Генероттор
Автором прибора для проверки работоспособности трансформаторов однотактных ИИП в телевизионных приемниках является пользователь форума Monitor.net с ником Rottor (откуда и пошло его название) [1]. В радиолюбительской практике ремонты телевизоров — явление относительно нечастое. Намного чаще приходится конструировать однотактнные ИИП, для которых намотка их «сердца» — транселя (ТРАНсформирующего дросСЕЛЯ — в отличие от трансформатора снабженного зазором в сердечнике, предотвращающим его насыщение при несимметричном намагничивании и, в отличие от дросселя, имеющего по крайней мере две обмотки) может оказаться достаточно сложной задачей. Она может еще более осложниться при отсутствии осциллографа, необходимого для контроля наличия генерации. В ряде случаев может быть проще подобрать трансель с нужными параметрами, выпаянный из ИИП (Рис. 1).
Рис. 1 Трансели, выпаянные из источников дежурного питания компьютерных ИИП
Однако, поскольку стандарта на их намотку нет и каждый изготовитель наматывает их, исходя из топологии своей платы, то возникают сложности с определением напряжений вторичных обмоток и полярности их подключения к выводам (цоколевки). Исходя из указанных предпосылок, был разработан автономный стенд для тестирования транселей однотактных импульсных преобразователей, не требующий обязательного применения осциллографа (Рис. 2).
Рис. 2 Мини-стенд (генероттор) для тестирования транселей однотактных ИИП (со снятой крышкой)
Основой для него послужила разработанная ранее плата мини-генероттора [2], требовавшая подключения к лабораторному блоку питания и осциллографу, что, очевидно, не совсем удобно в работе. Схема генероттора приведена на Рис. 3.
Рис. 3 Принципиальная схема генероттора
Он состоит из трех основных узлов:
- Источник питания, обеспечивающий выходное напряжение порядка 90…150 В, выполненный на сетевом трансформаторе (на схеме не показан) с выпрямителем (VD1…VD4) и конденсаторным фильтром (С1);
- Собственно генератор, представляющий собой блокинг-генератор на транзисторе VT1, нагруженный на тестируемый трансель T1;
- Индикатор полярности и выходного(ых) напряжения(й) вторичных обмоток.
Трансформаторная гальваническая развязка с сетью 230 В является крайне желательной, т.к. исключает поражение электрически током при подключении (переключении) тестируемого транселя к клеммам генератора. Если не удастся подобрать маломощный трансформатор с выходным переменным напряжением 70…110 В, можно поставить трансформатор на вдвое меньшее выходное напряжение (28…40 В), использовав выпрямитель с удвоением напряжения (Рис. 4).
Рис. 4 Принципиальная схема выпрямителя с удвоением напряжения
Резистор R1 на 1…2,2 Ом служит всего лишь предохранителем и на работу выпрямителя практически не влияет. Может быть заменен на плавкую предохранительную вставку.
В данной простейшей схеме генератора, в которой отсутствуют специальные цепи стабилизации амплитуды выходных импульсов, ограничение амплитуды выброса ЭДС противоиндукции осуществляется косвенным образом, диодно-саппрессорным снаббером (VD5VD6). Напряжение стабилизации саппрессора VD5 не критично и может быть в диапазоне 120…200 В, однако, диод VD6 должен быть сверхбыстрым («UltraFast»), иначе «иголка» на восходящем фронте выходного импульса вполне способна вывести из строя транзистор из группы средневольтовых (типа MJE1300x). Применение R-C снаббера и «медленных» диодов нежелательно, либо необходимо будет применения более высоковольтного транзистора с допустимым коллекторно-эмиттерным напряжением порядка 600…900 В.
Неоновая лампочка HL1 с токоограничительным резистором R5 служит индикатором наличия генерации. Подстроечный резистор R2 опционален (необязателен), его вместе с R3 можно заменить одним постоянным резистором, обеспечивающим надежный запуск генератора при конкретных коэффициенте усиления транзистора VT1 и напряжении питания.
Вариант выполнения платки с выпрямителем и генератором показан на Рис. 5, однако, если возникают трудности с самостоятельной разводкой схемы из десятка деталей, то дальше эту статью можно не читать — описываемый стенд для такого «умельца» попросту преждевременен.
Рис. 5 Вариант выполнения печатной платы с выпрямителем и генератором
Индикатор амплитуды и полярности выходного(ых) напряжения(ий) является совершенно самостоятельным узлом, который может быть как интегрирован в стенд (как в описываемом варианте), так и представлять собой самостоятельную конструкцию. Принцип его работы основан на алгебраическом суммировании (с учетом знака) разности амплитуд прямого (ПХ) и обратного хода (ОХ) генератора (Рис. 6).
Рис. 6 Коллекторное напряжение при работе блокинг-генератора
Если сравнить схему индикатора (см. Рис. 3) со схемой выпрямителя с удвоением напряжения (см. Рис. 4), то можно увидеть, что за исключением наличия резисторов R7R8 в первой из них и отличий в номиналах, они идентичны. Разница на первый взгляд несущественная, но принципиально важная: в выпрямителе амплитуды обеих полуволн напряжения питания (положительной и отрицательной полярности) равны друг другу, а в индикаторе они различаются. Поэтому потенциал средней точки делителя R7R8 (Х2) будет отличаться от потенциала средней точки (Х1). Разница этих потенциалов измеряется измерительным прибором PA1. Не следует путать детектирование амплитуд импульсов с интегрированием их площадей, которые в первом приближении (без учета потерь КПД) для ПХ и ОХ будут одинаковы и поэтому непригодны для применения по данному назначению.
В описываемой конструкции в качестве измерительного прибора РА1 применен стрелочный гальванометр М4247 с нулем посередине шкалы (±150 мкА). Однако, ничто не мешает между клеммами Х1 и Х2 подключить любой цифровой мультиметр, обеспечивающий индикацию отрицательных значений знаком минус в первом разряде. Резистор R6 ограничивает ток заряда конденсатора С4 во время прямого хода, не препятствуя развитию автогенерации.
Компоненты индикатора (SMD) распаяны с обратной стороны лицевой панели стенда (Рис. 7).
Рис. 7 Размещение компонентов схемы индикатора на обратной стороне лицевой панели
Благодарность
Выражаю свою искреннюю благодарность Руслану Корниенко (ник KRAB) за рекомендации по схемотехнике индикатора.
Источник
ГЕНЕРАТОР — прибор телемастера
Rottor
ГЕНЕРАТОР — прибор телемастера
Архивная статья с описанием ГЕНЕРАТОРА .
16/03/2002
________________________________________
НОВЫЕ МЕТОДИКИ В РЕМОНТЕ ИМПУЛЬСНЫХ ИСТОЧНИКОВ ПИТАНИЯ.
ИИП не самая сложная часть в аппаратуры, но отслеживая в доступной литературе и интернете проблемы стоящие перед ремонтниками, обращает на себя внимание «страдания» именно по этой теме. Количество вопросов и качество «ответов» о способах определения параметров трансформатора, микросхем и их проверок, включая «резонансные» — неприлично значительно. Максимально сложный способ защиты от выгорания ИИП в процессе ремонта, описанный в доступных источниках — применение «генератора тока» на лампочке, или ЛАТРа. Делаются попытки использовать в ремонте ИИП осциллограф, и даже предлагают «осциллограммы». Но на практике, используя традиционные методы ремонта, это сомнительная процедура, Амплитуда импульсов в ИИП практически постоянна, длительность мало информативна и к тому же сильно «дрожит». Для интерпретации крутизны фронтов и формы выбросов на площадках необходим определенный опыт. Использовать это можно разве что в качестве пробника импульсов, или «на глаз», но эти импульсы еще нужно как — то получить! А в работающем блоке питания осциллограммы и вообще не нужны, что уже проверять если работает?
В России в телеаппаратуре, ИИП появились, массово с 1980 года, по край ней мере я, с ними столкнулся именно тогда. А методики ремонта «дремучие» до сих пор, и не только в России, но и за «бугром».
Попытаюсь описать новый вид прибора и способ его использования для ремонта ИИП, Прототип которого был использован еще в 1981году, сейчас разработан и имеется в наличии очень совершенный прибор обеспечивающий ремонт и диагностику ИИП, его компонентов и узлов разверток телевизоров включая отклоняющие системы и ТДКСы.
Для создания прибора можно использовать стандартный импульсный источник питания (ИИП) от телевизора. Блоки питания на микросхемах для этих целей не подходят. Стандартный блок модернизируют, адаптируя под источник питания с необходимыми параметрами. Вторичка (120V) нагружается лампочкой 10 – 20 W. Подстроечник, регулятора напряжения меняется на потенциометр с ручкой. Манипулируя резисторами и стабилитроном в цепи регулировки, устанавливают изменение предела выходного напряжения 90 – 230V. Получился гальванически развязанный источник питания и ГЕНЕРАТОР импульсов, к тому же, имеющий встроенную защиту от перегрузок по току и напряжению. Импульсы ГЕНЕРАТОРА снимаются непосредственно с обмотки (120 V), до диода. А постоянное напряжение с конденсатора, емкость которого должна быть в пределах 10 – 20 мкФ. Полезно доработать блок, установив, по крайней мере, второй режим защиты по току — в пределах 200 мА, и максимальный, который обеспечивается ИИП штатно.
Работа с Генератором проста, а навыки нарабатываются в процессе его использования.
Для проверки подозрительного трансформатора его силовую обмотку подключают к выводам Генератора, а по выходным параметрам Генератора (контролируя ток потребления, например) можно судить о качестве трансформатора и наличии КЗ витков. Проверяемый трансформатор можно нагрузить лампой (через диод) создав, таким образом условия максимально приближенные к его штатному режиму. К тому же лампа хороший индикатор возникновения спорадических КЗ, обмоток в процессе нагрева трансформатора. Такой прибор позволяет проверять работу импульсного трансформатора и в составе телевизора без его демонтажа. Теперь о способе ремонта неисправного ИИП, на примере — отключаем первичную обмотку импульсного трансформатора от силового ключа. Подаем на нее импульсы от Генератора. При исправном трансформаторе и отсутствии неисправностей на вторичных выпрямителях и их нагрузках телевизор начинает работать (от ГЕНЕРАТОРА) в ШТАТНОМ РЕЖИМЕ. Это позволяет оценить любой его параметр, от работы процессора до неисправностей разверток и качества кинескопа. То есть, целесообразность ремонта телевизора и его узлов можно определить ЗАРАНЕЕ, еще до ремонта ИИП. Это особенно важно, когда телевизор «мордовали» спецы по «резонансам» или в его антенну попала молния. Используя ГЕНЕРАТОРА можно обеспечить работу телевизора с разорванными цепями обратных связей по питанию, что невозможно другими способами. Это относится и к системам регулировок напряжения развязанных оптопарами, трансформаторами. В телевизоре, работающем от внешнего Генератора, можно БЕЗОПАСНО, (манипулируя напряжением Генератора) менять режим работы узла стабилизации напряжения. Возможна полноценная работа отдельных узлов ИИП, с выпаянными деталями ( микросхемы, оптопары, конденсаторы. ). При неисправностях и замыканиях максимальный ток в цепях ограничивается мощностью ГЕНЕРАТОРА (к тому же этот параметр можно регулировать) и выход из строя деталей в таком случае практически исключен. Доступно в регулируемом режиме, нахождение неисправностей способом «НАГРЕВА» вплоть до «выжигания» Я пользуюсь этим способом для быстрой диагностики. Легко находить конденсаторы с утечками, электролиты, диоды, которые имеют «зенеровские эффекты», не демонтируя их для проверки, Этот же метод, используется для поиска нештатных проблем, когда в предыдущих ремонтах внесли неисправности, например — установили емкости или диоды с противоположной полярностью. В Генераторе имеется вольтметр и миллиамперметр позволяющие анализировать работу нагрузки в процессе ремонта. После проверки «вторичек» приступают к ремонту собственно преобразователя (ШИМ), Так, как на всех обмотках присутствуют штатные импульсы, можно все промерить в рабочем режиме, и с гальванической развязкой обеспечивающей безопасность. При изменении напряжения ГЕНЕРАТОРА, имеется уникальная возможность воздействовать на режим работы узла стабилизации, запирающего устройства (транзисторного, тиристора). Это позволяет оценить работу сомнительных узлов и компонентов, определить напряжение срабатывания защиты, работу узла выделения сигнала ошибки, пределы регулировок. То есть практически полный анализ работы ИИП без силовых цепей. Ремонт можно производить даже при помощи пинцета, замыкая определенные участки схемы и выводы деталей. При наличии гальванической развязки и ограничения по току — это совершенно безопасно, а по приборам контролируют реакцию на такие воздействия. Здесь целесообразен и просмотр наличия сигналов осциллографом (импульсы то, есть!). После ремонта и замены деталей прибор можно применить в качестве источника питания с ограничением по току. Используют его в качестве электронного ЛАТРа, подключив ПОСТОЯННОЕ напряжение 180 – 200 V, непосредственно на сетевой электролит. Это обеспечивает проверку блока питания в безопасном режиме с защитой силовых ключей и микросхем контролеров. При КЗ и аварийных ситуациях максимальный ток в цепи НЕ ПРЕВЫШАЕТ 250 – 400 мА. Это обеспечивается режимом ИИП самого прибора. И так, с некоторыми интерпретациями любой импульсный блок питания.
Тут представлена схема универсального прибора для ремонта и проверки импульсных устройств и их компонентов в частности источников питания, СР…
Для более успешной повторяемости прибор построен на базе типового «китайского» блока питания.
Красным цветом показаны доработки, превращающие стандартный ИИП в устройство для ремонта блоков питания. По мере накопления вопросов, я дополню эту тему информацией, и схемами дополнительных устройств, как – то измерителя ESR, источника тока 500V, устройства прострела кинескопов, токовой проверки переходов …
На данной схеме для простоты, не показано подключение вольтметра и измерителя тока в цепи источников. Необходимая информация по схемотехнике и методике пользования будет сообщена дополнительно.
Источник
Простые генераторы-пробники для обнаружения неисправностей в радиоаппаратуре
В ремонтной и любительской практике для быстрой проверки исправности высокочастотных, низкочастотных радиотехнических цепей и дли обнаружения неисправностей в телевизорах, радиоприемниках н другой аппаратуре можно использовать следующие приборы.
В ремонтной и любительской практике для быстрой проверки исправности высокочастотных, низкочастотных радиотехнических цепей и дли обнаружения неисправностей в телевизорах, радиоприемниках н другой аппаратуре можно использовать следующие приборы.
1. Генератор-пробник на одном транзисторе (рис. 69,б) предназначен для быстрой проверки каскадов усилителей или радиоприемников.
Принципиальная схема генератора-пробника изображена на рис. 69,а. Он вырабатывает импульсное напряжение с амплитудой, достаточной для проверки предоконечных и входных каскадов усиления низкочастотных конструкций. Помимо основной частоты на выходе пробника будет большое количество гармоник, что позволяет пользоваться им и для проверки высокочастотных каскадов — усилителей промежуточной и высокой частоты, гетеродинов, преобразователей.
Рис. 69. Геиератор-пробник на одном транзисторе
Генерация возникает за счет сильной положительной обратной связи между коллекторной и базовой цепями транзистора. Снимаемый с базовой обмотки трансформатора Тр1 сигнал подается через конденсатор С1 на потенциометр R1, регулирующий выходное напряжение пробника.
Трансформатор намотан на небольшом отрезке ферритового стержня. Обмотка I содержит 2000 витков провода ПЭЛ 0,07, а обмоткаII — 400 витков провода ПЭЛ 0,1.
Транзистор типа МП39-МП42. Батарея питания — элемент “332” напряжением 1,5 В или малогабаритный аккумулятор типа Д-0,1.
Пробник собирается в небольшом футляре (рис. 69,б). Для подключения к шасси или общему проводу проверяемой конструкции выводится гибкий монтажный провод с зажимом “крокодил” на конце. В качестве металлического щупа используется медицинская игла от шприца “Рекорд”. На торце футляра устанавливается потенциометр, на ручке которого нанесена риска, позволяющая судить о выходном сигнале.
2. Генератор-пробник на двух транзисторах без трансформатора (рис. 70) вырабатывает прямоугольные импульсы и позволяет проверять все каскады усилителя или радиоприемника. Причем частоту колебаний можно изменять емкостью конденсатора С1: с увеличением емкости частота понижается. А изменение сопротивления резисторов влияет на форму выходных колебаний: с увеличением R2 и уменьшением R3 нетрудно добиться синусоидальных колебаний на выходе и превратить таким образом пробник в звуковой генератор с фиксированной частотой.
Рис. 70. Генератор-пробник на двух транзисторах
Транзисторы, батарея питания н внешнее оформление такие же, как и в генераторе-пробнике на одном транзисторе.
3. Щуп-генератор радиолюбительский предназначен для проверки исправности высокочастотных и низкочастотных радиотехнических цепей бытовой аппаратуры (радиоприемники, телевизоры, магнитофоны). Принципиальная схема щупа изображена на рис. 71.
Рис. 71. Щуп-генератор радиолюбительский
Представляет собой мультивибратор, собранный на транзисторах Т1, Т2. Снимаемый сигнал прямоугольной формы, частота колебаний порядка 1000 Гц, амплитуда импульсов не менее 0,5 В. Щуп-генератор собран в пластмассовом корпусе, длина щупа вместе с иглой 166 мм, диаметр корпуса 18 мм. Питание от одного элемента “316” напряжением 1,5 В.
Для включения щупа-генератора необходимо нажать кнопку и острием щупа коснуться проверяемого каскада прибора. Каскады рекомендуется проверять последовательно, начиная от входного устройства.
При исправности проверяемого каскада на выходе будет прослушиваться характерный звук (динамик, телефон) или полоса (кинескоп).
При проверке приборов, не имеющих на выходе динамика или кинескопа, индикатором могут служить высокоомные головные телефоны типа ТОН-2. Категорически запрещается проверять цепи с напряжением выше 250 В.
При проверке цепей касаться руками корпуса проверяемого прибора запрещается.
Этот щуп-генератор выпускается нашей промышленностью.
4. Малогабаритный прибор для обнаружения неисправностей в телевизорах, радиоприемниках и другой бытовой радиоаппаратуре посредством прослушивания звука в динамике проверяемого устройства, наблюдения изображения на экране телевизора или подключения на выход проверяемого устройства другого индикатора (вольтметр, головные телефоны, осциллограф и т. п.).
Прибор позволяет проверять в телевизорах: сквозной канал, канал изображения, канал звука, цепи синхронизации, линейность кадровой развертки; в радиоприемниках: сквозной тракт, канал УПЧ, детектора и УНЧ.
Прибор представляет собой генератор сигнала сложной формы. Низкочастотная составляющая сигнала имеет частоту повторения 200-850 Гц. Высокочастотная составляющая имеет частоту 5-7 МГц. Указанный сигнал позволяет получать 2-20 горизонтальных полос на экране телевизора и звук в динамике.
Рис. 72. Малогабаритный прибор для обнаружения неисправностей в телевизорах
Напряжение сигнала на выходе прибора регулируется потенциометром.
Прибор питается от батареи “Крона-ВЦ”. Потребляемый ток не более 3 мА.
Габаритные размеры прибора без гибкого вывода не более 245 X 35 X 28 мм. Длина гибкого вывода не менее 500 мм. Масса прибора не более 150 г.
Электрическая схема прибора изображена на рис. 72, а. Генератор с прерывистым возбуждением выполнен на транзисторе Т1 по схеме с общей базой.
Прерывистое возбуждение генератора обеспечивает наличие в цепи эмиттера цепочки R3, С4. Сигнал на эмиттере транзистора Т1 складывается из прерывистого высокочастотного напряжения и напряжения заряда и разряда конденсатора С4. На транзисторе Т2 выполнен эмиттерыый повторитель, служащий для повышения стабильности работы генератора и уменьшения входного сопротивления прибора. Регулировка выходного уровня сигнала производится с помощью потенциометра R5.
Корпус прибора выполнен в виде двух разъемных крышек, изготовленных из ударопрочного полистирола (рис. 72,6). Крышки соединяются с помощью винта и наконечника, который также используется для подключения прибора к проверяемому устройству. В корпусе размещается плата прибора и батарея питания “Крона-ВЦ”. К шасси проверяемого устройства прибор подключается зажимом типа “крокодил”.
Для определения неисправности усилительных трактов схему проверяют покаскадно, начиная с конца проверяемого тракта. Для этого на вход каскада подают сигнал касанием наконечника прибора, при этом отсутствие сигнала на индикаторе (экран телевизора, динамик, вольтметр, осциллограф, головные телефоны и т. д.) будет свидетельствовать о неисправности каскада.
Для определения нелинейности изображения по вертикали необходимо: получить изображение горизонтальных полос; измерить минимальное и максимальное расстояние между двумя соседними полосами; определить нелинейность по вертикали по формуле
где Н — нелинейность, %; I max — максимальное расстояние между полосами; I миним — минимальное расстояние между полосами.
Об устойчивости синхронизации изображения судят по устойчивости горизонтальных полос на экране телевизора.
Следует иметь в виду, что прибор рассчитан на подключение к точкам электрических схем, напряжение которых не превышает 250 В относительно корпуса. Под напряжением понимается сумма постоянного и импульсного напряжений, действующих в схеме.
Малогабаритный прибор для обнаружения неисправностей в телевизорах выпускается нашей промышленностью.
Здесь Ваше мнение имеет значение — поставьте вашу оценку (оценили — 1 раз) |