Учебное пособие по изготовлению гибких печатных плат
В данном руководстве рассматривается процесс изготовления гибких плат. Данная технология проверялась в течение нескольких лет и потому может приниматься на вооружение другими.
Для выполнения проекта нам понадобится:
- Восковой принтер или любой другой предпочитаемый метод переноса тонера (В данном учебном материале предлагается использовать даже струйный принтер)
- Гибкий материал Pyralux (Dupont больше не предоставляет бесплатные образцы. Данный материал можно приобрести в Adafruit или eBay)
- Хорошо вентилируемое помещение
- Защитная спецодежда (защитные очки, перчатки, халат, щиток для лица)
- Соляная кислота
- Перекись водорода
- Ацетон (Средство для удаления лака также может подойти).
Вы должны заранее решить, что данный метод будет вам пригоден. Исходя из опыта, подобные гибкие платы очень легко изготавливать. Можно делать очень сложные схемы (Я обычно использую компоненты серии 0604). Но, исходя из личного опыта, они получаются не очень долговечными. Со временем на таких гибких схемах появляются крошечные трещинки, где соприкасаются гибкие и жесткие материалы. Результаты данного метода вполне приемлемые, но если вам потребуется более надежная схема, тогда используйте стандартные печатные платы. (DuPont продает различные материалы, которые позволяют склеить проблемные места, но я еще их не тестировал. Также могут пригодиться некоторые типы эластичного покрытия, но они также не проверялись).
Шаг 1: Разработка схемы
Я использовал мощный и интуитивный инструмент разработки печатных плат Eagle. Рекомендую вам его изучить. В противном случае можно использовать любую векторную программу, и даже Microsoft Paint для обработки растровых изображений. Примите во внимание следующее:
- Создавайте только черно-белое изображение.
- Не используйте серые тона.
- Старайтесь избегать диагональных линий, чтобы минимизировать проблемы при сглаживании.
- Стараетесь делать сигнальные линии более жирными. Это поможет на этапе травления и пайки.
- При экспорте изображения выставляйте максимально возможное разрешение DPI (лучше всего 600 DPI).
- Для печати в требуемом масштабе используйте программу Microsoft Paint. Перейдите в меню опции и укажите разрешение dpi перед началом печати (Можете воспользоваться программой Photoshop или другим программным обеспечением).
Шаг 2: Печать созданной схемы
Перед печатью протрите Pyralux промышленным спиртом. Отпечатки пальцев могут привести к отслаиванию воска. Вы можете разрезать Pyralux на небольшие кусочки и далее распечатать на них схему требуемого размера. Я использую формат A6.
(Достоинство данного метода в том, что вы можете выполнить несколько тестовых отпечатков на бумаге, и только потом перенести схему на Pyralux.)
Шаг 3: Процесс травления
Возьмите ванночку и добавьте в нее соляную кислоту (HCl) и перекись водорода (H202) в соотношении 1:2 (пол чашки соляной кислоты на полную чашку перекиси водорода). ИСПОЛЬЗУЙТЕ ЗАЩИТНУЮ СПЕЦОДЕЖДУ. Почувствуйте себя настоящим ученым.
Во время реакции соляной кислоты будут выделяться пары. После смешивания соляной кислоты и перекиси водорода, полученная жидкость будет нагреваться, и образовывать пузыри. Положите вашу печатную схему в данную смесь. Во время реакции необходимо перемещать плату для более равномерного протравливания. Избегайте скопления пузырьков под платой.
Выделяемые пары очень токсичны и вызывают коррозию. Один раз в мастерской подобный пар испортил обычные металлические инструменты. В принципе, процесс травления лучше проводить на открытом воздухе, а если внутри, то создавать адекватную вентиляцию.
Держите возле себя питьевую соду. Она может понадобиться для нейтрализации кислоты и ее превращения в зеленую, соленую массу.
Будьте внимательны, вы работаете с токсическими веществами!
Шаг 4: Чистка
Протрите плату в ванночке с растворителем для ногтей, или используйте тряпочку, смоченную в ацетоне, для удаления остатков краски.
Шаг 5: Пайка компонентов
После тщательно проведенной чистки возьмите крошечные резисторы, smd конденсаторы, и другие компоненты, монтируемые на поверхность, и наберитесь терпения, чтобы всех их припаять.
Я сначала наношу небольшое количество припоя на все контактные площадки. Далее беру светодиоды, резисторы, конденсаторы с помощью тонкого пинцета и помещаю их на свои посадочные места. Я нагреваю припой и даю ему растечься вокруг ножки компонента.
Компоненты, монтируемые на поверхность, такие как ATmega328p, можно сначала прикрепить к плате с помощью двухстороннего скотча, после чего припаять ножку за ножкой паяльником с очень тонким жалом.
Примечание: Вы также можете использовать компоненты для установки в отверстие. Для этого нужно использовать зеркальное изображение схемы, поскольку ножки компонентов нужно припаивать с задней стороны платы. Подобным способом я устанавливаю штырьковые разъемы.
Источник
Гибкая печатная плата своими руками
Туториалов по созданию обыкновенных печатных плат на просторах интернета более чем достаточно, а вездесущие китайцы упростили этот процесс до заводского качества. Однако, когда речь заходит о создании гибких плат, тут приходится изгаляться в меру своей смекалки. Хотя, справедливости ради, надо сказать, что и такие вещи китайцы тоже делают, хоть и не дёшево. Но мы будем говорить о ситуации, когда надо вот прямо сейчас и из подручных материалов. Собственно, я непосредственно и столкнулся с такой проблемой и одним из способов ее решения хочу поделиться.
Для начала пару слов что же это такое и в каких случая используется. В этом случае Википедия справедливо утверждает, что гибкая печатная плата (далее ГПП), это такая штука, которая может свободно изгибаться. Не поспоришь. В наиболее распространенном случае ГПП используется в виде соединительных шлейфов, как например на картинке ниже:
В более продвинутом варианте, на нем же распаивают некоторые компоненты. Те, кто разбирал старые сидюки, видел, что весь обвес головки выполнен как раз-таки на такой ГПП. Вот типичнейший пример:
Тут мы видим и место для разъема подключения к основной плате привода и отверстия для лазерных головок, самый правый выступающий «полуостров» скорее всего для интегрального фотодатчика.
ГПП как правило изготавливаются на основе полиимидной пленки с приклеенной на нее медной фольгой. Полиимид держит высокие температуры, что критично при пайке и имеет достаточную гибкость. В народе такую основу называют дюпон (по названию компании ее производящей). Хорошо, когда есть где ее можно приобрести, но мы все будем делать по-пацански.
Итак, что нам потребуется в первую очередь? Обмозговать технологию и перенести ее на то, что можно легко раздобыть в своей деревне. Главным компонентом в этом деле будет термостойкая основа, на которую необходимо приклеить медную фольгу. Клей, кстати, тоже должен быть термостойким. И сразу опережу тех, кто предложит взять каптоновый скотч (он как раз и изготавливается на основе полиимидной пленки) и приклеить его к медной фольге – ничего не выйдет. Клей совершенно не держит тонкие медные дорожки, а от температуры вообще приходит в негодность. Между тем, мой первый вариант как раз-таки и был на основе каптонового скотча, но медную фольгу я клеил на двухкомпонентную паяльную маску УФ отверждения, поскольку она обладает и необходимой термостойкостью, и достаточной прочностью. Казалось бы – ну вот, решение! А вот и нифига. Как оказалось, каптон совершенно непрозрачен для УФ и клей из паяльной маски, даже после суток облучения, совершенно не захотел полимеризоваться. Вариант номер два, это стеклоткань и вот он оказался вполне работоспособен. Значит так и поступим.
В идеале, стеклоткань должна быть мелкого плетения, чего мне раздобыть не получилось, но зато нашел стекломат. Выглядит он приблизительно вот так:
Тут важно отметить, что все же лучше использовать ткань, а не мат, поскольку мат на большом изгибе ощутимо трескается. Однако сути это не меняет, а значит будем работать с тем что имеем.
В качестве клея вполне можно использовать термостойкие эпоксидные смолы, но тыж программист почини кофеварку я же радиолюбитель и кончено смолы у меня нету, но есть паяльная маска. Ее и использую. Медную фольгу можно купить в виде мотка «скотча»:
А можно содрать с текстолита. Даже лучше содрать с текстолита, ниже поясню причину.
В качестве демонстрационной платы, накидал линейку из адресных светодиодов WS2812, подключенную к atmega328 со всей обвязкой. Плата вышла вот такая:
C левой стороны разъем для программирования, чуть правее контроллер и дальше 6 штук светодиодов. Для теста вполне годно.
Теперь надо найти подходящую по размерам жертву и содрать с нее шкуру. Причем сдирать ее не так-то и просто, но у меня есть картинки.
- Жестко устанавливаем жертву на эшафот:
Греем феном (
300C) верхнюю часть и подковыриваем краешек фольги. Далее хватаем пинцетом и аккуратно тянем на себя:
Отклеив небольшой кусочек, переходим к тяжелой артиллерии и продложаем сдирать фольгу, попутно прогревая феном:
Если продолжать тянуть пинцетом, то велика вероятность порвать фольгу. Потому продолжаем тянуть тонкогубцами:
И…
Жертва выглядит теперь так:
А шкурка — вот так:
Выравниваем как в детстве, проведя гранью, например, шпателя, по поверхности:
Здесь очень аккуратно, поскольку легко оставить царапины. Грань должна быть без зазубрин, а поверхность под фольгой абсолютно ровная и без крошек.
Теперь примеряем к стекломату и подрезаем рваные края:
Вообщем-то исходники готовы, теперь надо все это дело скомпилить и тут есть нюансы. Во-первых, надо определиться как мы будем клеить. То есть просто взять и намазать клей на фольгу и положить сверху мат вариант такой себе. Все будет криво, косо, со складками и непроклеями, а медь скорее всего скомкается или помнется. Лучше всего фольгу приклеить к ровной поверхности на трехсторонний двухсторонний скотч и только потом наносить клей. В качестве основы подойдет все та же жертва. Отмеряем, режем, клеим:
А теперь обратите внимание, что я приклеил фольгу обратной стороной наружу:
Это момент, на который я обещал внимание обратить позже. Позже настало, внимание обратил. В чем суть? Внутренняя сторона фольги от текстолита обладает гораздо лучшей адгезией нежели наружная и уж тем более лучше, чем медный скотч. Этот момент действительно очень важен поскольку тонкие дорожки практически не держатся на УФ маске, даже при хорошем обезжиривании. Думаю тут все понятно, поехали дальше.
Затем мажем эту каку на фольгу, сверху кладем мат и пропитываем его насквозь:
Размазываем не жалея, лишнее удаляем ребром шпателя. Результат должен быть таким:
А теперь нюанс номер во-вторых. УФ маску перед засвечиванием необходимо просушить при довольно высоких температурах и довольно продолжительное время. Но скотч, на который мы приклеили фольгу, таких температур не выдержит и… эээ… ну короче скомкается в такую какашку и запорет все труды. Потому сушим недолго и не сильно. Досушивать будем потом.
А это дискотека с ультрафиолетом, для полимеризации клея после предварительной сушки:
Затем я ее еще запустил в горячий ламинатор на несколько проходов, но это не обязательно. И вот только теперь, снимаем заготовку с основы и досушиваем при необходимой температуре, нужное время.
После спа-процедур, тайского массажа и финской сауны:
Теперь можно погнуть во все стороны, убедиться, что не соблюли технологию и все расслоилось и выкинуть результат в мусорку. Если я оказался неправ продолжаем. ЛУТ не пользую уже лет как 5, хоть и не скажу, что в данном случае он не подойдет.
Сверху виден шаблон для паяльной маски, но я решил, что использовать его не стану, поскольку хотелось проверить насколько хорошо будет держаться фольга на таком клее. А паяльная маска, это как обои в том анекдоте где они не дают развалиться новостройке. Однако продолжим.
Фотошаблон я обычно кладу прямо на заготовку, при этом прижимное стекло не использую. Лучше всего капнуть пару капель воды на поверхность фоторезиста и сверху придавить шаблоном. Вода своим поверхностным натяжением хорошо прижимает пленку и не дает ей соскальзывать:
Засветка. Ничего интересного:
Незасвеченный фоторезист отлично смывается обыкновенным стиральным порошком:
Да хлорное железо — это грязища, рыжие пальцы, шорты, раковина. Но, по моему опыту, самый стабильный, качественный и предсказуемый результат. А чтобы не быть рыжим, я обычно использую специальный карандаш, приклеенный на специальные нанотермосопли к заготовке:
И все это дело кручу-верчу, пока не растворится вся ненужная медь.
Познавательная страничка
Если вы используете пузырьковый бурбулятор для перемешивания жидкости, знайте, что вы не перемешиваете ровным счетом ничего. Пузырьки воздуха не гоняют жидкость совсем. Это многократно экспериментально подтверждалось умными дядями. И речь не о травлении плат, а о более серьезных вещах. Потому только и только механическое перемешивание.
5 минут достаточно даже в обедненном растворе:
Лучше всего смывать оставшийся фоторезист раствором горячей щелочи, но можно и ацетоном:
Дорожки держатся очень хорошо, и тут дело не только в соблюдении технологии (качественное обезжиривание, точные пропорции смеси и указанные параметры сушки), но и в отличной адгезии обратной стороны фольги.
А паял на неактивный флюс:
А вот и результат
На самом деле это не первый вариант изготовления. До этого я пытался делать ГПП, использую я в качестве основы лавсановую пленку от литий полимерных аккумуляторов. Тоже рабочий способ, но платы получались чересчур гибкими, и фольга быстро изнашивалась. Плюс данного способа в том, что можно относительно легко проконтролировать жесткость платы используя нужное количество слоев стеклоткани и лучшую жаростойкость. Для прототипирования вполне годно.
Облачные серверы от Маклауд быстрые и безопасные.
Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!
Источник