Импульсное зарядное устройство для шуруповерта ремонт

Конструкция зарядного устройства от шуруповёрта

Схема, устройство, ремонт

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол».

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Читайте также:  Ремонт ливневой канализации здания

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки «Пуск» электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

Читайте также:  Строительный контроль при капитальном ремонте аукцион

В моей практике был случай, когда стабилитрон пробило, мультиметром он «звонился» как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на «пробой» можно также, как и обычный диод. О проверке диодов я уже рассказывал.

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор «Сеть» (зелёный). Вынимаем АКБ и делаем «контрольный» замер напряжения на её клеммах. АКБ должна быть заряженной.

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.

Источник

Ремонт зарядного устройства шуруповерта

Электродрель порой незаменима. Она сверлит, крутит, шлифует и перемешивает. Однако при отсутствии розетки этот инструмент бесполезен. Теперь же получили широкое распространение беспроводные дрели, работающие от аккумулятора. Поэтому стал актуален ремонт зарядного устройства для шуруповерта. Сломавшись, оно перестает заряжать батарею либо портит ее, подавая ток несоответствующего напряжения и силы.

Конструкция и вероятные дефекты

Зарядное устройство (ЗУ) состоит из нескольких ключевых элементов. Каждый из них может выйти из строя, что приведет к поломке всей конструкции. Детали эти достаточно просты, найти им замену несложно – в магазине, аналогичном приборе или блоке питания. Однако нужно уточнить, что речь идет об аналоговом трансформаторном устройстве, а не об импульсном. Последние обычно надежнее, но практически неремонтопригодны при отсутствии нужных знаний. Хотя провода, предохранители или тумблеры легко заменимы и в них.

  • компоненты электропроводки,
  • предохранитель,
  • тумблер,
  • понижающий трансформатор,
  • выпрямительный блок,
  • фильтрующий конденсатор,
  • выходные контакты,
  • элементы управления (микросхема, стабилитрон, реле).
  • разрыв, перегорание или замыкание кабеля питания;
  • перегорание предохранителя;
  • окисление либо обгорание контактов тумблера;
  • замыкание трансформатора;
  • пробой либо обрыв выпрямительных диодов;
  • испарение электролита, пробой изоляции или обрыв конденсатора;
  • обрыв, окисление либо обгорание контактов устройства на выходе;
  • выход из строя элемента блока автоматического управления.

Подготовка и поиск неисправности

Перед разборкой зарядного устройства для шуруповерта, следует проверить его работоспособность мультиметром, замеряющим как напряжение, так и силу тока. Современные модели измеряют еще и сопротивление элементов цепи, а некоторые – емкость конденсаторов. Стоимость их порядка 500 р., продаются во многих магазинах. Присутствие тестера в хозяйстве человека с руками будет нелишним.

Для поиска повреждений и последующего ремонта понадобятся:

  • мультиметр,
  • двусторонняя отвертка,
  • плоскогубцы,
  • паяльник,
  • флюс и припой,
  • детали на замену.

Тест напряжения проводится просто – мультиметр включают на измерение напряжения в соответствующем диапазоне постоянного тока. В данном случае – до 20 или 50В, в зависимости от модели тестера и АКБ. А определяют контакты, которые нужно «щупать», по надписям на корпусе либо методом проб и ошибок. Следует учитывать, что показания прибора должны превышать номинальные значения, указанные на батарее, процентов на 10 – 15. И уж точно не должны быть ниже их. Если же они не дотягивают даже до номинальных цифр, скорее всего, «умер» какой-то диод либо конденсатор.

Читайте также:  Салон мерседес 124 ремонт

Разборка корпуса ЗУ, поиск дефекта и ремонт

Перед разборкой прибора его выключают из розетки и достают АКБ, если она вставлена. Винты выкручиваются крестовой либо плоской отверткой без каких-либо трудностей. Однако разъединять детали корпуса нужно так, чтобы не повредить провода, идущие на тумблер, выходные контакты и светодиод. После этого приступают к поиску повреждений в зарядном устройстве для шуруповерта и его ремонту.

  • Осмотр «внутренностей» часто ускоряет и упрощает ремонт. Почерневшие элементы заметны, однако могут вызвать выход из строя других деталей. Хотя сгоревший предохранитель или оборвавшийся провод – явные причины поломки зарядника. Менять детали желательно на аналогичные, в том числе и провода.
  • Для проверки целостности проводов их «прозванивают» мультиметром, включенным в режим измерения сопротивления. Первый щуп подключают к одному концу провода, второй – к другому. Если провод перегорел или оборвался, то показания на дисплее будут стремиться к бесконечности. Таким методом тестируют не только провода, но и тумблер. Ремонт выключателя заключается в его замене либо зачистке контактов, если он разборный.
  • Тестирование трансформатора проще всего произвести, включив прибор в розетку, хоть это и опасно. Не касаясь оголенных контактов, следует замерить напряжение на выводах вторичной обмотки. Мультиметр при этом должен находиться в режиме замера напряжения переменного тока. Если показания тестера меньше номинальных значений устройства либо равны нулю, понижающий трансформатор подлежит замене. Перематывать обмотку нецелесообразно и трудновыполнимо.
  • В случае, когда напряжение идет до выпрямительного блока, а затем исчезает либо становится меньше нужного, проблема в нем. Если этот участок заключен в литом корпусе, его заменяют аналогичной деталью, так как отремонтировать его невозможно. Отдельно стоящие диоды прозванивают, как провода. Причем полярность подключения щупов следует менять, делая замеры в обоих вариантах. В одном случае сопротивление должно быть минимальным, во втором – стремящимся к бесконечности. Иначе этот компонент схемы подлежит замене.
  • Вздувшиеся конденсаторы обычно видны невооруженным взглядом. Однако без причины они вздуваются крайне редко. Проверяют их работоспособность, отпаяв одну из ножек и не путая полярность. Минус часто указан на корпусе конденсатора «птичкой». Замену производят аккуратно, не допуская перегрева детали паяльником.
  • Дефект выходных контактов также определяется визуально, а устраняется путем зачистки мелкой наждачной бумагой.

В случае, когда подтверждена работоспособность всех элементов, но заряд не идет, проблема заключена в блоке автоматического управления. Его элементы заменяют, начиная со стабилитрона, который проверяется так же, как диод. Микросхему без специальных знаний не проверить, но можно заменить.

Обратите внимание: часто цена потраченного времени, нервов и запасных частей превышает стоимость ремонтируемого прибора. А если устройство не на гарантии, проблема не в предохранителе, следует задуматься о ремонте в мастерской либо замене аппарата.

Источник

Оцените статью