Fsp group atx ремонт

Fsp group atx ремонт

В ремонт попал блок питания FSP ATX-400PNR со словами «раньше включался не с первого раза, а потом, при очередном включении что-то хлопнуло и задымилось».

Кулер блока питания без решётки. Зачем это было сделано — осталось загадкой.

Открываем. Блок питания уже ремонтировали или меняли кулер, судя по непонятной изоленте на проводах.

Далее становится видна первоначальная причина, когда блок питания включался не с первого раза.

Меняем конденсатор на новый.

Так же сразу можно обратить внимание на непропай и обрыв дорожки в блоке APFC FSP ATX-400PNR. Верхняя дорожка просто поднималась над smd резистором, который правее. Всё пропаял и припаял перемычку лопнувшей дорожки.

Переворачиваем плату. На ней сверху слева видно потемнение. Значит, там находятся детали, которые сильно греются во время работы. Однако, их проверка не выявила каких-либо неисправностей.

После этого начинаем проверять горячую часть. Выявляем сработавший предохранитель, выпаиваем его. Его можно очень легко согнуть, а это значит, что стеклянная колба, из которой он состоит, лопнула в результате срабатывания защиты. Значит, ток был довольно большим и защита сработала со спецэффектами. Спасибо фирме FSP, которая делает хорошие блоки питания — предохранитель они «одели» в термоусадку, благодаря чему, осколки стекла не разлетелись внутри корпуса.

Предохранитель рассчитан на 6,3 А. Ставим на место аналогичный.

Смотрим остальные детали в горячей части. Выявляем следующие неисправные:

  • силовые ключи D209L — в КЗ все выводы;
  • резисторы R11, R12 — оба на 1 Ом, оба в обрыве;
  • микросхема IC1 — DM311

Корпуса D209L треснули около выводов, и это хорошо видно на фото:

Аналог D209L — MJE13009. Правда, корпус у этого аналога слегка меньше. Но в печатной плате имеются отверстия для монтажа этих транзисторов. Так что ничего мудрить не придётся. Просто меняем их, не забывая поставить диэлектрические втулки на винты крепления новых транзисторов (на фото видно, что под винтом у mje13009 эта втулка есть, а для d209l они не нужны).

Вот, сравните размеры D209L и MJE13009:

Резисторы и микросхему меняем на аналогичные. Расположение этих элементов под радиатором силовых ключей:

Микросхема DM311 представляет собой Green Mode Fairchild Power Switch с интегрированным PWM.

Сам блок питания включает ещё один ШИМ — FSP3528, функционального описания которого в интернете нигде не встречается, только на форуме rom.by ребята пришли к выводу, что FSP3528 — это почти аналог КА3511.

Так выглядела горячая часть после замены всех неисправных элементов:

Итак, ещё раз, что было сделано:

  • заменили конденсатор дежурного режима;
  • заменили предохранитель;
  • заменили силовые ключи;
  • заменили резисторы;
  • заменили микросхему DM311;
  • пропаяли элементы дорожек APFC;
  • спаяли и заизолировали термоусадкой провода питания кулера;
  • почистили блок питания FSP ATX-400PNR от пыли.

При тестировании блок питания работал без нареканий.

Результаты теста fsp atx-400pnr

Наша группа Вконтакте, где можно задать вопрос, на который всегда будет дан ответ!

Источник

FSP ATX-350PNR (Опыт ремонта)

Вложение Размер
Vid.jpg 90.09 КБ
Shildik.jpg 73.64 КБ
Vid_Vnurti.jpg 93.85 КБ
Mesto_pod_PFC.jpg 54.7 КБ
Mesto_pod_APFC.jpg 54.43 КБ
Plata_Shim.jpg 97.09 КБ
Plata_Shim_Oborot.jpg 68.33 КБ

Здравствуйте! Помогите по ремонту сего чуда FSP ATX-350PNR. Попал ко мне после 380 В. разлетелись D209L и их обвязка, заменил на 2sc2625 и заменил С945 за микросхемой 3528. Всё стартует но на холостом ходу, только даёш нагрузку и выбивает. Проверил все транзисторы выпаивая на коэф усил и утечки всё ОК, диоды прозванивал не выпаивая вроде тоже целые.Дежурка на DM311 собрана. Проверял напряжения на 3528, 5В на 1 ноге, 1.26В на 3 ноге, 12 нога 3.57В, подставлял 431 стабилизаторы — тоже самое. Подскажите что делать с ним дальше перечитал форум по этому БП ничего не нашёл подходящего только попал на момент когда несколько раз подряд тыкать POWER ON быстро и он запускается под нагрузкой а что в этом случае делать нет ничего.

В ненагруженном состоянии этот БП работает с перекосами напряжений. Попробуй нагрузить все каналы в соответствии с шильдиком но процентов на 10-20.

Проверьте входные конденсаторы.

1. Желательно осциллографом посмотреть, что творится на трансе раскачки с холодной стороны. Если форма импульсов не понравится, отследить дорожки от м/с до транса.
2. Попробовать покрутить подстроечник на платке, чтобы выгнать на холостом ходу примерно +12,7 и +4,9. После чего попробовать запустить под нагрузкой.
3. Поискать на старом форуме материалы о FSP3528 и KA3511 пользователя egor_land.

Здравствуйте! Поднял я плату с микросхемой внимательно изучил ее под лупой и обнаружил треснутую пайку на резисторе R? не помню точно какой-47 Ом стоит в районе 945 но не от него. На всякий случай пропаял всю плату, дефект остался. Заменил оба входных конденсатора 470 мкФ х 200В, заработал, стартует с нагрузкой, только остался характерный шипящий свист. По базе 2,2мкФ х 50В заменил на всякий случай еще с транзисторами вместе. Подставлял параллельно конденсатор другим кондерам, но без изменений. Подстроечник стоящий возле выпрямителей целый, я его крутил, но это ничего не меняет, подгоняет напряжение только резистор на плате микросхемы(ШИМ). Катастрофически нехватает осциллографа, поэтому зашел в тупик. Поделитесь вашими соображениями по этому поводу!

Источник

Ремонт АТХ БП (и FSP в особенности)

В данной заметке расскажу о том, как я ремонтировал ATX БП, ибо столкнулся с этой проблемой за последнее время несколько раз. Печальные признаки помершего БП — переход в защиту ИБП, в который он включён, или полное отсутствие признаков жизни в случае отсутствия ИБП.

Данная заметка в особенности относится к БП FSP и построеных на них — например, Zalman. В схемотехнике данных БП используется один, но к несчастью плохой, конденсатор в силовой части, в то время как в бОльшей части АТХ БП используются два с немного другим включением. Но проблема встречается и в БП с «парными» кондёрами.
Первая ласточка — мне отдали PowerMan HPC-520-302 DF. Блок с мощностью 500 Ватт, APFC, двумя вентиляторами и сильной +5 линией (ATX v1.3). Подключаем — тишина, нету даже дежурки. Вскрытие п.

В данной заметке расскажу о том, как я ремонтировал ATX БП, ибо столкнулся с этой проблемой за последнее время несколько раз. Печальные признаки помершего БП — переход в защиту ИБП, в который он включён, или полное отсутствие признаков жизни в случае отсутствия ИБП.

Данная заметка в особенности относится к БП FSP и построеных на них — например, Zalman. В схемотехнике данных БП используется один, но к несчастью плохой, конденсатор в силовой части, в то время как в бОльшей части АТХ БП используются два с немного другим включением. Но проблема встречается и в БП с «парными» кондёрами.
Первая ласточка — мне отдали PowerMan HPC-520-302 DF. Блок с мощностью 500 Ватт, APFC, двумя вентиляторами и сильной +5 линией (ATX v1.3). Подключаем — тишина, нету даже дежурки. Вскрытие показало вспухший кондёр в силовой части фирмы CapXon ёмкостью около 350 мкФ и на напряжение 420 В. Также в БП был найден кусок микросхемы TOP222Y — на ней собран источник дежурных +5В.

(кликните по картинке для увеличения)
Zalman ZM600. Пайка радиатора с силовыми элементами.

Zalman ZM600. Замена — конденсатор Nichicon 400v 330uF.
Проверяю на разъёме материнки фиолетовый провод — есть +5 стандбая. Отлично. Включаю мамкой БП — тот завёлся, засветился светодиодами, зашуршал кулером. Проверяю напруги — все в пределах 1% от нормы. Цепляю на ходу пару старых сказёвых хардов по 4 Гб — все завелись, напруги в норме. Оставил БП на 5 минут, выключил, проверил температуру радиаторов и трансформатора — еле тёплые. Замечательно, ставлю в комп — работает.
Спустя некоторое время видеокарта (тогда была GeForce 6600 128Mb) была заменена на GeForce 8800GT 512 Mb. БП без вопросов это пережил и продолжает по сей день работать круглосуточно.
Вывод: производители применяют некачественные конденсаторы от фирм хз-какого-там-эшелона, которые не выдерживают проверку временем, теряют ёмкость, а значит перестают выполнять свою задачу — сглаживать пульсации. Далее последствия очевидны — если потрерял ёмкость кондёр в силовой части, то силовые ключи (IGBT или MOSFET’ы — зависит от схемотехники) работают в режимах, которые не гарантируются производителем — неизбежен выход из строя. Получаем куски микросхем и другие пробитые полупроводники в силовой части.

Источник

Ремонт БП FSP Epsilon 1010, принцип работы APFC

Идея написать родилась после очередной непредвиденной поломки блока питания, чтобы поделиться опытом да и самому было где почитать в следующий раз, если попадётся на ремонт подобный блок питания (далее — БП) или понадобится вспомнить схему.

Сразу скажу, статья рассчитана на простого пользователя ПК, хотя можно было и углубиться в академические подробности.
Несмотря на то, что схемы не мои, я даю описание исключительно «от себя», которое не претендует не единственно правильное, а имеет целью объяснить «на пальцах» работу столь необходимого устройства, как БП компьютера.

Необходимость вникнуть в работу APFC у меня появилась в 2005 году, когда я имел проблему с произвольной перезагрузкой компьютера. Комп я купил на «мыльной» фирмочке не вникая особо в тонкости. В сервисе не помогли: на фирме работает, а у меня перезагружается. Я понял, что пришла очередь напрячься самому… Оказалось проблема в домашней сети, которая вечером просаживалась скачками до 160В! Начал искать схему, увеличивать ёмкость входных конденсаторов, слегка попустило, но проблему не решило. В процессе поиска информации увидел в прайсах непонятные буквы APFC и PPFC в названиях блоков. Позже выяснил, что у меня оказался PPFC и я решил купить себе блок с APFC, потом взял ещё и бесперебойник. Начались другие проблемы — выбивает бесперебойник при включении системника и пропадании сети, в сервисе разводят руками. Сдал его обратно, купил в 3 раза мощнее, работает по сей день без проблем.

Поделюсь с вами своим опытом и надеюсь, вам будет интересно узнать немного больше про компонент системника — БП, которому несправедливо отводят чуть ли не последнюю роль в работе компьютера.

Блоки питания FSP Epsilon 1010 представляют собой качественные и надёжные устройства, но учитывая проблемы наших сетей и другие случайности, они иногда тоже выходят из строя. Выкидывать такой блок жалко, а ремонт может приблизиться к стоимости нового. Но бывают и мелочи, устранив которые, можно вернуть его к жизни.

Как выглядит FSP Epsilon 1010:

Самое главное — понять принцип работы и разложить блок по косточкам.

Приведу пример фрагментов схем типового блока FSP Epsilon, которые мной нарыты в нете. Схемы составлены вручную очень усидчивым и грамотным человеком, который любезно вложил их для общего доступа:

1. Основная схема:
Рисунок 1:
Ссылка на полный размер: s54.radikal.ru/i144/1208/d8/cbca90320cd9.gif

2. Схема контроллера APFC:
Рисунок 2:
Ссылка на полный размер: i082.radikal.ru/1208/88/0f01a4c58bfc.gif

Модификации блоков питания данной серии отличаются количеством элементов (впаиваются дополнительно в ту же плату), но принцип работы одинаков.

Итак, что же такое APFC?

PFC — это коррекция коэффициента мощности (англ. power factor correction) PFC) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам. Если показать это на трёх пальцах, то это выглядит так:

— запустили блок питания, конденсаторы начали заряжаться — пошёл пик потребления тока совпадающий с пиком синусоиды переменного тока 220В 50Гц (лень рисовать). Почему совпадающий? А как они будут заряжаться при «0» вольт ближе к оси времени? Никак! Пики будут в каждой полуволне синусоиды, так как перед конденсатором стоит диодный мост.
— нагрузка блока потянула ток и разрядила конденсаторы;
— конденсаторы начали заряжаться и опять появились пики потребления тока на пиках синусоиды.

И того, мы видим «ёжика», которым обросла синусоида, и который вместо постоянного потребления «дёргает» ток короткими скачками в узкие моменты времени. А чего тут страшного, нехай себе дергает, скажете вы. А вот тут и порылась собака Баскервилей: эти пики перегружают электрическую проводку и даже могут привести к пожару при номинально рассчитанном сечении проводов. А если учитывать, что блок в сети не один? Да и работающим в одной сети электронным устройствам вряд ли понравится подобная «попиленная» сеть с помехами. Мало того, при заявленной паспортной мощности БП, вы будете платить за свет больше, так как нагрузкой уже выступают ваши сетевые провода в квартире (офисе). Возникает задача сбить пики потребления тока по времени в строну провалов синусоиды, тоесть приблизиться к подобию линейности и разгрузить проводку.

PPFC — пассивная коррекция коэффициента мощности. Это значит, что перед одним сетевым проводом БП стоит массивный дроссель, задача которого сбить по времени пики потребления тока во время заряда конденсаторов, учитывая нелинейные свойства дросселя (тоесть то, что ток через него отстаёт от приложенного к нему напряжения — вспоминайте школу). Выглядит это так: на максимуме синусоиды должен заряжаться конденсатор и он этого ждёт, но вот незадача — перед ним поставили дроссель. А вот дроссель не совсем обеспокоен тем, что нужно конденсатору — к нему приложили напряжение и возникает ток самоиндукции, который направлен в обратную сторону. Таким образом дроссель препятствует заряду конденсатора на пике входной синусоиды — в сети пик, а конденсатор разряжен. Странно, правда? А не этого ли мы хотели? Теперь синусоида спадает, но дроссель и тут ведёт себя как и большинство людей: (имеем — не ценим, теряем — жалеем) опять возникает ток самоиндукции только уже совпадающий с убывающим током, что и заряжает конденсатор. Что мы имеем: на пике — ничего, на провалах — заряд! Задача выполнена!
Именно так и работает схема PPFC за счет затягивания пиков потребления тока на провалы синусоиды (восходящий и нисходящий участки) с помощью всего лишь одного дросселя. Коэффициент мощности близок к 0,6. Неплохо, но не идеально.

APFC — активная коррекция коэффициента мощности. Это значит с использованием электронных компонентов, для которых требуется питание. В этом блоке питания фактически два блока питания: первый — стабилизатор 410В, второй — обычный классический импульсный блок питания. Это мы рассмотрим ниже.

APFC и принцип работы.

Рисунок 3:

Мы только подошли к принципу работы активной коррекции коэффициента мощности, поэтому определим некоторые моменты для себя сразу. Помимо основного назначения (приближение к линейности потребления тока по времени), APFC решает триединую задачу и имеет особенности:

— блок питания с APFC состоит из двух блоков: первый — стабилизатор 410В (собственно APFC), второй — обычный классический импульсный блок питания.
— схема APFC обеспечивает коэффициент мощности около 0,9. Это то, к чему мы стремимся — к «1».
— схема APFC работает на частоте около 200KHz. Согласитесь, дёрнуть ток 200000 раз в секунду по отношению к 50 Гц — это практически в каждый момент времени, тоесть линейно.
— схема APFC обеспечивает стабильное постоянное напряжение на выходе около 410B и работает от 110 до 250В (на практике от 40В). Это значит, что промышленная сеть практически не влияет на работу внутренних стабилизаторов.

Принцип работы APFC основан на накоплении энергии в дросселе и последующей отдаче её в нагрузку.
При подаче питания через дроссель, его ток отстаёт от напряжения. При снятии напряжения возникает явление самоиндукции. Вот его и кушает блок питания, а так как напряжение самоиндукции может приближаться у двойному приложенному — вот вам и работа от 110В! Задача схемы APFC — с заданной точностью дозировать ток через дроссель, чтобы на выходе всегда было напряжение 410В независимо от нагрузки и входного напряжения.

На рисунке 3 мы видим DC — источник постоянного напряжения после моста (не стабилизированный), накопительный дроссель L1, транзисторный ключ SW1, которым управляет компаратор и ШИМ. Схема сделана довольно смело на первый взгляд, так как ключ фактически делает короткое замыкание в розетке в момент открытия, но мы его простим, учитывая что замыкание происходит на микросекунды с частотой 200000 раз в секунду. А вот при неисправностях схемы управления ключом вы обязательно услышите и даже понюхаете, а может и увидите как сгорят силовые ключи в подобной схеме.

1. Транзистор SW1 открыт, ток в нагрузку течёт как и раньше через дроссель от «+ DC» — «L1» — «SW2» — «RL» к «-DC». Но дроссель сопротивляется движению тока (самоиндукция начало), при этом идёт накопление энергии в дросселе L1 — на нём растёт напряжение практически до напряжения DC, так как это короткое замыкание (правда на долю времени (пока всё исправно). Диод SW2 предотвращает разряд конденсатора C1 в момент открытия транзистора.
2. Транзистор SW1 закрылся… напряжение на нагрузке будет равно сумме напряжений источника DC1 и дросселя L1, который только что некисло приложился к источнику и выбросил ток самоиндукции с обратной полярностью. Магнитное поле дросселя пропадая пересечёт его, индуцируя на нём ЭДС самоиндукции противоположной полярности. Теперь ток самоиндукции имеет одно направление с пропадающим током источника (самоиндукция конец). Самоиндукция — явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.
Так вот, в момент самоиндукции после закрытия транзистора и получается наша добавочка до 410В из-за добавления энергии от дросселя. Почему добавочка? Вспоминайте школу, сколько будет на выходе моста с конденсатором, если на входе 220в? Правильно, 220В умножить на корень из двух (1,41421356) = 311В. Вот это было бы без работы схемы APFC. Оно так и есть в точке, где мы ждём 410В, пока работает только дежурка +5В и не запущен сам блок. Сейчас нет смысла гонять APFC, дежурке и так хватит её 2 Ампера.
Всё это строго контролируется схемой управления с помощью обратной связи от точки 410В. Регулируется уровень самоиндукции временем открытия транзисторов, тоесть временем накопления энергии L1 — это широтно-импульсная стабилизация. Задача APFC — стабильно держать 410В на выходе при изменении внешних факторов сети и нагрузки.

Вот и получается, что в блоке питания с APFC — два блока питания: стабилизатор 410В и сам классический блок питания.

Сбивание зависимости пиков потребления тока от пиков синусоиды обеспечивается перенесением этих пиков на частоту работы схемы APFC — 200000 раз в секунду, что приближается к линейному потреблению тока в каждый момент времени синусоиды 50Гц 220В. Что и требовалось доказать.

Достоинства APFC:
— коэффициент мощности около 0,9;
— работа от любой капризной сети 110 — 250В, в том числе нестабильной сельской;
— помехоустойчивость:
— высокий коэффициент стабилизации выходных напряжений за счёт стабильного входного 410В;
— низкий коэффициент пульсаций выходных напряжений;
— малые размеры фильтров, так как частота около 200КГц.
— высокий общий КПД блока.
— малые помехи отдаваемые в промышленную сеть;
— высокий экономический эффект в оплате за свет;
— разгружается электрическая проводка;
— на предприятиях и в организациях телекоммуникаций, имеющих станционные батареи 60В, для питания критических серверов можно обойтись вообще без UPS — просто включите блок в цепь гарантированного питания 60В ничего не меняя и не соблюдая полярность (которой нет). Это позволит уйти от тех несчастных 15 минут работы от UPS до 10 часов от станционных батарей, чтобы не легла вся система управления в случае незапуска дизеля. А на это многие не обращают внимание или об этом не думали, пока дизель не обидится как-нибудь разок… Всё оборудование будет продолжать работать, а управлять будет нечем, так как компы поотрубаются через 15 минут. Изготовителем представлен диапазон работы 90 — 265В по причине отсутствия такого стандарта питания как переменные 60В, но практический предел работы был получен на величине 40В, ниже проверять небыло смысла.
Перечитайте пункт внимательно ещё раз и оцените возможности своих бесперебойников для критических серверов!

Недостатки APFC:
— цена;
— сложность в диагностике и ремонте;
— дорогие детали (транзисторы — около 5$ за шт., а их там до 5шт. иногда), зачастую стоимость ремонта себя не оправдывает;
— проблемы совместной работы с бесперебойниками (UPS) за счёт большого пускового тока. Выбирать UPS нужно с двукратным запасом мощности.

А теперь рассмотрим схему блока питания FSP Epsilon 1010 на рис. 1, 2.

У FSP Epsilon 1010 силовая часть APFC представлена тремя транзисторами HGTG20N60C3 с током 45А и напряжением 600В, стоящими в параллель: www.fairchildsemi.com/ds/HG/HGT1S20N60C3S.pdf
На нашей типовой схеме их 2 Q10, Q11, но это не меняет сути. Наш блок просто мощнее. Сигнал FPC OUT выходит с 12 ноги микросхемы CM6800G на 12 контакт модуля управления на рис №2. Далее через резистор R8 за затворы ключей. Так происходит управление APFC. Схема управления APFC питается от +15В дежурки через оптопару M5, резистор R82 — 8pin CB (A). Но запускается она только после запуска блока на нагрузку по сигналу PW-ON (зелёный провод 24 контактного разъёма на землю).

Симптомы:
— перегорает предохранитель с хлопком;
— блок «не дышит» вообще даже после замены предохранителя, что ещё хуже. Значит повреждения грозят обернуться более дорогим ремонтом.

Диагноз: отказ схемы APFC.

Лечение:
В диагностике отказа схемы APFC ошибиться сложно.
Принято считать, что блок с APFC можно запустить и без APFC, если он вышел из строя. И мы так посчитаем, и даже проверим это, особенно когда речь идёт об опасных экспериментах с дорогими транзисторами HGT1S20N60C3S. Выпаиваем транзисторы.
Блок удачно работает, если проблема была только в схеме APFC, но нужно понимать, что блок питания потеряет мощность до 30% и в эксплуатацию его пускать нельзя — только проверка. Ну а далее уже меняем транзисторы на новые, но включаем блок последовательно через лампу накала 220В 100Вт. Блок нагружаем например на старый HDD. Если лампа горит в пол накала и HDD запустился (трогаем пальцами), на блоке крутится вентилятор — есть вероятность, что на этом ремонт закончен. Запускаем без лампы с уменьшенной в 3 раза величиной предохранителя. И сейчас не сгорел? Ну тогда впаиваем родной F1 и вперёд на часовой тест под эквивалентом нагрузки ватт на 300-500! Горящая полным накалом лампа вам говорит об полном открытии ключевых транзисторов или их заупокойном состоянии, ищем проблему перед ними.
Если на каком-то этапе не повезло, возвращаемся к новой покупке транзисторов, не забыв при этом купить и контроллер CM6800G. Меняем детали, повторяем всё заново. Не забываем визуально осмотреть всю плату!

Симптомы:
— блок запускается через раз или когда постоит 5 минут включенным в сеть;
— у вас ниоткуда появился неисправный HDD;
— вентиляторы крутятся, но система не загружается, BIOS не пикает при запуске;
— вздулись конденсоры на материнской плате, видеокарте;
— система произвольно перезагружается, зависает.

Диагноз: высохли электролитические конденсаторы.

Лечение:
— разобрать блок и визуально найти вздутые конденсаторы;
— лучшее решение поменять все на новые, а не только вздутые;

Незапуск происходит из за высохших конденсаторов дежурки C43, C44, C45, C49;
Отказы компонентов происходят из-за повышения пульсаций в цепи +5В, +12В вследствие высыхания конденсатов фильтров.

Симптомы:
— блок свистит или пищит;
— тон свиста меняется под нагрузкой;
— блок свистит только пока холодный или пока горячий.

Диагноз: Трещины печатной платы или непропай элементов.

Лечение:
— разбираем блок;
— визуально осматриваем печатную плату в местах пайки ключевых транзисторов и дросселей фильтров на предмет овальных трещин на месте пайки;
— если ничего не нашли, то всё равно пропаиваем ножки силовых элементов.
— проверяем и наслаждаемся тишиной.

Остальных неисправностей великое множество, вплоть до внутренних обрывов или межвитковых пробоев, трещин в плате и деталях, и прочее. Особенно досаждают температурные неисправности, когда работает пока не нагреется или не остынет.
Блоки питания других производителей имеют похожий принцип работы, который позволит найти и устранить неисправность.

В конце пара советов по БП:
1. Никогда не выключайте из розетки работающий блок питания с APFC! Сначала припаркуйте систему, а потом вынимайте из розетки или выключайте не удлинителе — иначе доиграетесь…
При пропадании напряжения в момент работы блока тянется дуга и происходит искрение, что приводит к куче гармоник отличных от 50Гц — это раз, напряжение убывает и ключи APFC пытаются удержать стабильное напряжение на выходе, открываясь при этом полностью и на большее время, вызывая ещё больший ток и дугу — это два. Это приводит к пробою открытых транзисторов огромными токами и неконтролируемыми напряжениями гармоник — это три. Это легко проверить, если есть желание. Лично я уже проверил… теперь написал эту статью и потратил 25$ на ремонт. Вы можете тоже написать свою. Кстати у FSP Epsilon 1010 кнопка на корпусе отключает не провод питания, а систему управления, при этом все силовые элементы остаются под напряжением — будьте осторожны! Поэтому, если уж нужно срочно выключить комп, то делайте это кнопкой питания на блоке — тут всё продумано.

2. Если вы заранее знаете, что будете работать с бесперебойником, то покупайте блок питания с PPFC. Это избавит вас от ненужных проблем.

В рассказе я старался не приводить лишних графиков, схем, формул и технических терминов, чтобы на пятой строке не отпугнуть рядового мучителя своего ПК, более глубокое понимание основ питания которого, продлит ему время безотказной работы.

Сейчас самое время разобрать системник и определить модель вашего блока питания, заодно и пыль с него вытряхнуть. Одну неисправность вы уже предотвратили. Чистым он с благодарностью будет служить дольше. Смажьте вентилятор, это тоже приветствуется.

Кто дочитал статью до конца — всем спасибо!
Теперь ваш БП в безопасности.

Источник

Читайте также:  Ремонт телевизора lg 21fs4rg
Оцените статью