- Ремонт блоков питания с примерами
- Типичные неисправности у блоков питания
- Что потребуется для ремонта
- DVD плеер и электролиты
- Внешний осмотр и ремонт
- Почему конденсаторы высыхают
- Ремонт блока питания моноблока
- Внешний осмотр и ремонт
- Результат ремонта
- Когда ремонт нерентабелен
- Ремонт импульсного блока питания, для новичков(48)!
- Ремонт блока питания компьютера своими руками
- Структурная схема
- Распиновка основного коннектора БП
- Нагрузка на БП
- Перечень возможных неисправностей
- Методика проверки (инструкция)
- Доработка БП
Ремонт блоков питания с примерами
Типичные неисправности у блоков питания
Самая популярная это вздутые конденсаторы. Обычно такое происходит из-за перегрева корпуса или платы. Далее, как не странно, идет поломанный шнур питания. Да да, именно шнур. Сначала попробуйте поменять его. Третье место занимают полупроводники. Обычно это транзисторы или диоды, они не выдерживают резких перегрузок, и наступает тепловой пробой.
Что потребуется для ремонта
Для ремонта пригодится мультиметр, паяльник, лампочка и отвертка. Лампочка нужна в качестве предохранителя, ее можно подключить между сетевым проводом и платой, если вы не уверены в результате ремонта.
DVD плеер и электролиты
Классическая неисправность блока питания.
Из симптомов — не включается блок питания
Внешний осмотр и ремонт
Сразу при внешнем осмотре выявляются «вспухшие» электролитические конденсаторы. Судя по их внешнему виду и остаткам канифоли их ставили на место вышедших из строя «родных» конденсаторов.
Замена неисправных электролитов на новые.
Почему конденсаторы высыхают
Что же может быть изначальной причиной выхода из строя электролитов? Их много. Начиная с банальных внешних условий (что-то ставили на корпус, перегрев) заканчивая внутренними неисправностями (высокая частота пульсаций, недостаточная емкость, ESR).
Также причиной выхода из строя может быть выработка ресурса работоспособности компонента. Химические источники эл тока не рассчитаны на долгий срок эксплуатации, особенно если это касается бытовой техники.
Ремонт блока питания моноблока
Блок питания моноблока Lenovo ThinkCentre m71z.
Моноблок не включался, внешне повреждений не имел, однако блок питания не включается. После вскрытия оказалось, что у блока питания отсутствовало дежурное напряжение +5В на блоке питания.
И сразу же визуально выявляется обгоревший резистор, у которого явно не хватает 1 вывода. Черные следы на радиаторе. Фото сделано после его демонтажа.
Внешний осмотр и ремонт
Судя по всему, он служил перемычкой от одной части платы к другой. Для дальнейшей диагностики было принято решение включить блок питания в сеть через лампочку 40 Вт.
Лампочка сразу вспыхнула. Это значит, что в схеме есть короткое замыкание и резистор не выдержал. Но какой большой ток мог повредить его?
К этому элементу по печатной плате напрямую идет защитный диод, который так же оказался неисправен так как звонился накоротко. Дорожка от диода идет прямо в район мощного полевого транзистора.
Чтобы заменить полевой транзистор — нужно выпаять вот этот здоровый дроссель.
Результат ремонта
И наконец, появляются дежурные 5В. Замкнутые 5В на землю дали и 12В. Однако. моноблок отказался включаться. Всему виной вышедший из строя северный мост. Коллеги по работе поменяли его и моноблок запустился. Видимо, блок питания потянул за собой и мост.
Когда ремонт нерентабелен
Например, если плата имеет значительные повреждения или деформацию. Еще не стоит забывать о том, что импульсные трансформаторы починить довольно сложно. Его придется перематывать.
Поэтому, есть два варианта: или брать с донора или покупать новый. А цена нового трансформатора может стоит до половины нового блока питания.
Источник
Ремонт импульсного блока питания, для новичков(48)!
Всем здравствуйте, рад новой встрече на канале! Сегодня рассмотрим интересны дефект блока питания телевизора LG 32LA620V-ZA. Проблема самопроизвольно отключается. Фото блока ниже. Модель блока питания # lgp32-13lp2 отключается.
И фото с видимыми номиналами с другой стороны.
Дефект в телевизоре такой. Включается, может отработать 5-15 минут и выключается. При выключении пропадает всё! Даже не светится диод на лицевой панели. Потом может самопроизвольно включиться. В общем живёт своей жизнью.
Чтобы найти дефект нам нужно провести диагностику всего аппарата и понять что отключается, блок питания или материнская плата.Начальная диагностика проводится путём замеров напряжений. В данном случае у нас была проблема с самим блоком питания. Это было выявлено путём замеров напряжений в рабочем и «неисправном» состоянии. Благо дефект проявлялся достаточно быстро.
У нас пропадало напряжение дежурного режима. Часть блока питания «дежурки» у нас собрана на микросхеме ICE3BR4765J2. Пробуем найти схему данного блока. Находим нужную нам часть схемы.
ВНИМАНИЕ ЭТО ПЕРВИЧКА—ВЫСОКОВОЛЬТНАЯ ЧАСТЬ! ВСЕ ЗАМЕРЫ ПРОИЗВОДЯТСЯ С СОБЛЮДЕНИЕМ ВСЕХ МЕР БЕЗОПАСНОСТИ! ЗАМЕРЫ НАПРЯЖЕНИЙ ПРОИЗВОДЯТСЯ ОТНОСИТЕЛЬНО МИНУСА ВЫСОКОВОЛЬТНОГО ЭЛЕКТРОЛИТИЧЕСКОГО КОНДЕНСАТОРА (горячий минус)!
Продолжим. В момент выключения телевизора , на выходе блока питания полностью пропадали все напряжения включая дежурку. Замеры напряжений на 5-й ноге 305 вольт — норма, на 7(vcc) колебания от 1 до 3- вольт и какое-то странное посвистывание трансформатора. Проверил обвязку — ничего подозрительного, замена конденсаторов результата не дала. Шим немного нагрелась. Принял решение заменить шимку
После замены шим блок запустился и стал работать, все напряжения в норме. Но минут через 20 телевизор опять выключился! Но что самое интересное теперь напряжение дежурного режима не совсем пропало, с 3,5 вольт опустилось до 2,1! Пока суть да дело, телик опять включился 🙂 .
С таким интересным дефектом мы уже несколько раз встречались, я описывал это в прошлых статьях с другими блоками. ( здесь и здесь и здесь можно почитать и ещё в других)
В нашем случае это тот-же стабилизатор TL431 в корпусе sot23 на схеме он IC201.
Стабилизация по обратной связи.
Я не стал заморачиваться с его проверкой, а просто заменил. И оставил телевизор на прогон. После 5-ти часового прогона телевизор отдан клиенту.
Всё вроде-бы хорошо, но у меня остался вопрос к уважаемым знатокам и не только! Как вы думаете , неисправны были и шим и стабилизатор или только в стабилизаторе была «заковыка» ? В блоке я оставил конечно новую шим, старую запаивать для проверки не стал. Но дилемма в том, что с «родной» шимкой «дежурка» пропадала полностью, а с новой не пропадала, а проседала до 2,1 вольт и трансформатор не свистел! Неужели сразу две неисправности? Хотя такое конечно бывало и не раз, помногу дефектов, в разных аппаратах. Буду рад на эту тему побеседовать.
Всем спасибо за внимание!
Если статья поможет вам в решении некоторых проблем, буду очень рад.
Остались вопросы или пожелания? Не стесняйтесь, пишите в комментариях, с удовольствием пообщаемся.
Если не сложно ставьте лайк и подписывайтесь на канал и вы всегда будете в курсе новых публикаций.
Приходите почаще будет много интересного, а также читайте и другие статьи нашей странички и смотрите видео.
Источник
Ремонт блока питания компьютера своими руками
Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами. Прежде чем перейти непосредственно к методике, рассмотрим структурную схему БП и приведем перечень возможных неисправностей, это существенно упростит задачу.
Структурная схема
На рисунке показано изображение структурной схемы типичной для импульсных БП системных блоков.
Устройство импульсного БП ATX
Указанные обозначения:
- А – блок сетевого фильтра;
- В – выпрямитель низкочастотного типа со сглаживающим фильтром;
- С – каскад вспомогательного преобразователя;
- D – выпрямитель;
- E – блок управления;
- F – ШИМ-контроллер;
- G – каскад основного преобразователя;
- H – выпрямитель высокочастотного типа, снабженный сглаживающим фильтром;
- J – система охлаждения БП (вентилятор);
- L – блок контроля выходных напряжений;
- К – защита от перегрузки.
- +5_SB – дежурный режим питания;
- P.G. – информационный сигнал, иногда обозначается как PWR_OK (необходим для старта материнской платы);
- PS_On – сигнал управляющий запуском БП.
Распиновка основного коннектора БП
Для проведения ремонта нам также понадобится знать распиновку главного штекера БП (main power connector), она показана ниже.
Штекеры БП: А – старого образца (20pin), В – нового (24pin)
Для запуска блока питания необходимо провод зеленого цвета (PS_ON#) соединить с любым нулевым черного цвета. Сделать это можно при помощи обычной перемычки. Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной.
Нагрузка на БП
Необходимо предупредить, что включение импульсных БП без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.
Схема блока нагрузки
Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.
Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.
Перечень возможных неисправностей
Перечислим наиболее распространенные неисправности, характерные для импульсных БП системных блоков:
- перегорает сетевой предохранитель;
- +5_SB (дежурное напряжение) отсутствует, а также больше или меньше допустимого;
- напряжения на выходе блока питания (+12 В, +5 В, 3,3 В) не соответствуют норме или отсутствуют;
- нет сигнала P.G. (PW_OK);
- БП не включается дистанционно;
- не вращается вентилятор охлаждения.
Методика проверки (инструкция)
После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.
Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы
Если таковы не обнаружены, переходим к следующему алгоритму действий:
- проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;
Установленный на плате предохранитель
- проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;
Дисковый термистор (обозначен красным)
- тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение , с большой вероятностью, вывело эти радиодетали из строя;
Выпрямительные диоды (обведены красным)
- проверка входных конденсаторов электролитического типа начинается с осмотра. Геометрия корпуса этих деталей не должна быть нарушена. После этого измеряется емкость. Нормальным считается, если она не меньше заявленной, а расхождение между двумя конденсаторами в пределах 5%. Также проверке должны быть подвергнуты запаянные параллельно входным электролитам варисторы и выравнивающие сопротивления;
Входные электролиты (обозначены красным)
- тестирование ключевых (силовых) транзисторов. При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор (методика такая же, как при проверке диодов).
Показано размещение силовых транзисторов
Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;
- Проверка выходных диодных сборок (диоды шоттки) при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность – КЗ;
Отмеченные на плате диодные сборки
- проверка выходных конденсаторов электролитического типа. Как правило, их неисправность может быть обнаружена путем визуального осмотра. Она проявляется в виде изменения геометрии корпуса радиодетали, а также следов от протекания электролита.
Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.
Видео: правильный ремонт блока питания ATX.
https://www.youtube.com/watch?v=AAMU8R36qyE
Заметим, что нерабочие выходные конденсаторы – самая распространенная неисправность в компьютерных блоках питания. В 80% случаев после их замены работоспособность БП восстанавливается;
Конденсаторы с нарушенной геометрией корпуса
- проводится измерение сопротивления между выходами и нулем, для +5, +12, -5 и -12 вольт этот показатель должен быть в пределах, от 100 до 250 Ом, а для +3,3 В в диапазоне 5-15 Ом.
Доработка БП
В заключение дадим несколько советов по доработке БП, что позволит сделать его работу более стабильной:
- во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
- диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
- выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
- бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
- если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.
Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.
Очень интересно прочитать:
Источник