначале проверяют сетевой фильтр и выключатель питания, совмещенный с селектором программ. Собственно, в большинстве случаев проверка и восстановление этого выключателя проблем не представляет, достаточно ознакомиться с материалом, опубликованным в [3].

Следующим этапом проверяют работоспособность источника питания (ИП). Собственно, ИП выполнен по простейшей схеме (см. рис. 2), поэтому поиск возможных неисправных компонентов в его составе не должен вызвать затруднений.

Таблица 2. Назначение выводов микропроцессора MC68НС08GP16

Также возможен вариант, когда отсутствие одного или обоих выходных напряжений ИП (5 и 12 В) может быть вызвано короткими замыканиями в его нагрузках. Для проверки этого предположения разрывают соответствующую линию питания и проводят подетальную проверку элементов на ней. Чаще всего причиной подобного дефекта могут быть интегральные ключи U11, U12, микропроцессор U4 и энергонезависимая память U3.

Следует отметить, что большинство элементов контроллера вы

Таблица 2. Продолжение

полнены по SMD-технологии, поэтому их механическая прочность крайне низка — на это нужно обратить внимание в первую очередь. В добавление к этому следует учесть, что плата контроллера имеет большие линейные размеры по ширине и, как следствие, недостаточную жесткость, — она часто «гуляет», что также негативно сказывается на ее надежности.

Если питающие напряжения с ИП поступают на все составные части контроллера, на следующем этапе проверяют внешние элементы микропроцессора и памяти. В первую очередь проверяют работоспособность тактового генератора (выв. 43, 44 U4) и наличие сигнала начального сброса на выв. 1 микропроцессора.

Таблица 2. Окончание

Если перечисленные действия не привели к нахождению неисправного элемента, необходимо заменить микропроцессор U4 (на экземпляр с предварительно прошитой в него управляющей программой), благо сейчас в Интернете появились предложения о продаже данных типов микропроцессоров с соответствующей версией прошивки по приемлемой цене.

СМ не выполняет различные программы (или они выполняются некорректно). В некоторых случаях наблюдаются «плавающие» дефекты, причины которых не выявляются даже с помощью кодов ошибок. Проверка внешних компонентов СМ не выявила дефектов

Методом визуального осмотра платы контроллера выявляют подгоревшие или плохо пропаянные компоненты,установленные на ней. Также проверяют надежность контактов внешних соединителей на плате, выявляют возможные следы попадания воды (пены). Также в обязательном порядке проверяют выходные напряжения ИП — на предмет пульсаций. Если не выполняется только одна из выбранных программ, возможно, это вызвано неконтактом в одной из групп селектора программ.

Если причина дефекта не была выявлена, последовательно заменяют память и микропроцессор. В режиме стирки барабан СМ вращается только в одну сторону (через паузу)

Причина подобного дефекта может быть вызвана неисправностью одного из реле реверса (или их контактных групп) или микросхемы ULN2004 (U12). Процессор в очень редких случаях становится причиной подобного дефекта. Неисправности, связанные и неработоспособностью внешних силовых элементов, подключенных к контроллеру и управляемые симисторами (например, не работают или постоянно включены клапаны залива воды, замок блокировки дверцы и др.)

Подобные дефекты достаточно распространены и бывают связаны с:

— отказом внешних силовых элементов, подключенных к контроллеру;

— попаданием влаги на перечисленные внешние элементы СМ;

— отказами соответствующих симисторов.

Большинство подобных дефектов сопровождаются индикацией соответствующих кодов ошибок.

Чтобы после замены соответствующего симистора подобный дефект далее не повторялся, необходимо проверить методом замены и сами исполнительные элементы.

При работе СМ постоянно возникают ошибки, связанные с недопустимым уровнем сетевого питающего напряжения (ЕВ2, ЕВ3). Дополнительная проверка параметров питающей сети не выявила каких-либо отклонений

Причина возникновения подобных ошибок чаще всего связана с изменением параметров резис-тивного делителя напряжения (R210, R217, R218). Процессор в очень редких случаях становится причиной подобного дефекта (вход АЦП — выв. 29). Отсутствует обмен информацией по последовательному интерфейсу между СМ и внешним ПК

Причина возникновения подобного дефекта чаще всего связана с отказом одного из элементов в цепи последовательного интерфейса, а также из-за дефекта кварцевого резонатора, подключенного к микропроцессору U4.

Необходимо отметить, что система диагностики СМ ELECTROLUX и ZANUSSI, выполненных на контроллерах EWM1000, достаточно развита, поэтому выявление большинства дефектов не представляет большой сложности — достаточно лишь руководствоваться приведенными выше описанием компонентов и цепей контроллера, а также его принципиальной схемой.

1. «Диагностика стиральных машин ELECTROLUX c системой управления EWM1000(+)». «Ремонт & Сервис», № 7, 2005, с. 31.

2. «Ремонт и проверка работоспособности коллекторных двигателей стиральных машин». «Ремонт & Сервис», № 5, 2006, с. 56.

3. «Устройство и ремонт электронного контроллера стиральных машин HANSA серии РС». «Ремонт & Сервис», № 10, 2005, с. 32.

Читайте также:  Проверка ямочного ремонта дорог

Автор: Александр Ростов (г. Зеленоград)

Источник: Ремонт и сервис

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник

Устройство и ремонт электронного контроллера EWM1000 стиральных машин Electrolux и Zanussi (часть 1)

В этой статье рассматривается работа основных составных элементов контроллера EWM1000 по принципиальной, структурной и монтажной схемам. Также в этом материале приведены возможные неисправности модуля и способы их устранения.

Электронный контроллер EWM1000 используется в устаревших моделях стиральных машин Electrolux, Zanussi без командоап-парата. Вместо последнего используется селектор-переключатель программ, совмещенный с сетевым выключателем и установленный непосредственно на плате контроллера.

По своему назначению контроллер EWM1000 ничем не отличается от подобных устройств других производителей. Но у него есть и свои особенности, на которых мы остановимся ниже.

Рис. 1 Внешний вид модуля EWM1000

Внешний вид модуля EWM1000 приведен на рис. 1, его принципиальная электрическая схема на рис. 2, один из вариантов подключения к нему элементов СМ — на рис. 3, а вариант монтажной схемы стиральной машины с этим контроллером — на рис. 4.

Рисунки 2,3,4 можно скачать здесь

Основные функции контроллера EWM1000

Контроллер EWM1000 выполняет следующие функции:

— выбор программ стирки и дополнительных режимов СМ с помощью селектора программ (4 на рис. 1) и соответствующих функциональных кнопок;

— индикация режимов работы машины с помощью светодиодных индикаторов;

— управление клапанами залива воды (основной и предварительной стирки);

— управление устройством блокировки люка, включение блокировки контролируется свечением неоновой лампы на передней панели СМ;

— управление нагревом воды в баке до заданной температуры (исполнительным элементом служит ТЭН, регулирующим — потенциометр на передней панели СМ (5 на рис. 1), а функцию контроля температуры выполняет датчик NTC);

— управление сливным насосом (помпой);

— включение-выключение питания СМ с помощью выключателя, совмещенного с селектором программ;

— контроль уровня воды в баке с помощью внешних прессостатов первого и защитного уровней, а также уровня перелива;

— обмен служебной информацией (например, с ПК) по встроенному последовательному интерфейсу, в том числе и по ИК каналу;

— управление приводным мотором во всех режимах его работы (реверсивный режим — в режиме стирки, с регулировкой оборотов — в режиме отжима). Регулировка оборотов мотора производится на основе ШИМ, оконечным регулирующим элементом которого является симистор. Контроль скорости вращения мотора обеспечивается тахогенератором;

— контроль работоспособности силовых элементов, входящих в состав контроллера (например, симисторов, управляющих блокировкой люка, а также включением помпы и приводного мотора);

— контроль параметров сетевого питающего напряжения СМ (уровень и частота).

Кроме того, для проверки работоспособности элементов СМ контроллер обеспечивает функционирование режима тестирования, а при фиксации различных сбоев (отказов) в работе машины — индикацию кодов ошибок (см. [1]).

Плата контроллера крепится к тыльной стороне крышки панели управления. На лицевую сторону панели выведены: ручки селектора программ и регулятора температуры, функциональные кнопки, окна светодиодных индикаторов и лампа индикации блокировки люка.

Состав и основные цепи

Для соединения с компонентами СМ контроллер имеет внешние соединители, назначение которых приведено в табл. 1.

Перечислим входящие в состав контроллера основные элементы и узлы (см. рис. 1 и 2), их назначение и цепи прохождения сигналов. • Микропроцессор U4 типа

MOTOROLA (1 на рис. 1). Он является основным управляющим компонентом контроллера (описание микропроцессора приведено в этом же номере журнала в рубрике «Элементная база».

Таблица 1. Назначение контактов соединителей J1-J8

• Энергонезависимая память U3 типа М24С64 (2 на рис. 1). Она служит для хранения управляющей программы СМ и различных служебных данных (например, зафиксированных кодов ошибок). Микросхема связана с микроконтроллером U4 по цифровой последовательной шине I2C. • Источник питания (3 на рис. 1). Он формирует постоянные напряжения 5 В (VCC) и 12 В (VEE) для питания элементов и узлов, входящих в состав контроллера. В состав источника входят:

— сетевой выпрямитель и фильтр (VDR7, C30, D5, C31);

— ШИМ, выполненный на микросхеме U5 TNY253;

— импульсный трансформатор Т1;

— усилитель ошибки (Q7, Q8 и DZ1);

— выходные выпрямители (D6, D7, C34-C38).

• 7-канальные транзисторные ключи (U11, U12) типа ULN2004. Они используются в качестве буферных элементов в цепях управления обмоток реле и симис-торов, а также в качестве усилителя-формирователя сигнала закрытия люка.

• 8-битные универсальные регистры U8, U9 типа 74HC595 и 8-ка-нальный аналоговый мульти-плексор/демультиплексор U13 типа 74HC4051. Они управляются микроконтроллером и выполняют следующие функции:

— управление светодиодными индикаторами (DL1-DL14) на передней панели СМ;

Читайте также:  Zhiyun smooth 4 ремонт

— считывание состояния контактных групп селектора программ и функциональных кнопок (PL1-PL5) передней панели;

— управление схемой зуммера (Q21, Q22 и LS1).

• Выпрямитель-формирователь сигнала ZC для контроля частоты питающей сети (D25, Q16). Сигнал с него поступает на выв. 19 процессора U4.

• Делитель для контроля уровня напряжения питающей сети (R210, R217, D28, D29). Сигнал с него (MAIN_V) поступает на выв. 29 процессора U4.

• Элементы сигнальных цепей:

— включения блокировки люка (D32, Q23), сигнал поступает на выв. 2 U4 (DOOR_CLOSE);

— включения прессостата 1 уровня (R7-R11, C3), сигнал поступает на выв. 25 U4 (L1_S);

— включения прессостата уровня перелива (R19-R21, D33, Q24), сигнал поступает на выв. 32 U4 (HV1_S);

— включения прессостата защитного уровня/контроля включения реле ТЭНа (R209, C39, R88, R89), сигнал поступает на выв. 28 U4 (AB_S);

— контроля подачи питания на замок блокировки люка/проверки работоспособности симистора TY1 (R12-R16, C4), сигнал поступает на выв. 24 U4 (DOOR_TY_S);

— контроля подачи питания на сливной насос/проверки работоспособности симистора TY5 (R205, R33, R34, C10), сигнал поступает на выв. 23 U4 (DRAIN_TY_S);

— начального сброса процессора (R55, R56, C17), сигнал поступает на выв. 1 U4 (RESET);

— контроля подачи питания на приводной мотор/проверки работоспособности симистора TY6 (R212, R93-R94, C40), сигнал поступает на выв. 26 U4 (MOT_TY_S);

— контроля закрытия люка (U11G, C45, R142, R150) — сигнал поступает на выв. 33 U4 (LV1_SENS);

— тахогенератора (R104-R108, D14, Q9, C44, C69) — сигнал поступает на выв. 20 U4 (MOT_TCH);

— датчика температуры NTC (R100-R102, C42) — сигнал поступает на выв. 22 U4 (NTC_W);

— регулировки температуры нагрева воды (R139-R141) — сигнал поступает на выв. 27 U4 (KNOB2);

— внешнего последовательного порта (соединитель J7). Цепь приема: сигнал ASY_IN с конт. 1 соединителя через резистор R119 поступает на выв. 10 U4. В эту цепь также входят элементы ИК приемника (Q17, R166-R168, C54-C56, TS1). Цепь передачи: сигнал ASY_OUT поступает с выв. 9 U4 через резистор R121 на конт. 2 соединителя. В эту цепь также входят элементы ИК передатчика (Q18, R171-R174, C74, C57, C58, GR1). • Элементы силовых цепей:

— управление симистором TY6 (6 на рис. 1) приводного мотора (U11E, R98, R99, VDR6, C41), управляющий сигнал поступает с выв. 18 U4 (MOTOR_TY);

— управление симистором TY1 замка блокировки люка (U11A, R17, R18, VDR1, C5, VDR1), управляющий сигнал поступает с выв. 4 U4 (DOOR_TY);

— управление симистором TY3 клапана залива воды основной стирки (U11C, R26, R27, VDR3, C8), управляющий сигнал поступает с выв. 38 U4 (WELT_TY);

— управление симистором TY4 клапана залива воды предварительной стирки (U11B, R28, R29,VDR4, C9), управляющий сигнал поступает с выв. 39 U4 (PWELT_TY);

— управление симистором TY5 помпы (U11D, R35, R36, VDR5, C11), управляющий сигнал поступает с выв. 5 U4 (DRAIN_TY);

— управление реле реверса RL2 приводного мотора (U12B), управляющий сигнал поступает с выв. 34 U4 (CW_RL);

— управление реле реверса RL3 приводного мотора (U12C), управляющий сигнал поступает с выв. 35 U4 (CCW_RL);

— управление реле ТЭНа RL1 (U12A), управляющий сигнал поступает с выв. 3 U4 (WHEAT_RL);

— управление реле RL4 коммутации обмоток статора приводного мотора в режимах стирки и отжима (U12D), управляющий сигнал поступает с выв. 36 U4 (HF_RL).

Назначение выводов микропроцессора MC68HC08GP16 (применительно к контроллеру EWM1000) приведено в табл. 2.

Автор: Александр Ростов (г. Зеленоград)

Источник: Ремонт и сервис

Рекомендуем к данному материалу .

Мнения читателей

где можно купить импульсный трасформатор питания для данной модели стиральной машины

Евгений / 23.11.2014 — 18:28

www.radioradar.net—————————————от гр. Блинова Е.Н.,blinovbeg@yandex.ruДрузья!У меня вышла из строя стиральная машина Electrolux мод. WH 3400, Prod № 914760013, Type P 6675304, Ser № 61300018. Мой тел 8 903 034 22 29..По заключению АСЦ (авторизованного сервисного центра) фирмы СТЭКО в Твери вышел из строя аппарат управления (так в тексте заключения). Но отремонтировать машину не могут по причине отсутствия нового аппарата и машину вернули обратно.Прошу ответить на следующие вопросы. 1. Указать технически правильное полное наименование аппарата управления (тип, марка, модель и т.д) или какой на данную машину может быть установлен взамен. 2. Где в Москве я мог бы наверняка приобрести необходимый аппарат управления (ну невозможно же, живя в Твери, бегать по магазинам Москвы в поисках; далеко не в каждом он может быть). 3. Есть ли возможность получить аппарат по почте с оплатой при получении. 4. Какова цена аппарата.Просьба: Можете – помогите чем можете. 20.11.14 мне исполнилось 74 года.Блинов Е.Н.23.11.14

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник

Оцените статью