Курсовая работа по ремонту коленвала

Курсовая работа: Ремонт коленчатого вала двигателя ЗИЛ-130

Понятие «автомобиль» включает в себя легковой, грузовой автомобиль и автобус. Несмотря на ряд принципиальных конструктивных различий, между ними имеется много общего: двигатель внутреннего сгорания, несущая система с подвеской и шинами, органы управления, тормозящая система. На автомобильных заводах конечным продуктом производства могут быть как автомобили в сборке, так и отдельные их составные части (двигатели, задние мосты, топливная аппаратура и т.п.), включающие в себя большое число деталей, узлов, механизмов и систем.

Двигатели, установленные на большинстве автотранспортных средств, называются двигателями внутреннего сгорания, потому что процесс сгорания топлива с выделением теплоты и превращение ее в механическую работу происходит непосредственно в его цилиндрах.

Эти двигатели классифицируются

по способу смесеобразования — на двигатели с внешним смесеобразованием (карбюраторные и газовые), у которых горючая смесь приготовляется вне цилиндров, и двигатели с внутренним смесеобразованием (дизели), у которых рабочая смесь образуется внутри цилиндров;

по способу выполнения рабочего цикла — на четырех- и двухтактные;

по числу цилиндров — на одно-, двух- и многоцилиндровые;

по расположению цилиндров — на двигатели с вертикальным или наклонным расположением цилиндров в один ряд и на V-образные двигатели с расположением цилиндров под углом (при расположении цилиндров под углом 180° двигатель называется с противолежащими цилиндрами, или оппозитным);

по способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;

по виду применяемого топлива — на бензиновые (карбюраторные), дизельные, газовые и многотопливные.

В зависимости от вида применяемого топлива, способы воспламенения рабочей смеси в двигателях различны.

Блок цилиндров отливается из серого чугуна (у двигателей автомобилей семейства ЗИЛ, КамАЗ, МАЗ и ВАЗ) или из алюминиевого сплава (у двигателей автомобилей ГАЗ-2410 «Волга», «Москвич» — 2140).

У дизелей КамАЗ на зеркало цилиндров наносят мелкую (ромбовидную) сетку для лучшего удержания смазочного материала.

Двигатели с рядным расположением цилиндров имеют одну общую головку цилиндров, двигатели с V- образным расположением цилиндров — две (двигатели ЗИЛ -130, ГАЗ — 53-11) или четыре на каждые три цилиндра (двигатель ЯМЗ-240). У двигателей автомобилей КамАЗ каждый цилиндр снабжен отдельной головкой цилиндра.

Нижнюю головку, как правило, делают разъемной в плоскости, перпендикулярной к оси шатуна. В тех случаях, когда нижняя головка имеет значительные размеры и превышает диаметр цилиндра (у дизелей ЯМЗ), плоскость разъема головки делают под углом (косой срез), что позволяет уменьшить радиус окружности, описываемой нижней частью шатуна.

На крышке и стержне шатуна дизеля КамАЗ-740 метки выбивают в виде трехзначных номеров. Кроме того, на крышке шатуна выбивают порядковый номер цилиндра. Так, у двигателя ЗИЛ-130 метка на днище поршня должна быть направлена к передней части двигателя. При этом метка на шатуне для левого ряда цилиндров должна быть направлена в одну сторону с меткой на поршне, а метка на шатуне для правого ряда цилиндров должна быть направлена в противоположную сторону относительно метки на поршне.

1. Технологическая часть

1.1 Назначение, устройство и условия работы детали

Коленчатый вал — деталь (или узел деталей в случае составного вала) сложной формы, имеющая шейки для крепления шатунов, от которых воспринимает усилия и преобразует их в крутящий момент. Составная часть кривошипно-шатунного механизма (КШМ).

· Коренная шейка — опора вала, лежащая в коренном подшипнике, размещённом в картере двигателя.

· Шатунная шейка — опора, при помощи которой вал связывается с шатунами (для смазки шатунных подшипников имеются масляные каналы).

· Щёки — связывают коренные и шатунные шейки.

· Передняя выходная часть вала (носок) — часть вала на котором крепится зубчатое колесо или шкив отбора мощности для привода газораспределительного механизма (ГРМ) и различных вспомогательных узлов, систем и агрегатов.

· Задняя выходная часть вала (хвостовик) — часть вала соединяющаяся с маховиком или массивной шестернёй отбора основной части мощности.

· Противовесы — обеспечивают разгрузку коренных подшипников от центробежных сил инерции первого порядка неуравновешенных масс кривошипа и нижней части шатуна.

Большинство современных коленвалов изготавливают литьём из высокопрочного чугуна. Реже, если нужна большая прочность, в дизельных и некоторых мощных бензиновых двигателях применяют стальные, кованые валы.

Двигатели опытного образца, изготовляемые штучно, имеют коленчатые валы, выточенные на станке из стальной болванки, так как, несмотря на высокую стоимость такого способа производства, это обходится существенно дешевле, чем организация отливки или ковки под малую серию производства.

Полученная тем или иным способом заготовка проходит механическую обработку до номинальных размеров, после чего подвергается дополнительному упрочнению. Поверхности шеек коленчатого вала обрабатываются с помощью химического упрочнения при нагреве, а края шеек скругляются, чтобы повысить прочность и сопротивление усталостному разрушению.

Коленчатый вал воспринимает силу давления газов на поршень и силы инерции возвратно-поступательно движущихся масс кривошипно-шатунного механизма. Силы, передающиеся поршнями на коленчатый вал, создают крутящий момент, который при помощи трансмиссии передается на колеса автомобиля.

Коленчатый вал изготовляют штамповкой из легированных сталей или отливают из высокопрочных чугунов.

Коленчатый вал состоит из коренных и шатунных шеек, противовесов, заднего конца с отверстием для установки шарикоподшипника ведущего вала коробки передач и фланца для крепления маховика, переднего конца, на котором установлен хроповик пусковой рукоятки и шестерня газораспределения, шкива привода вентилятора, жидкостного насоса и генератора.

1.2 Характерные дефекты детали

Основные дефекты коленчатого вала.

2. Износ наружной поверхности фланца.

3. Биение торцевой поверхности фланца.

4. Износ маслосгонных канавок.

5. Износ отверстия под подшипник.

6. Износ отверстий под болты крепления маховика.

7. Износ коренных или шатунных шеек.

8. Износ шейки под шестерню и ступицу шкива.

9. Износ шпоночной канавки по ширине.

10. Увеличение длины передней коренной шейки.

11. Увеличение длины шатунных шеек.

1.3 Способы устранения дефектов

Изгиб коленчатого вала устраняют правкой на прессе.

Вал устанавливают на призму крайними коренными шейками и, обеспечивая передачу усилия на среднюю шейку, перегибают в противоположную сторону, превышающую прогиб примерно в 10 раз. Допустимая радиальное биение без ремонта 0,05 мм.

Чугунные коленчатые валы правят методом наклепа. После определения биения шеек вал устанавливают так, чтобы внутренняя поверхность шейки с задирами была обращена вверх, и затем специальной оправкой (типа тупого зубила), направленной в галтель шейки, при помощи пневматического молотка, наклепывают галтели с перекрытием образующихся лунок, периодически проверяя индикатором вал на биение, доводя его до значения 0,05…0,08 мм. Время на правку этим способом 10…15 мин.

Признаки: стук коленчатого вала.

Причины: вызывается либо недостаточными давлением и подачей масла, либо недопустимо увеличившимися зазорами между шейками коленчатого вала и вкладышами коренных и шатунных подшипников из-за изнашивания этих деталей

— По нашей статистике, типичная неисправность — «припаянный» вкладыш к коленвалу; причем для легкового транспорта вкладыш изнашивается и «задирает» коленвал, а для грузового, где нагрузки намного значительнее, вкладыш сразу «прилипает» и уже проворачивается в постеле блока. Если в процентном соотношении, то порядка 80 процентов дефектов составляет проворот вкладыша и задир вала, остальные — естественный износ двигателя, выработавшего свой ресурс. Встречаются, конечно, и «эксклюзивные» причины разрушения вала — такие как лопнувший вал, — но при внимательном рассмотрении выявляется, что ранее вал уже ремонтировался, и были незамечены более глубокие повреждения. Что касается степени износа, то отрадно констатировать, что за последние 6 лет уровень технической грамотности автовладельцев заметно возрос, и выходящих из ряда вон случаев, например, вал с изношенной шейкой на 2-3 мм, практически не появляется. Хотя, с другой стороны, таких цен на ремонт, как в начале 90-х, сейчас нет — они упали ориентировочно процентов на 70. Например, если тогда ремонт двигателя малотоннажного грузовика-«Мерседеса» с двигателем ОМ 366 стоил чуть менее трети от стоимости подержанного автомобиля, то теперь ремонт коленвала обходится в 40-50 процентов от стоимости этой же новой детали.

— Основная технология ремонта — шлифовка в ремонтный размер и проверка на изгиб. Его правкой, наваркой и напылением занимаемся реже, когда уже больше ничего предпринять нельзя, своеобразный вариант «спасения умирающего». Причина проста: для последних вариантов характерны нерегламентные разрушения. Определить, где какие внутренние трещины возникли, — достаточно трудоемкая и дорогая задача, порой сравнимая со стоимостью вала. Произвести дефектацию на столичных предприятиях, имеющих соответствующее оборудование, по приемлемой цене реально лишь в детали размером 10×10 см. Когда деталь по размерам больше, стоимость резко возрастает, и дешевле оказывается купить новый коленвал.

1.4 Технологическое оборудование, технологическая оснастка

Диаметры шеек коленчатого вала: коренных 95±0.011 мм. шатунных 80±0,0095 мм. Для восстановления двигателя предусмотрены восемь ремонтных размеров вкладышей.

Вкладыши 7405.1005170 Р0.7405.1005171 Р0.7405.1005058 РО применяются при восстановлении двигателя без шлифовки коленчатого вала. При необходимости шейки коленчатого вала заполировываются. Допуски на диаметры шеек коленчатого вала, отверстий в блоке цилиндров и отверстий в нижней головке шатуна при проведении ремонта двигателя должны быть такими же, как у номинальных размеров новых двигателей. Коренные и шатунные подшипники изготовлены из стальной ленты покрытой слоем свинцовистой бронзы толщиной 0.3 мм, слоем свинцовооловянистого сплава толщиной 0.022 мм и слоем олова толщиной 0.003 мм. Верхние 3 (рис. 2) и нижние 4 вкладыши коренных подшипников не взаимозаменяемы. В верхнем вкладыше имеется отверстие для подвода масла и канавка для его распределения. Оба вкладыша 4 нижней головки шатуна взаимозаменяемы. От проворачивания и бокового смещения вкладыши фиксируются выступами (усами), входящими в пазы, предусмотренные в постелях блока, крышках подшипников и в постелях шатуна. Вкладыши имеют конструктивные отличия, направленные на повышение их работоспособности при форсировке двигателя турбонаддувом, при этом изменена маркировка вкладышей на 7405.1004058 (шатунные), 7405.1005170 и 7405.1005171 (коренные). Поэтому при проведении ремонтного обслуживания не рекомендуется замена вкладышей на серийные с маркировкой 740.100. так как при этом произойдет существенное сокращение ресурса двигателя.

Читайте также:  Ремонт принтер epson r220

Крышки коренных подшипников (рис. 4) изготовлены из высокопрочного чугуна марки ВЧ50. Крепление крышек осуществляется с помощью вертикальных и горизонтальных стяжных болтов 3, 4, 5, которые затягиваются по определенной схеме регламентированным моментом.

Коленчатый вал (рис. 1) изготовлен из высококачественной стали и имеет пять коренных и четыре шатунные шейки, закаленных ТВЧ, которые связаны между собой щеками и сопрягаются с ними переходными галтелями. Для равномерного чередования рабочих ходов расположение шатунных шеек коленчатого вала выполнено под углом 90°.

К каждой шатунной шейке присоединяются два шатуна: один для правого и один для левого рядов цилиндров (рис. 2).

Подвод масла к шатунным шейкам производится от отверстий в коренных шейках 10 прямыми отверстиями 11 [3, с. 27].

Для уравновешивания сил инерции и уменьшения вибраций коленчатый вал имеет шесть противовесов, отштампованных заодно со щеками коленчатого вала. Кроме основных противовесов, имеются два дополнительных съемных противовеса 1 и 2. напрессованных на вал, при этом их угловое расположение относительно коленчатого вала определяется шпонками 5 и 6 (рис. 1).

В расточку хвостовика коленчатого вала запрессован шариковый подшипник 5 (рис. 2).

2 Разработка приспособления

Обосновать необходимость разработки приспособлений и привести требования к ней.

Для снятия штамповочных заглушек применяют приспособление для разборки коленчатого вала для снятия штамповочных заглушек.

2.2 Аналоги приспособлений

Приспособления для разборки коленчатого вала.

А) для снятия легкосъёмных заглушек;

Б) для извлечения шкива.

2.3 Конструкция приспособлений

Штамповочную заглушку первой шатунной шейки выпресовывают в два этапа.

Сначала оправкой 3, сдвигают заглушку внутрь канала, после чего противоположной стороны устанавливают оправку, с помощью которой выталкивают заглушку из канала.

Работать разрешается только на технически исправных станках с соответствующими приспособлениями и оградительными устройствами. Станки должны приводиться в действие и обслуживаться только теми лицами, за которыми они закреплены.

Помещение и рабочие места станочников должны содержаться в чистоте, хорошо освещаться и не изделиями и материалами. Удаление стружки со станка должно производиться соответствующими приспособлениями (крючками, щетками).

Во время работы станка запрещается снимать, ставить и открывать ограждения, сидеть на станках, облокачиваться, передавать через них изделия, а также класть на них инструменты и изделия.

1. Коробейник А.В. “ Ремонт автомобилей” 2004 г.

2. Рогозин В.К. “ Ремонт двигателей “ 1978 г.

3. Румянцев С.И. “ Ремонт автомобилей “ 1988 г.

Источник

Курсовая работа: Разработка технологического процесса восстановления коленчатого вала компрессора КаМАЗ

Министерство образования и науки Российской Федерации

Федеральное государственное образовательное учреждение

среднего профессионального образования

«ИЖЕВСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»

к курсовому проекту КП-Т41.190604-ПЗ

Специальность 190604 «Ремонт автомобилей и двигателей»

Тема проекта: «Разработка технологического процесса

восстановления коленчатого вала компрессора КаМАЗ»

4 курс, ТОРА-41 Иванов С.Д.

2. Описание детали, условия работы коленчатого вала

3. Дефектация деталей

4. Обоснование способа восстановления детали

5. План технологических операций на устранение дефекта

6. Расчеты режимов резания и нормы времени по операциям

7. Расчет приспособления

8. Проект производственного участка

9. Список литературы

В процессе эксплуатации автомобиля в результате воздействия на него целого ряда факторов (воздействие нагрузок, вибраций, влаги, воздушных потоков, абразивных частиц при попадании на автомобиль пыли и грязи, температурных воздействий и т. п.) происходит необратимое ухудшение его технического состояния, связанное с изнашиванием и повреждением его деталей, а также изменением ряда их свойств (упругости, пластичности и др.).

Изменение технического состояния автомобиля обусловлено работой его узлов и механизмов, воздействием внешних условий и хранения автомобиля, а также случайными факторами. К случайным факторам относятся скрытые дефекты деталей автомобиля, перегрузки конструкции и т. п. Основными постоянно действующими причинами изменения технического состояния автомобиля при его эксплуатации является изнашивание, пластические деформации, усталостные разрушения, коррозия, а также физико-химические изменения материала деталей (старение).

Восстановление изношенных и поврежденных деталей является важным резервом экономии трудовых и материальных ресурсов. Стоимость восстановления деталей значительно ниже стоимости их изготовления. Так, например, при производстве автомобильных деталей расходы на материалы и изготовление заготовок (отливок, поковок, штамповок) составляют 70. 75 % их стоимости, а при восстановлении деталей в зависимости от способа восстановления эти затраты составляют 6. 8 %, так как заготовкой является сама деталь и при этом обрабатываются только те поверхности, которые имеют дефекты. Затраты на восстановление деталей в зависимости от их конструктивных особенностей и степени изношенности составляют 10. 50 % стоимости новых деталей. При этом чем сложнее деталь и, следовательно чем дороже она в изготовлении, тем ниже относительные затраты на ее восстановление.

Восстановление деталей является крупным резервом обеспечения автомобильной техники запасными частями, расходы на которые в настоящее время составляют 40. 60 % себестоимости КР автомобилей. Расширение номенклатуры восстановления деталей позволяет уменьшить потребность в производстве запасных частей.

Повышение надежности отремонтированных автомобилей (агрегатов) зависит от качества восстановления деталей. В настоящее время авторемонтное производство располагает современными способами восстановления, обеспечивающими послеремонтные ресурсы деталей на уровне, близком к ресурсам новых. Для восстановления работоспособного состояния узлов и агрегатов необходимо восстановление первоначальной посадки в сопряжениях.

2. Описание детали, условия работы коленчатого вала

автомобиль коленчатый вал компрессор

Назначение и условия работы компрессора

Компрессор входит в состав пневматической тормозной системы автомобиля и предназначен для нагнетания воздуха в ресиверы, откуда через тормозной кран сжатый воздух подается к тормозным камерам колесных механизмов. Компрессор работает в жестком температурном режиме, который выражается в нагревании его как в процессе работы по сжиманию воздуха, так и со стороны работающего двигателя. Детали компрессора работают в условиях повышенного трения, воспринимают знакопеременные динамические нагрузки, нагрузки от сил давления воздуха при его сжатии. Также компрессор подвергается воздействию внешней агрессивной среды: пыли, влаги, и т.д.

Устройство автомобильного компрессора во многом подобно устройству двигателя (за исключением самого процесса внутреннего сгорания) и по аналогии с двигателем компрессор имеет шатунно-поршневой и клапанный механизмы, систему охлаждения, смазки и питания атмосферным воздухом, устройства привода и регулирования давления.

Шатунно-поршневой механизм компрессора включает следующие основные детали: один или несколько цилиндров; поршень с поршневыми кольцами и шатун, соединенные поршневым пальцем; коленчатый вал, подшипники которого установлены в картере компрессора.

Клапанный механизм состоит обычно из автоматических клапанов, перемещающихся под действием давления воздуха в цилиндре, и их пружин. В компрессорах обычно применяются плоские пластинчатые металлические клапаны: впускной и выпускной (нагнетательный). Седло впускного клапана бывает расположено в цилиндре или в головке, седло выпускного — в головке.

Все детали указанных механизмов компрессора, как правило, металлические: цилиндр изготавливается из чугуна; головка, картер, поршень — чугунные или алюминиевые; шатун — стальной или алюминиевый; коленчатый вал — стальной или чугунный; клапаны, их пружины и седла, поршневой палец — стальные.

Питание компрессора атмосферным воздухом обязательно производится с очисткой через фильтр. Для этой цели используется воздушный фильтр двигателя или собственный автономный фильтр компрессора.

Охлаждением компрессора решаются три задачи:

– улучшение параметров рабочего цикла и повышение производительности компрессора, так как снижение температуры воздуха в цилиндре повышает его наполнение;

– снижение термонагруженности деталей компрессора, находящихся в контакте с нагретым сжатым воздухом (цилиндр, поршень, головка цилиндров, клапаны и их пружины и т. п.), и тем самым повышение долговечности этих деталей;

– уменьшение температуры находящегося на стенках цилиндра смазочного масла, вследствие чего улучшаются физико-химические характеристики масла и предотвращается образование нагара.

Система охлаждения компрессора может быть воздушной, водяной или смешанной. В первом случае охлаждение наиболее нагреваемых деталей компрессора (цилиндра и головки) осуществляется за счет наличия на их поверхности большого числа ребер. Во втором случае головка и верхняя часть цилиндра имеют водяные рубашки, в которые подается вода от системы охлаждения двигателя. При смешанном охлаждении головка охлаждается водой, а цилиндр имеет ребра для воздушного охлаждения.

Эффективность водяного охлаждения значительно выше, чем воздушного. Вследствие этого поверхность теплоотдачи при воздушном охлаждении должна быть в 20-30 раз больше, чем при водяном. Так как достичь этого при существующих конструктивных ограничениях практически невозможно, нагрев компрессора с воздушным охлаждением на 20-50 °С выше, чем с водяным. Разница в температуре сжатого воздуха при этом достигает 35-70 °С.

Смазкой компрессора решаются следующие функции:

– уменьшение трения между движущимися деталями и тем самым снижение потребляемой компрессором мощности двигателя;

– уменьшение температуры деталей компрессора, что особенно важно для цилиндра, поршня и поршневых колец;

– повышение (за счет масляной пленки) уплотнения между поршнем и цилиндром;

– защита деталей компрессора от коррозии.

В автомобильном компрессоре имеются различные виды трущихся подвижных соединений. Для них используют смазку разбрызгиванием из масляной ванны в картере или принудительную смазку от системы смазки двигателя.

Для регулирования давления в приводе после повышения его до заданного уровня подача сжатого воздуха от компрессора отключается.

Ранее некоторое распространение имели компрессоры, не отключаемые совсем. У этих компрессоров степень сжатия была выбрана такой, что давление в цилиндре равнялось максимальному давлению в приводе и при его достижении подача сжатого воздуха в привод прекращалась (один и тот же объем воздуха многократно сжимается, «мнется» в цилиндре). В этом случае не было необходимости в регуляторе, но компрессор работал постоянно в режиме нагрузки, что значительно снижало его долговечность и увеличивало расходы на техническое обслуживание.

Компрессор автомобиля КамАЗ — двухцилиндровый, с рядным расположением цилиндров, питание атмосферным воздухом осуществляется от воздушного фильтра двигателя, охлаждение водяное, смазка принудительная от системы смазки двигателя, привод – шестеренный от распределительных шестерен двигателя. Компрессор установлен в развале цилиндров двигателя и крепится на переднем торце блока распределительных шестерен.

Компрессор имеет блок цилиндров 19, головку 17, крепящуюся к блоку с помощью восьми шпилек, и картер 9, закрытый снизу нижней крышкой 25, а сзади — крышкой 23. В картере 9 на двух шарикоподшипниках 8 вращается коленчатый вал 7. В переднем торце коленчатого вала установлен уплотнитель 4, поджимаемый пружиной 5 к штуцеру, по которому по трубке подводится масло от системы смазки двигателя под давлением 1-5 кгс/см . На коленчатом валу 7 установлены шатуны 11, связанные с поршнем 16 при помощи плавающих пальцев 14. От осевого перемещения пальцы в бобышках поршня фиксируются упорными кольцами. На головке поршня установлены два компрессионных кольца, на юбке одно маслосъемное. В верхней части блока 19 расположены седла пластинчатых впускных клапанов. Впускные клапаны толщиной 1 мм прижимаются к седлам пружинами и удерживаются от бокового смещения направляющими. В головке блока 17 установлены пластинчатые нагнетательные клапаны толщиной 1,4 мм, которые прижимаются к своим седлам пружинами.

Верхняя часть блока и головка компрессора имеют водяную рубашку и охлаждаются водой или антифризом, подводимыми к блоку из системы охлаждения двигателя.

Масло к шатунным подшипникам компрессора, имеющим сталебаббитовые съемные вкладыши, поступает через уплотнитель 4 по каналам, выполненным в щеках коленчатого вала 7. Коренные шарикоподшипники 8, поршневые пальцы 14 и стенки цилиндров смазываются разбрызгиванием. Избыток масла через сливное отверстие в нижней крышке картера 9 компрессора стекает по трубке в масляный картер двигателя.

Компрессор здесь не имеет разгрузочного устройства, его отключение происходит при открытии атмосферного клапана регулятора давления, который соединяет нагнетательную магистраль компрессора с атмосферой.

Основные требования к компрессорам — это достаточная производительность, а также минимальная потребляемая мощность, минимальное количество масла в сжатом воздухе, малые габариты и масса, бесшумность работы, достаточная долговечность и минимальная трудоемкость технического обслуживания.

Производительность компрессора (количество сжатого воздуха, подаваемое компрессором в тормозной привод за 1 мин и приведенное к атмосферному давлению) и потребляемая им мощность зависят от рабочего объема компрессора, давления в приводе и частоты коленчатого вала. Производительность компрессора прямо пропорциональна частоте коленчатого вала и обратно пропорциональна давлению в приводе, а потребляемая мощность прямо пропорциональна обоим этим параметрам. Следует отметить, что в практике эксплуатации компрессор проверяется обычно только на производительность. В качестве критерия оценки производительности применяется давление сжатого воздуха, создаваемое компрессором в сосуде, из которого воздух выпускается в атмосферу через тарированное отверстие (дроссель). Компрессор должен создавать в воздушном баллоне, имеющем сообщение с атмосферой через дроссель диаметром 1,6 мм и длиной 3 мм, давление не ниже 6 кгс/см .

Количество масла в воздухе, подаваемом компрессором, определяется следующим образом: на расстоянии 50 мм от торца выпускного штуцера устанавливается экран из бумаги, не поглощающей масло (например, калька). При частоте коленчатого вала, близкой к максимальной, определяется создаваемое на этом экране за 10 с масляное пятно. Его диаметр не должен превышать 20 мм.

При проверке компрессора не допускается наличие посторонних шумов, скрежета и других звуков, свидетельствующих о неисправности. Показателем нормальной работы компрессора является также маслопропускная способность — количество масла, проходящего через компрессор с принудительной смазкой. Для компрессора КамАЗ это количество не должно превышать 750 см /мин при давлении масла 5 кгс/см и температуре его 80 °С.

Коленчатый вал — деталь (или узел деталей в случае составного вала) сложной формы, имеющая шейки для крепления шатунов, от которых воспринимает усилия и преобразует их в крутящий момент. Составная часть кривошипно-шатунного механизма (КШМ).

Основные элементы коленчатого вала

Коренная шейка — опора вала, лежащая в коренном подшипнике, размещённом в картере двигателя.

Шатунная шейка — опора, при помощи которой вал связывается с шатунами (для смазки шатунных подшипников имеются масляные каналы).

Щёки — связывают коренные и шатунные шейки.

Передняя выходная часть вала (носок) — часть вала на которой крепится зубчатое колесо или шкив отбора мощности для привода газораспределительного механизма (ГРМ) и различных вспомогательных узлов, систем и агрегатов.

Задняя выходная часть вала (хвостовик) — часть вала соединяющаяся с маховиком или массивной шестернёй отбора основной части мощности.

Противовесы — обеспечивают разгрузку коренных подшипников от центробежных сил инерции первого порядка неуравновешенных масс кривошипа и нижней части шатуна.

Материал и способы получения заготовок для коленчатых валов

Коленчатые валы изготовляют из углеродистых, хромомарганцевых, хромоникельмолибденовых, и других сталей, а также из специальных высокопрочных чугунов. Наибольшее применение находят, стали марок 45, 45Х, 45Г2, 50Г, а для тяжело нагруженных коленчатых валов дизелей-40ХНМА, 18ХНВА и др.

Заготовки стальных коленчатых валов средних размеров в крупносерийном и массовом производстве изготовляют ковкой в закрытых штампах на молотах или прессах при этом процесс получения заготовки проходит несколько операций. После предварительной и окончательной ковки коленчатого вала в штампах производят обрезку облоя на обрезном прессе и горячую правку в штампе под молотом.

В связи с высокими требованиями механической прочности вала большое значение имеет расположение волокон материала при получении заготовки во избежание их перерезания при последующей механической обработке. Для этого применяют штампы со специальными гибочными ручьями. После штамповки перед механической обработкой, заготовки валов подвергают термической обработке — нормализация — и затем очистке от окалины травлением или обработкой на дробеметной машине.

Литые заготовки коленчатых валов изготовляют обычно из высокопрочного чугуна, модифицированного магнием. Полученные методом прецизионного литья (в оболочковых формах) валы по сравнению со “штампованными” имеют ряд преимуществ, в том числе высокий коэффициент использования металла. В литых заготовках можно получить ряд внутренних полостей при отливке.

Припуск на обработку шеек чугунных валов составляет не более 2,5 мм на сторону при отклонениях по 5-7-му классам точности. Меньшее колебание припуска и меньшая начальная неуравновешенность благоприятно сказываются на эксплуатации инструмента и “оборудования” особенно в автоматизированном производстве.

Коленчатые валы отливают в оболочковые формы в горизонтальном положении. Если в одной форме отливают два вала, заливку металла производят через общий литник.

Правку валов производят после нормализации в горячем состоянии в штампе на прессе после выемки заготовки из печи без дополнительного подогрева.

Характеристика условия работы коленчатых валов

Коленчатый вал испытывает большие нагрузки и подвергается скручиванию, изгибу и механическому изнашиванию Крутящий момент, развиваемый на коленчатом валу, передается на трансмиссию автомобиля, а также используется для привода в действие различных механизмов двигателя. Силы, действующие на коленчатый вал, складываются из сил давления газов и инерционных сил движущихся масс. Особенно большие силы возникают в момент выключения сцепления. Основными неисправностями валов являются износ опорных шеек из-за повреждения вкладышей или деформация — искривление вала из-за перегрева. В результате этого увеличиваются зазоры в подшипниках, в то время как условия смазки ухудшаются, естественный износ шеек наблюдается при больших нагрузках на двигатель автомобиля. Кроме износа шеек под подшипники коленчатые валы поступают в ремонт, имеют обычно износ резьбы под храповик-(в зависимости от конструкции вала), износы отверстий во фланце под болты крепления маховика, под установочные пальцы или направляющие шпильки, отверстия под шарикоподшипник ведущего вала. Все эти нагрузки и силы, действующие, на коленчатый вал приводят к проявлению дефектов и возникновению изнашивания.

На рисунке приведены виды изнашивания, способствующие разрушению поверхности коленчатых валов и других немаловажных деталей и агрегатов в автомобилях.

Процесс изнашивания деталей сопровождается сложными физико-химическими явлениями и многообразием влияющих на него факторов. В зависимости от материала и качества поверхности сопряженных деталей, характера контакта, нагрузки скорости относительно перемещения процесс изнашивания протекает различно. Ведущим процессом разрушения является механическое изнашивание, в которое входит абразивный и усталостный износ. Сопутствующими видами износа являются молекулярно — механический и коррозионно-механические износы со всеми своими разновидностями, которые в зависимости от условий работы влияют на износ и при определенных условиях могут стать ведущими процессами износа.

ГОСТ 16429-70 установлены три группы изнашивания в машинах: механическое, малекулярно-механическое и каррзионно-механическое. Рассмотрим механическое изнашивание и его подвиды, потому, что анализируемая нами деталь больше всего подвергается факторам присущих для механического износа. Из приведенных видов изнашивания коленчатым валам характерно абразивное изнашивание схватывание и коррозионно-механическое и усталостный износ. Например, абразивное изнашивание является подвидом механического износа. Абразивное изнашивание получается в результате режущего или царапающего действия твердых тел и частиц. При этом протекание изнашивания не зависит от проникновения абразивных частиц на поверхности трения. Изменение размеров деталей при абразивном изнашивании зависит от ряда факторов: материала и механического свойства деталей, режущих свойств абразивных частиц, удельного давления и скорости скольжения при трении. По своей природе и механизму протекание абразивного изнашивания близко подходит к явлениям, имеющим место при резании металлов, отличаясь специфическими особенностями- геометрией абразивных частиц и малым сечением стружки. Абразивное изнашивание широко распространено при трении деталей машин, особенно работающих в абразивной среде, а также при трении деталей, восстановленных различными способами наплавки, металлизация, хромирование, железнения. На разрушение поверхности коленчатого вала очень сильно влияет усталостное изнашивание, которое возникает при трении, качении, и отчетливо проявляется на рабочих плоскостях. Разрушение поверхностных слоев происходит вследствие возникших микроскопических трещин, которые по мере работы развиваются в одиночные и групповые трещины и впадины. Глубина трещин и впадин зависит от механических свойств металла деталей, величины удельных давлений при контакте и размера контактных поверхностей. Абразивному изнашиванию на коленчатых валах, прежде всего, подвергаются шатунные и коренные шейки и вкладыши подшипников скольжения. Также на износ поверхности коленчатого вала очень сильно влияет усталостный износ.

Усталостный износ- особый тип разрушения поверхности вызванный повторно действующими циклами напряжения, амплитудное значение которого не превышает предела упругости материала. При усталостном изнашивании трущихся деталей возникает микропластические деформации сжатия и упрочнения поверхностных слоев металла. В результате упрочнения возникают остаточные напряжения сжатия. Повторно-переменные нагрузки превышающие предел текучести металла при трении качения, вызывают явления усталости, разрушающие поверхностные слои. Разрушение поверхностных слоев происходит в следствии возникших микро и макроскопических трещин, которые по мере работы развиваются в одиночные и групповые углубления и впадины. Глубина трещин и впадин зависит от механических свойств металла деталей, величины удельных давлений при контакте и размера контактных поверхностей. Рассмотрим молекулярно-механическое и коррозионно-механическое изнашивание которые играют не маловажную роль при износе вала.

Молекулярно-механическое изнашивание в результате одновременного механического воздействия и молекулярных или атомарных сил. В число этого изнашивания относится изнашивание при заедании в результате схватывания глубинного вырывания материала, переноса его с одной поверхности трения на другую и воздействия возникших неровностей на сопряженную поверхность.

Коррозионно-механическое изнашивание происходит при трении материала вступившего в химическое взаимодействие со средой. Коррозионно-механическим видам изнашивания относятся окислительное изнашивание и изнашивание при фретинг-коррозии.

При эксплуатации коленчатого вала очень часто происходит возникновение износа схватыванием. Износ схватыванием первого рода возникает при отсутствии смазки и защитной пленки окислов при трении с малыми скоростями и удельными давлениями, превышающими предел текучести металла в местах действительного контакта. Схватывание происходит в результате большой пластической деформации поверхностных слоев металла и образования металлических связей между контактными участками поверхностей.

Схватывание второго рода возникает при трении скольжения с большими скоростями относительного перемещения и значительными удельными давлениями, при интенсивном повышении температуры в поверхностных слоях трущихся металлов и их пластичности. При схватывании происходят не допустимые повреждения трущихся поверхностей в результате возникновения металлических связей их деформации и разрушения с отделением частиц налипания и намазывания поверхности контактов.

3. Дефектация деталей

Детали после мойки и очистки подвергаются дефектации и сортировке на годные без восстановления, подлежащие восстановлению и подлежащие выбраковке из-за невозможности их восстановления. К годным без восстановления относятся детали, износ которых лежит в пределах установленных допускаемых величин. Детали с износом выше допустимого, но не относящиеся к группе негодных, а также детали с повреждениями, поддающимися устранению, подлежат восстановлению и дальнейшему использованию. Детали, которые по техническим условиям на ремонт автомобиля в связи со сложностью повреждений не подлежат восстановлению, бракуются и направляются в утиль. Работы по дефектации сортировке деталей оказывают большое влияние на эффективность авторемонтного производства, а также на качество и надежность отремонтированных автомобилей.

Дефектацию начинают с внешнего осмотра детали. При внешнем осмотре обнаруживают значительный износ, задиры, трещины, обломы, пробоины, коррозию, вмятины и т. п. Для выявления скрытых трещин в корпусных деталях (блок цилиндров, головка блока и пр.) их подвергают гидравлическому или пневматическому испытанию.

При гидравлическом испытании корпусную деталь устанавливают на стенд и герметизируют заглушками наружные отверстия, после чего во внутренние полости детали насосом нагнетают воду до давления 0,3— 0,4 МПа. Течь воды показывает местонахождение трещины. При пневматическом испытании внутрь детали подают воздух под давлением 0,10—0,15 МПа и погружают ее в ванну с водой. Пузырьки выходящего воздуха указывают место расположения трещины. Пневматическое испытание применяют при проверке на герметичность топливных баков, трубопроводов и др.

Для выявления скрытых дефектов в деталях, изготовленных из стали (например валов), наиболее широкое применение нашел метод магнитной дефектоскопии. Для обнаружения дефектов этим методом деталь сначала намагничивают, затем посыпают сухим магнитным порошком или поливают суспензией, состоящей из смеси керосина и трансформаторного масла (1:1). При наличии на детали трещины магнитный порошок будет притягиваться ее краями и границы трещины обрисуются. После контроля детали размагничивают.

Наибольшее внимание при контроле и сортировке деталей уделяется определению геометрических размеров и формы их рабочих поверхностей. При этом используют как универсальный измерительный инструмент (штангенциркули, микрометры, индикаторные нутромеры, микрометрические штихмасы и др.), так и калибры.

Калибры изготавливают в виде скоб, пробок, пластин, колец. Размер детали назначают всегда с двумя предельными отклонениями. Поэтому калибры имеют обычно проходную и непроходную стороны. Ими проверяют наружные и внутренние цилиндры, конусы, другие элементы деталей.

Важное значение для авторемонтного производства имеет своевременная отправка продефектованных деталей в комплектовочные отделения (куда направляются годные без ремонта детали) и на участки восстановления (куда направляются детали, подлежащие восстановлению). От этого зависит и культура производства, и сохранность деталей, и нормальный ритм всего производственного процесса.

Карта дефектации вала коленчатого компрессора

Название: Разработка технологического процесса восстановления коленчатого вала компрессора КаМАЗ
Раздел: Рефераты по транспорту
Тип: курсовая работа Добавлен 21:25:13 17 апреля 2011 Похожие работы
Просмотров: 15666 Комментариев: 17 Оценило: 5 человек Средний балл: 4.4 Оценка: неизвестно Скачать

1. Обрабатывать в ремонтный размер

1. Обрабатывать в ремонтный размер

№ по каталогу Наименование Материал Твердость
5320-3509110 Вал коленчатый Саль 40 HB 179-229
№ дефекта Обозначение Возможный дефект Размеры, мм Способ Ремонта
номинальный Предельно допустимый без ремонта
1 Трещины, сколы Браковать
2 А Задиры, риски на шейках Обрабатывать в ремонтный размер
3 А Износ шатунных шеек 28,5 – 0,021 28,47
1-й ремонтный 28,2 – 0,021 28,17
2-й ремонтный 27,9 – 0,021 27,87
4 Б Износ посадочных поверхностей под шарикоподшипники и шестерню 35,00
5 В Износ поверхностей под уплотнитель 25,05
6 Г Износ шпоночного паза по ширине 5,02 Фрезеровать новый паз
7 Д Износ торцов шеек Размер И: Обработать до выведения дефекта
27 +0,084 27,4
8 Е Повреждение резьбы Не более 2-х ниток Браковать

4. Обоснование способа восстановления детали

Шатунную шейку можно восстановить тремя способами: обработка в ремонтный размер, осталивание и наплавка (приварка).

Электроконтактная приварка ленты:

Сущность прoцессa — тoчечнaя привaркa стaльнoй ленты (прoвoлoки) к пoверхнoсти детaли в результате воздействия мoщнoгo импульса тoкa. В точке сварки прoисхoдит рaсплaвление метaллa ленты (прoвoлoки) и детали. Деталь устaнaвливaют в центрах или пaтрoне, a свaрoчнaя гoлoвкa с рoликaми плотно прижимает ленту (прoвoлoку) пoсредствoм пневмoцилиндрoв. Пoдвoд тoкa к рoликaм прoизвoдится oт трaнсфoрмaтoрa. Требуемaя длительнoсть циклa oбеспечивaется прерывaтелем тoкa.

Ленту привaривaют кo всей изнoшеннoй пoверхнoсти или пo винтoвoй линии в прoцессе врaщения детaли. Скoрoсть врaщения Детaли прoпoрциoнaльнa чaстoте импульсoв и прoдoльнoму перемещению свaрoчнoй гoлoвки.

Преимуществa спoсoбa: высoкaя прoизвoдительнoсть прoцессa (в 2,5 рaзa превoсхoдит вибрoдугoвую нaплaвку); мaлoе теплoвoе вoздействие нa детaль (не бoлее 0,3 мм); небoльшaя глубинa дaвления; незнaчительный рaсхoд мaтериaлa (в 4. 5 рaз превoсхoдит вибрoдугoвую нaплaвку); вoзмoжнoсть пoлучения не-Ялaвленнoгo метaллa с любыми свoйствaми; блaгoприятные сa-нитaрнo-прoизвoдственные услoвия рaбoты свaрщикa, a недoстaтoк — oгрaниченнoсть тoлщины нaплaвленнoгo слoя и слoжнoсть устaнoвки.

Спoсoб электрoкoнтaктнoй привaрки ленты испoльзуется для вoсстaнoвлении пoверхнoстей вaлoв, a тaкже oтверстий в чугунных и стaльных детaлях, в тoм числе кoрпусных.

Твердoсть, изнoсoстoйкoсть и прoчнoсть сцепления ленты с детaлью зaвисят oт мaрки стaли ленты. Высoкую твердoсть oбеспечивaют ленты из хрoмистых и мaргaнцевых стaлей. Тoлщинa ленты берется в пределaх 0,3. 1,5 мм. Усилие прижaтия рoликoв при привaрки ленты 1,3. 1,6 кН.

Железнение — процесс электролитического осаждения железа из водных растворов его закисных солей. Железо осаждают на катоде; анодом служат прутки или полосы малоуглеродистой стали.

Электролитически осаждённое железо отличается высокой химической чистотой, благодаря чему его коррозионная стойкость выше, чем у малоуглеродистой стали.

По структуре состоит из вытянутых по направлению к покрываемой поверхности зёрен.

Предел прочности 350—450 Мпа, относительное удлинение 5-10 %, твердость НВ 100—240 (в зависимости от состава электролита и условий электролиза).

Применяется как средство наращивания металла на изношенную поверхностьстальныхичугунных деталей при восстановлении их размеров.

Обработка поверхностей детали под ремонтный размер эффективна в случае, если механическая обработка при изменении размера не приведет к ликвидации термически обработанного поверхностного слоя детали. Тогда у дорогостоящей детали соединения дефекты поверхности устраняются механической обработкой до заранее заданного ремонтного размера (например, шейки коленчатого вала), а другую (более простую и менее дорогостоящую деталь) заменяют новой соответствующего размера (вкладыши). В этом случае соединению будет возвращена первоначальная посадка (зазор или натяг), но поверхности детали, образующие посадку, будут иметь размеры, отличные от первоначальных. Применение вкладышей ремонтного размера (увеличенных на 0,5 мм) позволит снизить трудоемкость и стоимость ремонта при одновременном сохранении качества отремонтированных блоков цилиндров и шатунов.

Ремонтные размеры и допуски на них устанавливает завод-изготовитель. Восстановление деталей под ремонтные размеры характеризуется простотой и доступностью, низкой трудоемкостью (в 1,5. 2,0 раза меньше, чем при сварке и наплавке) и высокой экономической эффективностью, сохранением взаимозаменяемости деталей в пределах ремонтного размера. Недостатки способа — увеличение номенклатуры запасных частей и усложнение организации процессов хранения деталей на складе, комплектования и сборки.

5. План технологических операций на устранение дефекта

Источник

Читайте также:  Руководство по ремонту гидравлических гасителей колебаний
Оцените статью