Какие полимерные материалы применяются при ремонте
Полимерные материалы при ремонте машин применяются для восстановления размеров изношенных деталей, заделки трещин и пробоин, упрочнения резьбовых соединений и неподвижных посадок, антикоррозионной защиты, склеивания деталей и материалов, а также для изготовления деталей. Для этих целей наиболее часто применяются полиамидные смолы в виде гранул с белым или просвечивающим желтым оттенком (капроновый порошок). Они отличаются от других полимеров малым коэффициентом трения, значительной термоста-, бильностью, хорошей прорабатываемостью, высокой антикоррозионной и химической стойкостью, безвредны для работающих.
Полимерные материалы применяют как в чистом виде (полиэтилен, полистирол, капрон, полипропилен), так и в виде пластмасс. Для образования пластмасс к полимерному материалу добавляют ряд компонентов: наполнители (стеклянное волокно, асбест, цемент, металлические порошки), улучшающие физико-механические свойства пластмасс; пластификаторы (дибутилфталат, диакрилфталат, жидкий тиокол и другие), улучшающие пластичность и эластичность пластмасс; отвердители (полиэтиленполиамин и др.) для отвердения (полимеризации) пластмасс.
Нанесение полимерных покрытий с целью восстановления изношенных деталей имеет ряд преимуществ перед другими способами. Невысокая температура нагрева деталей (250…320 °С) перед нанесением покрытия не изменяет структуру металла. Полимерными покрытиями можно восстанавливать детали с большим износом (1… 1,2 мм), тогда как при хромировании восстанавливают детали с износом не более 0,5 мм. Покрытие, как правило, не нуждается в механической обработке, так как имеет чистую глянцевую поверхность и незначительную разницу в толщине слоя.
Рекламные предложения на основе ваших интересов:
Основные операции восстановления деталей полимерными материалами включают подготовку деталей к восстановлению, нанесение покрытия, термическую обработку и контроль.
Подготовка детали к восстановлению заключается в изоляции мест, не подлежащих покрытию, и создании условий, обеспечивающих хорошую адгезию (прилипание) полимерного покрытия с металлом. Изоляцию производят алюминиевой либо латунной фольгой или жидким стеклом с мелом. Места же, подлежащие покрытию, обрабатывают абразивной крошкой или крошкой отбеленного чугуна и обезжиривают ацетоном или бензином.
В ремонтной практике применяется несколько способов нанесения полимерных покрытий на металлические поверхности. Наиболее распространены газопламенный, вихревый и вибрационный.
При газопламенном способе используют факел ацетиленового пламени. Струя воздуха с частицами полимерного порошка продувается через этот факел. Порошок расплавляется и, попадая на предварительно нагретую до температуры 2Ю…260 °С (в зависимости от марки применяемого порошка) поверхность детали, сращивается с ней, образуя наплавленный слой. После нанесения покрытия требуемой толщины подачу порошка прекращают и дополнительно прогревают деталь для того, чтобы сделать слой более ровным и плотным. Газопламенное напыление удобно применять для покрытия крупных деталей, используя установки УПН -4Л, УПН -6-63. Толщина покрытия практически не ограничена.
Покрытие металлических деталей полимерными материалами вихревым способом проводится на установках типа А-67М. Подготовленные детали нагревают в термопечи либо газовыми горелками до температуры 280… 300 °С и помещают в камеру установки. На высоте 50…100 мм от днища установки укреплена пористая перегородка, на которую насыпают порошкообразный слой капрона толщиной не менее 100 мм. Для изготовления пористой перегородки используют стеклоткань, керамику, войлок.
Через перегородку в камеру подается сжатый воздух, азот или углекислый газ под давлением 0,1…0,2 МПа. Частицы порошка равномерно покрывают деталь, плавятся и образуют равномерное покрытие. Напыление длится 8…10 с, во время напыления детали сообщается возвратно-поступательное движение. Чтобы получить требуемую толщину наносимого слоя, каждую деталь необходимо погружать в камеру несколько раз. После каждого погружения ее извлекают, чтобы порошок оплавился, и вслед за этим помещают в камеру установки вторично. Охлаждение восстановленной детали производят на воздухе, в воде или в минеральном масле при комнатной температуре.
Вибрационный способ напыления основан на свойстве сыпучих материалов течь под воздействием колебания, В вибрационной установке якорь и днище вибрируют с частотой 50 Гц. При этом происходят разрыхление и переход порошка капрона в псевдосжиженное состояние. Нагретую деталь, так же как и в вихревом способе, погружают в слой порошка и извлекают для его оплавления. Повторением этих операций обеспечивают требуемую толщину полимерного покрытия.
При быстром охлаждении расплавленного полиамида он затвердевает в виде прозрачной массы, обладающей пониженной износостойкостью. Поэтому охлаждать изделие и нанесенное на его поверхность полимерное покрытие следует медленно. При этом происходит его помрнение и образование более или менее крупных кристаллов. Такой хорошо кристаллизованный полиамид более тверд, чем прозрачный, а следовательно, и более износостоек.
Меньшее распространение получил струйный беспламенный метод напыления пластмасс, который заключается в том, что распыление порошка производится пистолетом-распылителем без нагрева порошка на предварительно подготовленную и нагретую поверхность. Детали, подлежащие восстановлению, после подготовки поверхности (обезжиривание, накатка, химическая очистка и травление, промывка) укладываются в алюминиевую оправку. На электропечи оправка вместе с деталями нагревается до температуры 240 °С, после чего пистолетом-распылителем с помощью подогретого сжатого воздуха порошок наносится на поверхность деталей. Частицы порошка расплавляются и образуют сплошное покрытие. В качестве пистолета-распылителя используют распылители, применяемые для окрасочных работ.
Недостатком этого способа является значительная потеря порошковых материалов при напылении и загрязнение воздуха.
Методом литья под давлением термопластичных материалов в ремонтной практике восстанавливают и изготовляют детали. Данный метод основан на выдавливании из обогревательного цилиндра литьевой машины разогретой пластмассы в гнездо сомкнутой пресс-формы. Литье под давлением проводится на термопластавтоматах ДБ-3329, литьевых машинах ПЛ-71 и др. Изношенная поверхность детали предварительно протачивается, чтобы слой пластмассы был не менее 0,5 мм на сторону. Если возможно, йа детали протачивают канавки, делают сверления.
Подготовленную деталь устанавливают в разогретую пресс-форму, имеющую номинальные размеры восстанавливаемой детали, и нагнетают в нее разогретую пластмассу под давлением 15…125 МПа. Деталь должна быть нагрета до температуры 230…290 °С. Наиболее распространенные термопластичные материалы, применяемые для восстановления деталей литьем под давлением,— капрон (поликапролактам) марки Б, смолы П-68, П-54, АК-7, отходы капрона.
Для улучшения качества полимерного покрытия рекомендуется последующая термическая обработка, например выдержка в течение 2 ч в масле при температуре 100…120 °С с дальнейшим охлаждением вместе с маслом.
Полимерные материалы, имеющие наибольшее применение при ремонте кузовов, условно делят на две группы: клеи и пластмассы.
Клеи предназначены для создания из различных материалов неразъемных соединений. Наиболее часто при ремонте кузовов и их деталей применяют следующие клеи:
— БФ-2 и БФ-4 — для склеивания металлических и неметаллических материалов, эксплуатирующихся при температуре от—60 до 60 °С;
— ФЛ-4С — для герметизации пространства между швами в клеесварных соединениях из стали, алюминиевых и других сплавов, а также для склеивания металлов и неметаллических материалов;
— 88-Н — для приклеивания холодным способом резины к металлам, стеклу и другим материалам, а также для склеивания резины с резиной;
— 88-НП-35, 88-НП-43, 88-НП-130 холодного отверждения — для крепления различных материалов к окрашенному металлу, стеклу при сборке кузовов автомобилей ВАЗ .
Детали из органического стекла склеивают путем размягчения склеиваемых поверхностей дихлорэтаном. В качестве клея можно применять раствор, состоящий из 2…3% опилок органического стекла, растворенных в муравьиной кислоте или дихлорэтане. Для предотвращения быстрого испарения и загустения клея его хранят в закрытом сосуде при температуре 18…20 °С. Для получения рабочей вязкости загустевшего клея (концентрированный сироп) его разбавляют дихлорэтаном.
Эпоксидные клеи универсальны, приготовление и применение их несложно, и они не требуют давления при склеивании. При ремонте кузовов используют эпоксидные клеевые композиции, свойства которых зависят от их состава. Эпоксидные композиции изготовляют из составных частей, чаще всего из эпоксидной смолы ЭД-16 или ЭД-20, пластификатора-дибутилфталата, наполнителя и отвердителя. Эпоксидные смолы в полимерных композициях являются связующими, пластификаторы уменьшают хрупкость, увеличивают эластичность отвержденных эпоксидных смол, наполнители увеличивают теплопроводность, повышают коэффициент линейного расширения и снижают усадку смолы. Поэтому наполнители влияют на физико-механические и технологические свойства компаунда. В качестве наполнителей применяют слюдяную пыль, измельченный асбест, стальной или чугунный порошок и другие. Вид и количество отвердителя определяют скорость и степень изменения физического состояния композиции. Для заделки вмятин в кузовах и оперении обычно используют в качестве отвердителя полиэтиленполиамин или гексаметилендиамин, при которых отверждение композиции происходит без подогрева в нормальных температурных условиях.
Пластмассы используют для нанесения покрытий, заделки вмятин и сварных швов в кузовах. Термостойкая масса ТПФ -37 в виде термопорошка состоит из поливинилбутиральной смолы, полиэтилена, фенолформальдегидной смолы, наполнителя и стабилизатора. Термопорошок наносят на поверхности кузова газопламенным напылением.
Источник
Ремонт полимерными материалами
Полимерные материалы при ремонте машин применяются для восстановления размеров изношенных деталей, заделки трещин и пробоин, упрочнения резьбовых соединений и неподвижных посадок, антикоррозионной защиты, склеивания деталей и материалов, а также для изготовления деталей. Для этих целей наиболее часто применяются полиамидные смолы в виде гранул с белым или просвечивающим желтым оттенком (капроновый порошок). Они отличаются от других полимеров малым коэффициентом трения, значительной термоста-, бильностью, хорошей прорабатываемостью, высокой антикоррозионной и химической стойкостью, безвредны для работающих.
Полимерные материалы применяют как в чистом виде (полиэтилен, полистирол, капрон, полипропилен), так и в виде пластмасс. Для образования пластмасс к полимерному материалу добавляют ряд компонентов: наполнители (стеклянное волокно, асбест, цемент, металлические порошки), улучшающие физико-механические свойства пластмасс; пластификаторы (дибутилфталат, диакрилфталат, жидкий тиокол и другие), улучшающие пластичность и эластичность пластмасс; отвердители (полиэтиленполиамин и др.) для отвердения (полимеризации) пластмасс.
Нанесение полимерных покрытий с целью восстановления изношенных деталей имеет ряд преимуществ перед другими способами. Невысокая температура нагрева деталей (250…320 °С) перед нанесением покрытия не изменяет структуру металла. Полимерными покрытиями можно восстанавливать детали с большим износом (1… 1,2 мм), тогда как при хромировании восстанавливают детали с износом не более 0,5 мм. Покрытие, как правило, не нуждается в механической обработке, так как имеет чистую глянцевую поверхность и незначительную разницу в толщине слоя.
В ремонтной практике применяется несколько способов нанесения полимерных покрытий на металлические поверхности. Наиболее распространены газопламенный, вихревый и вибрационный.
При газопламенном способе используют факел ацетиленового пламени. Струя воздуха с частицами полимерного порошка продувается через этот факел. Порошок расплавляется и, попадая на предварительно нагретую до температуры 2Ю…260 °С (в зависимости от марки применяемого порошка) поверхность детали, сращивается с ней, образуя наплавленный слой. После нанесения покрытия требуемой толщины подачу порошка прекращают и дополнительно прогревают деталь для того, чтобы сделать слой более ровным и плотным. Газопламенное напыление удобно применять для покрытия крупных деталей, используя установки УПН-4Л, УПН-6-63. Толщина покрытия практически не ограничена.
Вибрационный способ напыления основан на свойстве сыпучих материалов течь под воздействием колебания, В вибрационной установке якорь и днище вибрируют с частотой 50 Гц. При этом происходят разрыхление и переход порошка капрона в псевдосжиженное состояние. Нагретую деталь, так же как и в вихревом способе, погружают в слой порошка и извлекают для его оплавления. Повторением этих операций обеспечивают требуемую толщину полимерного покрытия.
Меньшее распространение получил струйный беспламенный метод напыления пластмасс, который заключается в том, что распыление порошка производится пистолетом-распылителем без нагрева порошка на предварительно подготовленную и нагретую поверхность. Детали, подлежащие восстановлению, после подготовки поверхности (обезжиривание, накатка, химическая очистка и травление, промывка) укладываются в алюминиевую оправку. На электропечи оправка вместе с деталями нагревается до температуры 240 °С, после чего пистолетом-распылителем с помощью подогретого сжатого воздуха порошок наносится на поверхность деталей. Частицы порошка расплавляются и образуют сплошное покрытие. В качестве пистолета-распылителя используют распылители, применяемые для окрасочных работ.
Недостатком этого способа является значительная потеря порошковых материалов при напылении и загрязнение воздуха.
Методом литья под давлением термопластичных материалов в ремонтной практике восстанавливают и изготовляют детали. Данный метод основан на выдавливании из обогревательного цилиндра литьевой машины разогретой пластмассы в гнездо сомкнутой пресс-формы. Литье под давлением проводится на термопластавтоматах ДБ-3329, литьевых машинах ПЛ-71 и др. Изношенная поверхность детали предварительно протачивается, чтобы слой пластмассы был не менее 0,5 мм на сторону. Если возможно, детали протачивают канавки, делают сверления.
Упрочнение деталей
Термические методы упрочнения деталей
Термическому упрочнению подлежат детали, изготавливаемые из стали, чугуна и сплавов цветных металлов. Термообработка осуществляется путём отжига, нормализации, закалки и отпуска. (Детально эти виды обработки изучаются в курсе технологии металлов.) Из всех методов отжига: полного, неполного, диффузионного, низкого и рекристаллизационного в ремонтной практике применяется в основном: полный отжиг
(нагрев до t° на 30-50° С выше критической точки по диаграмме состояний «железо-углерод», выдержка и последующее медленное охлаждение в печи, горячем песке или пепле) для стальных отливок, сварных конструкций, поковок, штамповок и проката при повышенных требованиях к механическим свойствам и микроструктуре металла);
Этот метод обработки поверхности детали изменяет химический состав металла путём насыщения его элементами, улучшающими механические свойства. Такую обработку проводят в соляных ваннах, в газовых и твердых средах.
Сущесгвует несколько методов химико-термического упрочнения.
Цементация является процессом насыщения поверхности детали углеродом для обеспечения возможности её закалки. Цементацию осуществляют твердым карбюризатором (смесь мелких зерен древесного угля – 85% и одной из углекислых солей бария, натрия и калия – 15%); жидкостью (в соляных ваннах) или газом (природным или полученным путём разложения бензола, нитробензола или керосина.)
Цементацию применяют при ремонте зубьев шестерён; облицовочных пластин прессформ прессов сухого прессования керамических изделий; пальцев дезинтеграторов и т.п.
Покрытие поверхностей трения износостойкими материалами
К этому виду обработки относятся: наплавка, напыление, электроискровое упрочнение и электролитическое наращивание металла.
Наплавка является разновидностью сварки и ее часто применяют при ремонтных работах для деталей, подверженных образивному износу. Стойкие к износу наплавки представляет собой твердые зёрна (карбиды), вкраплённые в менее твердую, но более вязкую основу. Наплавку осуществляют стержневыми, трубчатыми, ячейковыми электродами, а также порошковыми и сплошными твердыми сплавами и пастами.
Напылением могут наноситься покрытия из металла, пластмасс, резины.
Металлизация напылением. Достоинства: при этом не изменяется структура основного материала, остающегося холодным; толщина слоя до 10-15 мм, это важно при восстановл. деталей с большим износом. Недостаток- малая прочность соединения с пов-тью и большая трудоемкость.
Напыление полимерами – эти покрытия имеют высокие антифрикционные свойства.
Гуммирование – покрытие деталей резиной. Применяется для деталей, работающих в образивных или агрессивных средах (роликов транспортёров), срок службы которых вместо 5-6 месяцев возрастает до 5 лет.
Электроискровое упрочнение. Основан на явлении электроискрового разряда в цепи выпрямленного и пульсирующего тока.
Существует два осн. вида электроискровой обработки:
1. Электроискровое упрочнение поверхности детали хромом графитом или разными сплавами.
2. Размерная обработка деталей: прошивка отверстий различной формы в крупных деталях, крупногабаритных валах (шпоночные канавки и т.д.) за счёт эрозии (разрушения) металла электрическим током.
Электролитическое (гальваническое) наращивание металла.
К электролитическим методам покрытия деталей относятся осаждение сплавов, хромирование, железнение, никелирование, меднение, цинкование и т.д. Максимальная толщина покрытия при хромировании 0.2-0.3 мм, а при железнении 2-3 мм. Объясняется это тем, что железо осаждается в 10-20 раз быстрее чем хром.
прочнение деталей поверхностным пластическим деформированием
Этот вид упрочнения резко повышает усталостную прочность деталей и уничтожает чувствительность высокопрочных сталей к поверхностным концентраторам напряжений путём пластической деформации поверхностных слоев, что создаёт в них высокие напряжения сжатия и повышает предел выносливости поверхностных слоев.
Зона увеличения твердости проникает на глубину 0.1-3 мм.
Долговечность деталей повышается в 1.5–2 раза.
При ремонтных работах в качестве основных методов упрочнения деталей поверхностной пластической деформацией применяют обкатку и дробеструйное упрочнение.
Обкатка осуществляется стальными роликами. Скорость подачи роликов 0.2-0.8 мм за один оборот. Кол-во проходов не более 3-4, чтобы не допустить перенаклёпа.
Источник