Химические материалы для ремонта

Как налить дерево, намазать металл и напылить резину: 8 необычных «жидких» материалов

Наши предки немало бы удивились, узнав, что в XXI веке такие традиционные материалы, как дерево, стекло или металл, можно будет заменить «жидкими» аналогами и в прямом смысле налить, намазать, напылить. Современные технологии позволили создать сверхпрочные «жидкие» материалы для строительства и ремонта, которые по ряду параметров даже превосходят своих « твердых собратьев»

Жидкое дерево

Под этим интригующим названием кроется композитный материал на основе древесных волокон, который не только не уступает своему натуральному прародителю, но и во многом превосходит его.

Древесно-полимерный композит (ДПК) на 50-80% состоит из измельченных древесных волокон или, говоря проще, опилок. Остальное — полимерное связующее и различные модифицирующие добавки. Внешне ДПК похож на древесину, разница лишь в том, что он в большинстве своем не имеет видимого рисунка волокон. Но по физическим характеристикам он ближе к пластику. Разумеется, речь идет о положительных качествах.

Прежде всего это касается устойчивости к агрессивной внешней среде. Жидкое дерево не боится влаги и не вызывает пищевого интереса у насекомых и вредоносных микроорганизмов. При этом какая-либо защитная пропитка такой доске не нужна. Еще один очевидный плюс — повышенная прочность: 1 м² настила способен выдержать нагрузку до 1400 кг. Немаловажно и то, что древесно-полимерный композит, в отличие от своего натурального прародителя, очень плохо горит.

Единственный недостаток ДПК — относительно высокая цена. Но учитывая, что средний срок жизни материала даже в самых суровых условиях составляет около полувека, затраты себя оправдают

Читайте также:  Сертификат ремонт газового оборудования

Жидкое стекло

Как ни странно, «жидкое стекло» не имеет со стеклом ничего общего. Это название материал получил за внешний вид. Он представляет собой бесцветный или желтоватый гель, который после застывания становится прозрачным. Жидкое стекло — это водный раствор силикатов натрия и калия. Жидкости такого рода отличаются прекрасной адгезией к любым пористым поверхностям. Застывая, они наглухо запечатывают поры материала, и такая защита не боится ни воды, ни ультрафиолета, ни резких перепадов температур. Это делает жидкое стекло отличной упрочняющей добавкой для бетона, кладочных смесей и проч.

Но куда важнее то, что жидкое стекло обладает водоотталкивающими свойствами. Оно заметно продлевают жизнь отмосткам, бетонированным дорожкам, автомобильным площадкам, колодцам и даже бассейнам, эффективно защищая их от атмосферной и почвенной влаги.

Кроме того, жидкое стекло заметно сокращает период застывания раствора. Например, если добавить в цементно-песчаную смесь всего 2% силикатного клея, затвердевание начнется всего через 40 минут.

Жидкое стекло является эффективным антисептиком. Силикатные растворы убивают вредоносные микроорганизмы и предотвращают образование плесни. Именно поэтому их добавляют в грунт, которым обрабатывают бетонные стены перед поклейкой обоев или оштукатуриванием.

Для бетонного раствора с жидким стеклом рекомендуется использовать
бетон не ниже М300

Подробнее читайте в материале«Как стекло, остекленевший. »

Жидкие гвозди

Название «жидкие гвозди» объединяет группу строительных клеев, способных соединять неплотно прилегающие детали. Это полезное свойство материалам придает особый наполнитель — высокопластичная глина. Правда, недобросовестные производители заменяют ее обычным мелом, что не лучшим образом сказывается на качестве склеивания. Но если рецептура соблюдена в точности, жидкие гвозди создают шов удивительной прочности.

Производители не лукавят, говоря, что жидкие гвозди клеят все. Высокая адгезия и удивительная прочность образуемого шва позволяют скреплять между собой стекло и керамику, кирпич и резину, металл и гипс, MDF и дерево. И зачастую этот клей действительно может заменить собой металлический крепеж. Именно поэтому его часто используют, например, в производстве мебели или при оформлении оконных и дверных проемов. Но конечно, этим область применения жидких гвоздей не ограничивается.

Клеевой шов, образуемый жидкими гвоздями, выдерживает нагрузку
порядка 80–100 кг/см²

Жидкими гвоздями легко приклеить тяжелые натуральные обои из бамбука или тростника. Ими можно быстро и надежно зафиксировать пару-тройку отлетевших облицовочных плиток на стене ванной комнаты. Этот клей прекрасно подходит для работы с лепниной, как полиуретановой, так и гипсовой. Проще назвать области, где жидкие гвозди не пригодятся, чем перечислять сферы их использования.

Так почему же нельзя заменить жидкими гвоздями все существующие клеи и крепежные элементы? Ответ прост — это слишком дорого. Один тубус емкостью 310 мл обойдется в сумму 200–300 руб. При этом выход клея при нанесении сплошной полосой в 6 мм толщиной составит около 10 м/пог. А это далеко не так много, как кажется на первый взгляд.

Подробнее читайте в материале «Пригвоздить так пригвоздить!»

Жидкий металл

До недавней поры «металлизировать» поверхность можно было лишь при помощи красок. И нельзя сказать, что этот способ плох. Имитация меди, бронзы, стали и даже золота бывают столь достоверными, что даже придирчивый зритель не распознает подделку. У окрашивания есть только один недостаток — недолговечность. Насыщенное пигментом покрытие зачастую стирается от легкого прикосновения, и очень скоро его приходится в лучшем случае обновлять, а в худшем — переделывать.

Ситуация в корне изменилась, когда на рынке появился так называемый жидкий металл. Разумеется, это не ртуть, не термопаста и не пришедший из будущего терминатор Т-1000. Речь идет о декоративном покрытии, которое на 95% состоит из тончайшей металлической пыли. Остальные 5% приходятся на композитное связующее, которое обеспечивает отделочному слою удивительную прочность.

Да, жидкий металл куда более износостоек, чем самая прочная краска. Сила его сцепления с подложкой настолько велика, что поверхность можно не только шлифовать и полировать, но даже наносить на нее гравировку.

При помощи жидкого металла можно отделать любую прочную твердую поверхность. Покрытие выпускается во множестве вариантов — медь, бронза, латунь, серебро, золото и т.д.

Декораторы быстро «распробовали» этот удивительный материал и уже довольно активно используют его в отделке интерьера, украшая стены, потолки, лепнину и мебель. Да и для наружных работ нет никаких противопоказаний, главное — не забывать про антикоррозийную защиту.

Жидкий металл обладает всеми характеристиками литого изделия. Это касается не только цвета, блеска и текстуры, но также теплопроводности, магнитных свойств и пр.

Подробнее читайте в материале «Цветмет»

Жидкий пенопласт

Внешне жидкий пенопласт (пеноизол) выглядит как упругая белая пена, более чем на 90% состоящая из пузырьков воздуха, что, собственно, и обеспечивает теплосберегающий эффект. Как утверждают компании, использующие данный материал, 10 см такой изоляции равны 30 см обычного плитного пенопласта, 20 см минеральной ваты или 2,5 м кирпичной кладки.

Столь впечатляющие характеристики во многом обусловлены тем, что материал наносят под давлением. Увеличиваясь в объеме, пена проникает в малейшие углубления, каверны и трещины, образуя сплошной теплоизолирующий слой без мостиков холода.

Вспененным пеноизолом можно утеплить практически любое замкнутое пространство: слоистую кирпичную кладку, полость фальш-стены, чердачное перекрытие и проч.Особой популярностью пеноизол пользуется у компаний, реконструирующих старые дома. Ведь для того, чтобы утеплить строение, не нужно снимать обшивку фасадов или разбирать перекрытия. Впрочем, технологию нанесения материала мы рассмотрим ниже.

За пределами дома пеноизолу тоже найдется применение. Например, его используют для утепления стенок колодцев. Для этого нужно всего лишь сделать несъемную опалубку, отстоящую от наружных стенок шахты на 3-5 сантиметров, и запенить образовавшееся пространство.

И все же нельзя не отметить, что у данной технологии есть недостатки. Первый, и, пожалуй, основной состоит в экологической небезопасности материала. Жидкий пенопласт содержит формальдегид, источающий токсичные пары. Да, со временем они выветриваются, но еще две недели после утепления в доме нельзя производить отделочные работы. И это минимум. Желательно подождать с «внутрянкой» месяц-полтора, чтобы не рисковать здоровьем. Что касается отделки фасадов и других действий на открытом воздухе, тут строгих ограничений не существует. Но повторимся – лучше не рисковать.

Подробнее читайте в материале «Светлое пенное»

Жидкий пластик

Найти идеальный материал для заделки технологических швов действительно трудно. Акриловые герметики неэластичны и порой отслаиваются спустя всего 3-4 месяца после нанесения. Кроме того, они желтеют под солнечными лучами и/или от табачного дыма. А в условиях высокой влажности еще и покрываются плесенью. Силиконовые герметики ощутимо лучше акриловых, но и они могут отслаиваться, желтеть и собирать грязь.

Жидкий пластик лишен этих недостатков. Вероятность того, что он отслоится и поменяет цвет, равна нулю. Дело в том, что этот материал работает по принципу диффузной сварки. Говоря простым языком, он немного расплавляет поверхность, с которой контактирует, врастает в нее, и после застывания образует монолит.

Образованный в результате шов обладает теми же свойствами, что и сам ПВХ. Он прочен, морозостоек, не восприимчив к влаге и ультрафиолету. На гладкой, лишенной пор поверхности не собирается грязь. И даже если в доме много курят, табачный дым не приведет к пожелтению.

Но есть ли у жидкого пластика недостатки? К сожалению, да. Первый и основной — слишком быстрое затвердевание. На нанесение и разглаживание смеси у мастера есть всего 60 секунд. По истечении этого краткого срока герметик начинает твердеть, и работать с ним становится практически невозможно.

Подробнее читайте в материале «Проявите твердость!»

Жидкая резина

Это может показаться странным, но жидкая резина не является резиной в техническом смысле слова. Производители предпочитают называть этот продукт бесшовной напыляемой гидроизоляцией, но для удобства потребителей соглашаются с прижившимся термином.

Итак, почему же этот продукт называют резиной? Причина — в невероятной эластичности. Кусочек площадью 5 см² можно растянуть до 80 см²! А значит, даже при сильных сезонных подвижках и деформации конструкций не приведет к разрыву гидроизоляционной пленки. Можно сказать, что возможность протечек практически полностью исключена. Более того —случайные повреждения защитной мембраны затягиваются сами собой.

Конечно, со временем покрытие становится немного тверже, но эластичность при этом остается довольно высокой, так что трещины не возникают. Прогнозируемый срок жизни материала составляет 20 лет. Именно такую гарантию дают производители жидкой резины.

Разумеется, эластичность — не единственное преимущество материала. Жидкая резина крепко схватывается с бетоном, деревом, металлом и другими строительными материалами, что делает ее универсальным гидроизоляционным материалом. Покрытию не страшны ни жара, ни холод: рабочий диапазон — от –45°C до +100°C.

Немаловажно и то, что жидкая резина лишена основного недостатка обычных битумных гидроизоляций — эффекта старения, вызванного постепенным старением эфира.

Однако есть у материала и свои минусы.

Подробнее читайте в материале «Где тонко, там не рвётся»

Жидкие обои

Жидкие обои путают со штукатуркой, хотя их роднит лишь одно — технология отделочных работ. И в том, и в другом случае разведенную водой массу наносят на стены при помощи шпателя. Но по своему составу эти материалы принципиально отличаются.

Делают жидкие обои из переработанных волокон целлюлозы, хлопка и шелка, окрашенных акриловыми пигментами. По сути, это своеобразное папье-маше. Для большей декоративности в массу добавляют измельченные блестки, нитки, кусочки слюды и прочее. Эти «украшения» называют глиттерами. Связующим веществом служит водорастворимый клей.

У жидких обоев немало достоинств. Первое и основное — бесшовность. После нанесения получается абсолютно ровная, гладкая поверхность без стыков, пузырей, складок и прочих дефектов отделки, которые нередко возникают при работе с обычными обоями.

Еще один плюс состоит в том, что жидкими обоями удобно покрывать криволинейные поверхности. С отделкой арок, сводов, колонн и проч. не возникает особых проблем. О рулонных покрытиях такого сказать нельзя.

Огромным преимуществом является ремонтопригодность. Каким бы ни было повреждение, его можно заделать. Чтобы устранить царапину, покрытие достаточно размочить и загладить шпателем. Если же дефект большой, поверхность зачищают до основания, и делают «заплату» из нового материала. После высыхания она не будет заметна даже самому придирчивому глазу.

Источник

Химические материалы для ремонта

(нанесение металлических покрытий).

Впервые металлическое покрытие методом химического восстановления было получено Ю. Либихом в 1836 году. Он осуществил химическое серебрение стекла и впоследствии разработал технологию процесса серебрения, которая получила промышленное применение. Покрытия такого типа известны в литературе как химические покрытия.

Отличительной особенностью химических покрытий является высокая равномерность их осаждения по всей поверхности. Благодаря низкой пористости такие покрытия обладают высокой защитной способностью, что имеет важное значение при их эксплуатации. Так, например, никелевое покрытие с успехом применяют для защиты от коррозии энергетического оборудования, работающего при температуре 600-6500?С в газовой среде, для покрытия магниевых и титановых деталей вертолетных роторов, а также алюминиевых зеркал, используемых на спутниках в условиях космоса. Оно применяется для защиты от коррозии хирургических инструментов и деталей часов.

В последние десятилетия химический способ нанесения покрытий находит применение для металлизации диэлектриков, придавая поверхности электропроводящие свойства. В частности, металлизированные пластмассы обладают химической устойчивостью, износостойкостью, теплостойкостью и механической прочностью, имеют декоративный вид и устойчивы к свету. Благодаря этим свойствам металлизированная пластмасса широко используется в автомобиле- и приборостроении. Из декоративно-металлизируемых пластмасс изготавливают фурнитуру для мебели, бижутерию, игрушки и другие бытовые изделия. Как же получают металлические покрытия химическим методом? Существуют несколько способов химического осаждения металлических покрытий из водных растворов: 1) контактный; 2) контактно-химический; 3) метод химического восстановления.

Контактный способ основан на вытеснении ионов металла из раствора более активным металлом. Примером может быть хорошо известная из школьного курса реакция меднения железного гвоздя, помещенного в раствор сульфата меди. Контактно-химический способ осаждения металлов заключается в создании гальванической пары между металлом основы и более активным металлом. Так, при осаждении серебра на медную основу создают гальваническую пару с помощью более активного металла алюминия или магния. В этом случае более активный металл отдает свои электроны меди и на отрицательно заряженной медной поверхности ионы Ag+ восстанавливаются до металла. Рассмотренный процесс используют при нанесении серебряного покрытия на волноводные трубы и изделия сложной конфигурации из меди и ее сплавов. Метод химического восстановления (химическая металлизация) заключается в том, что металлические покрытия получают в результате восстановления ионов металла из водных растворов, содержащих восстановитель.

Рассмотрим более подробно получение металлических покрытий методом химического восстановления.

СУЩНОСТЬ МЕТОДА ХИМИЧЕСКОГО (АВТОКАТАЛИТИЧЕСКОГО) ВОССТАНОВЛЕНИЯ МЕТАЛЛОВ

В основе метода лежит реакция взаимодействия ионов металла с растворенным восстановителем на поверхности металла. Окисление восстановителя и восстановление ионов металла протекают с заметной скоростью только на металлах, проявляющих автокаталитические свойства. Это означает, что металл, образовавшийся в результате химического восстановления из раствора, катализирует в дальнейшем реакцию окисления восстановителя. Таким свойством обладают никель, кобальт, железо, медь, серебро, золото, палладий, родий, рутений, платина, олово, свинец, индий. Если осаждаемый металл не проявляет автокаталитические свойства, то реакция восстановления ионов металла протекает во всем объеме раствора и приводит к образованию металлического порошка. Вот почему не любой металл можно получить в виде покрытия химическим восстановлением.

Для химического осаждения металлов используют различные восстановители: гипофосфит, гидразин, формальдегид, борогидрид, боразины, гидразинборан, а также ионы металлов в низшей степени окисления (Fe2 +, Sn2 +, Ti3 +, Cr2 +, Co2 +). Выбор восстановителя определяется главным образом природой осаждаемого металла. Так, например, окисление формальдегида при комнатной температуре катализирует медная поверхность, поэтому формальдегид широко применяют в процессах химического меднения. Гипофосфит в качестве восстановителя используют для получения никелевых и кобальтовых покрытий, так как именно эти металлы обладают в достаточной степени автокаталитическими свойствами.

В настоящее время разработаны способы получения покрытий химическим восстановлением более 20 различных металлов. Этим же методом получают покрытия бинарными и тройными сплавами: Ni-P, Ni-B, Ni-Co-P, Ni-Mo-B, Ni-Cr-P, Ni -Sn-P, Ni-Cu-B и др.

Химические покрытия в зависимости от функциональных свойств осаждают на черные металлы и сплавы, цветные металлы, а также на неметаллические поверхности (пластмасса, керамика, фарфор, стекло). Перед нанесением химического покрытия поверхность образца должна быть подготовлена соответствующим образом. Характер предварительной обработки поверхности зависит от природы материала, на который осаждается химическое покрытие.

Как уже отмечалось, химическое восстановление металлов является автокаталитической реакцией, так как металлическая пленка, образовавшаяся в начальный период, катализирует дальнейшую реакцию восстановления этого же металла. Но для начальной стадии восстановления металла необходимо, чтобы покрываемая поверхность проявляла каталитические свойства по отношению к этой реакции. Такими свойствами обладают главным образом металлы d-элементов VIII группы и некоторые другие металлы.

Металлы медь, вольфрам, титан, а также неметаллические материалы не являются катализаторами реакции окисления восстановителя. Поэтому для придания каталитических свойств поверхности ее подвергают специальной обработке — активации.

Существуют различные способы активации, сущность которых заключается в нанесении металла-катализатора на покрываемую поверхность. Наиболее распространенный способ активации включает две последовательные операции, получившие название «сенсибилизирование» и «активирование». Сенсибилизирование (повышение чувствительности) заключается в обработке поверхности раствором солей Sn2 +, Fe2 +, Ti3 +, Ge2 +. Самым эффективным способом сенсибилизирования является обработка поверхности в растворе SnCl2. Активирование состоит в обработке сенсибилизированной поверхности растворами соединений каталитически активных металлов: Pd, Pt, Ag, Au, Rh, Ru, Os, Ir. Наибольшее распространение получили растворы, содержащие соединения Pd(II).

В последнее десятилетие широкое применение для активирования поверхности находят так называемые совмещенные растворы, которые одновременно содержат PdCl2 и SnCl2 .

В результате процесса активации металлический палладий равномерно распределяется тончайшим слоем по всей поверхности, и на такой образец уже может быть нанесено химическое покрытие.

РАСТВОРЫ ДЛЯ ХИМИЧЕСКОГО ОСАЖДЕНИЯ МЕТАЛЛОВ

Растворы для получения химических покрытий в простейшем случае содержат соль металла и восстановитель. Однако такие растворы неустойчивы, и ионы металла восстанавливаются с образованием металлического осадка во всем объеме раствора. В начальный момент времени реакция взаимодействия ионов металла с восстановителем является некаталитической, но по мере образования частиц металла реакция принимает каталитический характер, и скорость ее возрастает с увеличением поверхности осадка.

Для стабилизации раствора в него вводят: 1) комплексообразующие вещества (лиганды), которые обеспечивают образование прочных комплексов с ионами металла. С увеличением прочности комплекса скорость реакции взаимодействия ионов металла с восстановителем уменьшается; 2) вещества, создающие определенное значение pH (щелочи или кислоты, буферирующие добавки); 3) стабилизаторы — специальные вещества, которые в малых концентрациях (1-100 мг/л) значительно повышают стабильность раствора.

НАНЕСЕНИЕ МЕТАЛЛИЧЕСКИХ ПОКРЫТИЙ

Химическое покрытие одних металлов другими подкупает простотой технологического процесса. Действительно, если, например, необходимо химически отникелировать какую-либо стальную деталь, достаточно иметь подходящую эмалированную посуду, источник нагрева (газовая плита, примус и т.п.) и относительно недефицитные химреактивы. Час-другой- и деталь покрыта блестящим слоем никеля.

Заметим, что только с помощью химического никелирования можно надежно отникелировать детали сложного профиля, внутренние полости (трубы -и т.п.). Правда, химическое никелирование (и некоторые другие подобные процессы) не лишено и недостатков. Основной из них — не слишком крепкое сцепление никелевой пленки с основным металлом. Однако этот недостаток устраним, для этого применяют так, называемый метод низкотемпературной диффузии. Он позволяет значительно повысить сцепление никелевой пленки с основным металлом. Метод этот применим для всех химических покрытий одних металлов другими.

В основу процесса химического никелирования положена реакция восстановления никеля из водных растворов его солей с помощью гипофосфита натрия и не­которых других химреактивов.

Никелевые покрытия, полученные химическим путем, имеют аморфную структуру. Наличие в никеле фосфора делает пленку близкой по твердости пленке хрома. К сожалению, сцепление пленки никеля с основным металлом сравнительно низкое. Термическая обработка пленок никеля (низкотемпературная диффузия) заключается в нагреве отникелированных деталей до температуры 400°С и выдержке их при этой температуре в течение 1ч.

Если покрываемые никелем детали закалены (пружины, ножи, рыболовные крючки и т.п.), то при температуре 400°С они могут отпуститься, то есть потерять свое основное качество — твердость. В этом случае низкотемпературную диффузию проводят при температуре 270. 300С с выдержкой до 3 ч. При этом термообработка повышает и твердость никелевого покрытия.

Все перечисленные достоинства химического никелирования не ускользнули от внимания технологов. Они нашли им практическое применение (кроме использования декоративных и антикоррозионных свойств). Так, с помощью химического никелирования осуществляется ремонт осей различных механизмов, червяков резьбонарезных станков и т.д.

В домашних условиях с помощью никелирования (конечно, химического!) можно отремонтировать детали различных бытовых устройств. Технология здесь предельно проста. Например, сносилась ось какого-либо устройства. Тогда наращивают- (с избытком) слой никеля на поврежденном месте. Затем рабочий участок оси полируют, доводя его до нужного размера.

Надо отметить, что с помощью химического никелирования нельзя покрывать такие металлы, как олово, свинец, кадмий, цинк, висмут и сурьму.

Растворы, применяемые для химического никелирования, подразделяются на кислые (рН — 4. 6.5) и щелочные (рН — выше 6,5). .Кислые растворы предпочтительнее применять для покрытия черных металлов, меди и латуни. Щелочные — для нержавеющих сталей.

Кислые растворы (посравнению с щелочными) на полированной детали дают более гладкую (зеркальную) поверхность, у них меньшая пористость, скорость протекания процесса выше. Еще немаловажная особенность кислых растворов: у них меньше вероятность саморазряда при превышении рабочей температуры. (Саморазряд — мгновенное выпадение никеля в раствор с расплескиванием последнего.)

У щелочных растворов основное преимущество — более надежное сцепление никелевой пленки с основным металлом.

И последнее. Воду для никелирования (и при нанесении других покрытий) берут дистиллированную (можно использовать конденсат из бытовых холодильников). химреактивы подойдут как минимум чистые (обозначение на этикетке — Ч).

Перед покрытием деталей любой металлической пленкой необходимо провести специальную подготовку их поверхности.

Подготовка всех металлов и сплавов заключается в следующем. Обработанную деталь обезжиривают в одном из водных растворов, а затем деталь декапируют в одном из нижеперечисленных растворов.

Составы растворов для декапирования (г/л)

Для стали
Серная кислота — 30. 50.
Температура раствора — 20°С, время обработки — 20.. .60 с.

Соляная кислота — 20. 45.
Температура раствора — 20°С, время обработки — 15. 40с.

Серная кислота — 50. 80, соляная кислота — 20. 30.
Температура раствора — 20°С, время обработки — 8. 10 с.

Для меди и ее сплавов
Серная кислота — 5%-ный раствор.
Температура — 20°С, время обработки — 20с.

Для алюминия и его сплавов
Азотная кислота. (Внимание, 10. 15% -ный раствор.)
Температура раствора — 20°С, время обработки-5. 15 с.

Учтите, что для алюминия и его сплавов перед химическим никелированием проводят еще одну обработку — так называемую цинкатную. Ниже приведены растворы для цинкатной обработки.

Составы растворов для цинкатной обработки (г/л)

Для алюминия
Едкий натр — 250, окись цинка .- 55.
Температура раствора — 20 С, время обработки — 3. 5 с.

Едкий натр — 120, сернокислый цинк — 40,
Температура раствора — 20°С, время обработки — 1,5. 2 мин.

При подготовке обоих растворов сначала отдельно в половине воды растворяют едкий натр, в другой половине — цинковую составляющую. Затем оба раствора сливают вместе.

Для литейных алюминиевых сплавов
Едкий натр — 10, окись цинка — 5, сегнетова соль (кристаллогидрат) — 10.
Температура раствора — 20 С, время обработки — 2 мин.

Для деформируемых алюминиевых сплавов
Хлорное железо (кристаллогидрат) — 1, едкий натр — 525, окись цинка 100, сегнетова соль — 10.
Температура раствора — 25°С, время обработки — 30. 60 с.

После цинкатной обработки детали промывают в воде и завешивают их в раствор для никелирования.

Все растворы для никелирования универсальны, то есть годны для всех металлов (хотя есть и некоторая специфика). Готовят их в определенной последова­тельности. Так, все химреактивы (кроме гипофосфита натрия) растворяют в воде (посуда эмалированная!). Затем раствор разогревают до рабочей температуры и только после этого растворяют гипофосфит натрия и завешивают детали в раствор.

В 1 л раствора можно отникелировать поверхность площадью до 2 дм .

Составы растворов для никелирования (г/л)

Сернокислый никель — 25, янтарнокислый натрий — 15, гипофосфит натрия — 30.
Температура раствора — 90°С, рН — 4,5, скорость наращивания пленки-15. 20 мкм/ч.

Хлористый никель — 25, янтарно-кислый натрий — 15, гипофосфит натрия — 30.
Температура раствора- 90. 92 С, рН — 5,5, скорость наращивания — 18. 25 мкм/ч.

Хлористый никель — 30, гликолевая кислота — 39, гипофосфит натрия — 10.
Температура раствора 85. 89’С, рН — 4,2, скорость наращивания — 15. 20 мкм/ч.

Хлористый никель — 21, уксуснокислый натрий — 10, гипофосфит натрия — 24.
Температура раствора — 97°С, рН — 5,2, скорость наращивания — до 60 мкм/ч.

Сернокислый никель — 21, уксуснокислый натрий — 10, сульфид свинца — 20, гипофосфит натрия — 24.
Температура раствора — 90°С, рН — 5, скорость наращивания -до 90 мкм/ч.

Хлористый никель — 30, уксусная кислота -. 15, сульфид свинца — 10. 15, гипофосфит натрия -15.
Температура раствора — 85. 87°С, рН — 4,5, скорость наращивания -12. 15 мкм/ч.

Хлористый никель — 45, хлористый аммоний — 45, лимоннокислый натрий — 45, гипофосфит натрия — 20.
Температура раствора — 90°С, рН — 8,5, скорость наращивания — 18. 20 мкм/ч.

Хлористый никель — 30, хлористый аммоний — 30, янтарнокислый натрий — 100, аммиак (25%-ный раствор — 35, гипофосфит натрия — 25).
Температура — 90°С, рН — 8. 8,5, скорость наращивания — 8. 12 мкм/ч.

Хлористый никель — 45, хлористый аммоний — 45, уксуснокислый натрий — 45, гипофосфит натрия — 20.
Температура раствора — 88. 90°С, рН — 8. 9, скорость наращивания — 8. 20 мкм/ч.

Сернокислый никель — 30, сернокислый аммоний — 30, гипофосфит натрия — 10.
Температура раствора — 85°С, рН — 8,2. 8,5, скорость наращивания — 15. 18 мкм/ч.

Внимание! По существующим ГОСТам однослойное покрытие никелем на 1 имеет несколько десятков сквозных (до основного металла) пор. Естественно, что на открытом воздухе стальная деталь, покрытая никелем, быстро покроется «сыпью» ржавчины.

У современного автомобиля, к примеру, бампер покрывают двойным слоем (подслой меди, а сверху — хром) и даже тройным (медь — никель — хром). Но и это не спасает деталь от ржавчины, так как по ГОСТу и у тройного покрытия имеется несколько пор на 1 см . Что делать? Выход — в обработке поверхности покрытия специальными составами, закрывающими поры.

В домашних условиях можно рекомендовать следующие операции.

Протереть деталь с никелевым (или другим) покрытием кашицей из окиси магния и воды и сразу же опустить ее на 1. 2 мин в 50 %-ный раствор соляной кислоты.

После термообработки езде не остывшую деталь опустить в невитаминизированный рыбий жир (лучше старый, непригодный по прямому назначению).

Протереть 2. 3 раза отникелированную поверхность детали составом ЛПС (легко проникающей смазкой).

В последних двух случаях излишки жира (смазки) через сутки удаляют с по­верхности бензином.

Обработку рыбьим жиром больших поверхностей (бамперов, молдингов автомашин) проводят так. В жаркую погоду протирают их рыбьим жиром два раза с перерывом в 12. 14 ч. Затем через 2 суток излишки жира удаляют бензином.

Эффективность такой обработки характеризует следующий пример. Никелиро­ванные рыболовные крючки начинают покрываться ржавчиной сразу же после пер­вой рыбалки в море. Обработанные рыбьим жиром те же крючки не корродируют почти весь летний сезон морской ловли.

Химическое хромирование позволяет получить на поверхности металлических деталей покрытие серого цвета, которое после полирования приобретает нужный блеск. Хром хорошо ложится на никелевое покрытие. Наличие фосфора в хроме, полученном химическим путем, значительно увеличивает его твердость. Тер­мическая обработка для хромовых покрытий необходима.

Ниже приводятся проверенные практикой рецепты химического хромирования.

Составы растворов для химического хромирования (г/л)

Фтористый хром — 14, лимоннокислый натрий — 7, уксусная кислота — 10 мл, гипофосфит натрия — 7.
Температура раствора -85. 90°С, рН — 8. 11, скорость наращивания — 1,0. 2,5 мкм/ч.

Фтористый хром — 16, хлористый хром — 1, уксуснокислый натрий — 10, щавелевокислый натрий — 4,5, гипофосфит натрия- 10,
Температура раствора — 75. 90°С, рН — 4. 6. скорость наращивания — 2. 2.5 мкм/ч.

Фтористый хром — 17, хлористый хром — 1,2, лимоннокислый натрий — 8,5, гипофосфит натрия — 8,5.
Температура раствора — 85. 90°С, рН — 8. 11, скорость наращивания — 1. 2.5 мкм/ч.

Уксуснокислый хром — 30, уксуснокислый никель — 1, гликолевокислыи натрий — 40, уксуснокислый натрий — 20, лимоннокислый натрий — 40,
уксусная кислота — 14 мл, гидроксид натрия — 14, гипофосфит натрия -15.
Температура раствора — 99°С, рН — 4. 6, скорость наращивания — до 2,5 мкм/ч.

Фтористый хром — 5. 10, хлористый, хром — 5. 10, лимоннокислый натрий — 20. 30, пирофосфат натрия (замена гипофосфита натрия) — 50. 75.
Температура раствора — 100°С;рН — 7,5. 9, скорость наращивания — 2. 2,5 мкм/ч.

Пленка из этого двойного сплава обладает повышенной твердостью (особенно после термообработки), высокой температурой плавления, большой износоустойчивостью и значительной коррозионной стойкостью. Все это позволяет применять такое покрытие в различных ответственных самодельных конструкциях. Ниже приведены рецепты растворов, в которых осуществляют бороникелирование.

Составы растворов для химического бороникелирования (г/л)

Хлористый никель — 20, гидроксид натрия — 40, аммиак (25%-ный раствор) — 11, борогидрид натрия — 0,7, этилендиамин (98%-ный раствор) — 4,5.
Температура раствора — 97°С, скорость наращивания — 10 мкм/ч.

Сернокислый никель — 30, триэтилентетрамин — 0,9, гидроксйд натрия — 40, аммиак (25%-ный раствор) — 13, борогидрид натрия — 1.
Температура раствора — 97 С, скорость наращивания-2,5мкм/ч.

Хлористый никель — 20, гидроксид натрия — 40, сегнетова соль — 65, аммиак (25%-ный раствор) — 13, борогидрид натрия — 0,7.
Температура раствора- 97 С, скорость наращивания — 1,5 мкм/ч.

Едкий натр — 4. 40, метабисульфит калия — 1. 1,5, виннокислый калий-натрий — 30. 35, хлористый никель — 10. 30, этилендиамин (50%-ный раствор) — 10. 30, борогидрид натрия—0,6. 1,2.
Температура раствора — 40. 60 С, скорость наращивания — до 30 мкм/ч.

Растворы приготавливают так же, как для никелирования: сначала растворяют все, кроме борогидрида натрия, раствор нагревают и растворяют борогидрид натрия.

Использование данного химического процесса позволяет получить пленку особо, большой твердости. Ее используют для ремонта пар трения, где требуется повы­шенная износостойкость покрытия. ,

Составы растворов для борокобальтирования (г/л)

Хлористый кобальт — 20, гидроксйд натрия — 40, лимоннокислый натрий —. 100, этилендиамин — 60, хлористый аммоний — 10, борогидрид натрия — 1.
Температура раствора — 60°С, рН — 14, скорость наращивания — 1,5. 2,5 мкм/ч.

Уксуснокислый кобальт — 19, аммиак (25%-ный раствор) ^250, виннокислый калий — 56, борогидрид натрия — 8,3.
Температура раствора — 50С, рН — 12,5, скорость наращивания — 3 мкм/ч.

Сернокислый кобальт — 180, борная кислота — 25, Диметилборазан — 37.
Температура раствора — 18°С, рН — 4, скорость наращивания — 6 мкм/ч.

Хлористый кобальт — 24, этилендиамин — 24, диметилборазан — 3.5.
Температура раствора — 70С, рН — 11, скорость наращивания — 1 мкм/ч.

Раствор приготовляют так же, как и бороникелевые;

В хозяйстве часто приходится применять крепежные детали; покрытые кадмием. Особенно это касается деталей, которые эксплуатируются под открытым небом.

Отмечено, что кадмиевые покрытия, полученные химическим путем, хорошо сцепляются с основным металлом даже без термообработки.

Ниже приведен хорошо зарекомендовавший себя раствор для химического кадмирования стальных деталей (г/л).

Хлористый кадмий — 50, этилендиамин — 100. С деталями должен контактировать кадмий (подвеска на кадмиевой проволоке, мелкие детали пересыпают порошковым кадмием).
Температура раствора — б5°С, рН —6. 9, скорость наращивания — 4 мкм/ч.

Внимание! Последним в растворе (после нагрева) растворяют этилендиамин.

Химическое меднение чаще всего применяют при изготовлении печатных плат для радиоэлектроники, в гальванопластике, для металлизации пластмасс, для двойного покрытия одних металлов другими.

Составы растворов для меднения (г/л)

Сернокислая медь — 10, серная кислота — 10.
Температура раствора — 15. 25°С, скорость наращивания — 10 мкм/ч.

Виннокислый калий-натрий — 150, сернокислая медь — 30, едкий натр — 80.
Температура раствора — 15. 25°С, скорость наращивания-12 мкм/ч.

Сернокислая медь — 10. 50, едкий натр — 10. 30, сегнетова соль 40. 70, формалин (40%-ный раствор) — 15. 25.
Температура раствора — 20°С, скорость наращивания -10 мкм/ч.

Сернокислая медь — 8. 50, серная кислота — 8. 50.
Температура раствора — 20°С, скорость наращивания — 8 мкм/ч.

Сернокислая медь — 63, виннокислый калий — 115, углекислый натрий — 143.
Температура раствора — 20 С, скорость наращивания — 15 мкм/ч.

Сернокислая медь — 80. 100, едкий натр — 80. 100, углекислый натрий — 25. 30, хлористый никель — 2. 4, сегнетова соль — 150. 180, формалин (40%-ный раствор) — 30. 35.
Температура раствора — 20 С, скорость наращивания — 10 мкм/ч. Этот раствор позволяет получать пленки с небольшим содержанием никеля.

Сернокислая медь — 25. 35, гидро-ксид натрия — 30. 40, углекислый натрий — 20. 30, трилон Б — 80. 90, формалин (40%-ный раствор) — 20. 25, ро-данин — 0,003. 0,005, железосинеродистый калий (красная кровяная соль) — 0,1. 0,15.
Температура раствора — 18. 25°С, скорость наращивания-8мкм/ч.

Этот раствор отличается большой стабильностью работы по времени и позволяет получить толстые пленки меди.

Для улучшения сцепления пленки с основным металлом применяют термическую обработку такую же, как и для никеля.

Серебрение металлических поверхностей, пожалуй, самый популярный процесс среди умельцев, который они применяют в своей деятельности. Можно привести десятки примеров. Например, восстановление слоя серебра на мельхиоровых столовых приборах, серебрение самоваров и других предметов быта.

Для чеканщиков серебрения вместе с химическим окрашиванием металлических поверхностей (о нем будет сказано ниже) -способ увеличения художественной ценности чеканных картин. Представьте себе отчеканенного древнего воина, у которого посеребрена кольчуга и шлем.

Сам процесс химического серебрения можно провести с помощью растворов и паст. Последнее предпочтительнее при обработке больших поверхностей (например, при серебрении самоваров или деталей крупных чеканных картин).

Состав растворов для серебрения (г/л)

Хлористое серебро — 7,5, железистосинеродистый калий — 120, углекислый калий — 80.
Температура рабочего раствора — около 100°С. Время обработки — до получения нужной толщины слоя серебра.

Хлористое серебро — 10, хлористый натрий — 20, кислый виннокислый калий — 20.
Обработка — в кипящем растворе.

Хлористое серебро — 20, железистосинеродистый калий — 100, углекислый калий — 100, аммиак (30%-ный раствор) — 100, хлористый натрий — 40. Обработка — в кипящем растворе.
Сначала готовится паста из хлористого серебра — 30 г, винной кислоты — 250 г, хлористого натрия — 1250, и все разводится водой до густоты сметаны. 10. 15 г пасты растворяют в 1 л кипящей воды.
Обработка — в кипящем растворе.

Детали завешивают в растворы для серебрения на цинковых проволочках (по­лосках).

Время обработки определяют визуально. Здесь необходимо отметить, что лучше серебрится латунь, нежели медь. На последнюю необходимо нанести довольно толстый слой серебра, чтобы темная медь не просвечивала бы через слой покрытия.

Еще одно замечание. Растворы с солями серебра нельзя долго хранить, так как при этом могут образовываться взрывчатые компоненты. Это же касается всех жидких паст.

Составы паст для серебрения.

В 300 мл теплой воды растворяют 2 г ляпис-карандаша (продается в аптеках, представляет собой смесь азотнокислого серебра и аминокислотного калия, взятых в соотношении 1:2 (по массе). К полученному раствору понемногу добавляют 10%-ный раствор хлористого натрия до прекращения выпадения осадка. Творожистый осадок хлорного серебра отфильтровывают и тщательно промывают в 5. 6 водах.

В 100 мл воды растворяют 20 г тио-сульфита натрия. В полученный раствор добавляют хлорное серебро до тех пор, пока оно не перестанет растворяться. Рас­твор фильтруют и добавляют в него зубной порошок до консистенции жидкой сметаны. Этой пастой с помощью ватного тампона натирают (серебрят) деталь.

Ляпис-карандаш — 15, лимонная кислота (пищевая) — 55, хлористый аммоний — 30. Каждый компонент перед смешиванием растирают в порошок.
Содержание компонентов — в % (по массе).

Хлористое серебро — 3, хлористый натрий — 3, углекислый натрий — 6, мел — 2. Содержание компонентов — в частях (по массе).

Хлористое серебро — 3, хлористый натрий — 8, виннокислый калий — 8, мел — 4. Содержание компонентов — в частях (по массе).

Азотнокислое серебро — 1, хлористый натрий — 2. Содержание компонентов — в частях (по массе).

Последние четыре пасты применяют следующим образом. Тонко измельченные компоненты смешивают. Мокрым тампоном, припудривая его сухой смесью химреактивов, натирают (серебрят) нужную деталь. Смесь все время добавляют, по­стоянно увлажняя тампон.

При серебрении алюминия и его сплавов детали сначала цинкуют, а затем уже покрывают серебром.

Цинкатную обработку проводят в одном из следующих растворов.

Составы растворов для цинкатной обработки (г/л)

Для алюминия
Едкий натр — 250, окись цинка — 55.
Температура раствора — 20 С, время обработки — 3. 5 с.

Едкий натр — 120, сернокислый цинк — 40.
Температура раствора — 20°С, время обработки — 1,5. 2,0 мин.
Для получения раствора сначала в одной половине воды растворяют едкий натр, в другой — сернокислый цинк. Затем оба раствора сливают вместе.

Для дюраля.
Едкий натр — 10, окись цинка — 5, сегнетова соль -10.
Температура раствора — 20°С, время обработки-1. 2мин.

После цинкатной обработки детали серебрят в любом из вышеперечисленных растворов. Однако лучшими считаются следующие растворы (г/л).

Азотнокислое серебро — 100, фтористый аммоний-100.
Температура раствора

Фтористое серебро — 100, азотнокислый аммоний -100.
Температура раствора — 20°С.

Химическое лужение поверхностей деталей применяют как антикоррозионное покрытие и как предварительный процесс (для алюминия и его сплавов) перед пай­кой мягкими припоями. Ниже приведены составы для лужения некоторых металлов.

Составы для лужения (г/л)

Для стали
Хлористое олово (плавленое) — 1, аммиачные квасцы -15.
Лужение ведется в кипящем растворе, скорость наращивания — 5. 8 мкм/ч.

Хлористое олово — 10, сернокислый алюминий-аммоний — 300.
Лужение ведется в кипящем растворе, скорость наращивания-5 мкм/ч.

Хлористое олово — 20, сегнетова соль -10.
Температура раствора — 80°С, скорость наращивания — 3. 5 мкм/ч.

Хлористое олово — 3. 4, сегнетова соль — до насыщения.
Температура раствора — °0. 100°С, скорость наращивания — 4. 7 мкм/ч.

Для меди и ее сплавов
Хлористое олово — 1, виннокислый калий — ГО.
Лужение ведется в кипящем растворе, скорость наращивания — 10 мкм/ч.

Хлористое олово.- 20, молочнокислый натрий — 200.
Температура раствора — 20°С, скорость наращивания — 10 мкм/ч.

Двухлористое олово — 8, тиомочевина — 40. 45, серная кислота- 30. 40.
Температура раствора — 20°С, скорость наращивания -15 мкм/ч.

Хлористое олово — 8. 20, тиомочевина — 80. 90, соляная кислота — 6,5. 7,5, хлористый натрий — 70. 80.
Температура раствора — 50. 100°С, скорость наращивания — 8 мкм/ч.

Хлористое олово — 5,5, тиомочевина — 50, винная кислота — 35.
Температура раствора — б0. 70°С, скорость наращивания — 5. 7 мкм/ч.

При лужении деталей из меди и ее сплавов их завешивают на цинковых подвесках. Мелкие детали «припудривают» цинковыми опилками.

Для алюминия и его сплавов
Лужению алюминия и его сплавов предшествуют некоторые дополнительные процессы. Вначале обезжиренные ацетоном или бензином Б-70 детали обра­батывают в течение 5 мин при температуре 70°С следующего состава (г/л): угле­кислый натрий — 56, фосфорнокислый натрий — 56. Затем детали опускают на 30 с в 50%-ный раствор азотной кислоты, тщательно .промывают под струёй воды и сразу же помещают в один из растворов (для лужения), приведенных ниже.

Станнат натрия — 30, гидроксид натрия — 20.
Температура раствора — 50. 60 С, скорость наращивания — 4 мкм/ч.

Станнат натрия — 20. 80, пирофосфат калия — 30. 120, едкий натр — 1,5. 1,7, щавелевокислый аммоний — 10. 20.
Температура, раствора — 20. 40°С, скорость наращивания — 5 мкм/ч.

Удаление металлических покрытий

Обычно этот процесс необходим для удаления некачественных металлических пленок или для очистки какого-либо реставрируемого металлического изделия.

Все нижеприведенные растворы работают. быстрее при повышенных температурах.

Составы растворов для удаления металлических покрытий частями (по объему)

Для удаления никеля со стали

Азотная кислота — 2, серная кислота-1, сернокислое железо (окисное) — 5. 10.
Температура смеси — 20°С.

Азотная кислота — 8, вода — 2.
Температура раствора — 20 С.

Азотная кислота- 7, уксусная кислота (ледяная) — 3.
Температура смеси — 30°С.

Для удаления никеля с меди и ее сплавов (г/л)

Нитробензойная кислота — 40. 75, серная кислота- 180.
Температура раствора — 80. 90°С.

Нитробензойная кислота — 35, этилендиамин — 65, тиомочевина — 5. 7.
Температура раствора — 20. 80°С.

Для удаления никеля с алюминия и его сплавов применяют техническую азотную кислоту.
Температура кислоты — 5б°С.

Для удаления меди со стали

Нитробензойная кислота — 90, диэтилентриамин — 150, хлористый аммоний — 50.
Температура раствора — 80°С.

Пиросернокислый натрий — 70, аммиак (25%-ный раствор) — 330.
Температура раствора — .60°.

Серная кислота — 50, хромовый ангидрид — 500.
Температура раствора — 20°С.

Для удаления меди с алюминия и его сплавов (с цинкатной обработкой)

Хромовый ангидрид — 480, серная. кислота — 40.
Температура раствора — 20. 70°С.

Техническая азотная кислота.
Температура раствора — 50°С.

Для удаление серебра со стали

Азотная кислота — 50, серная кислота — 850.
Температура — 80°С.

Азотная кислота техническая.
Температура — 20°С.

Серебро с меди и ее сплавов удаляют азотной кислотой технической.
Температура — 20 С.

Хром со стали снимают раствором едкого натра (200 г/л).
Температура раствора — 20°С.

Хром с меди и ее сплавов удаляют 10%-ной соляной кислотой.
Температура раствора — 20°С.

Цинк со стали снимают 10%-ной соляной кислотой — 200 г/л.
Температура раствора — 20°С.

Цинк с меди и ее сплавов удаляют концентрированной серной кислотой.
Температура — 20 С.

Кадмий и цинк с любых металлов снимают раствором азотнокислого алюминия (120 г/л).
Температура раствора — 20 С. Олово со стали удаляют раствором, содержащим гидроксид натрия — 120, нитробензойную кислоту — 30. Температура раствора — 20 С.

Олово с меди и ее сплавов Снимают в растворе хлорного железа — 75. 100, сернокислой меди — 135. 160, уксусной кислоты (ледяная) — 175.
Температура раствора — 20 С.

Источник

Оцените статью