- Простой лабораторный блок питания
- Принципиальная схема ЛБП
- Простой лабораторный блок питания — версия 2
- Софт старт трансформатора
- Ещё вариант сборки блока питания
- Блог сисадмина
- Добро пожаловать в блог сисадмина-паяльщика
- Ремонт и обзор начинки лабораторного блока питания MASTECH HY5003F
- Добавить комментарий Отменить ответ
- 2 схемы
- Импульсный блок питания на TL494 своими руками — схема и подробная инструкция по монтажу
- Требования к прибору
- Список элементов.
Простой лабораторный блок питания
Каждый любитель хочет разнообразить свою мастерскую различным оборудованием, которое облегчит его жизнь. До сих пор в своей радиолаборатории использовал довольно примитивный регулируемый источник питания на основе микросхемы LM317. Решил создать что-то более практичное и приличное, поэтому взялся за типа «лабораторный» источник питания по этой схеме.
Принципиальная схема ЛБП
Это простейший блок питания с регулировкой 0…30 В / 0…3 А. Конечно же у этого устройства есть серьезные недостатки:
- Это одноканальный стабилизатор. Приличный же лабораторный блок питания обычно имеет несколько независимых регулируемых каналов (с возможностью совместной работы).
- Это линейный стабилизатор. Нагревается при работе с большой нагрузкой. Количество потерянной мощности зависит от параметров выхода — чем больше ток и напряжение — тем больше потеря мощности. Способность эффективно рассеивать тепло также будет полезна при проектировании БП.
- Простота решений это хорошо, но аппетит растет во время еды — если делаете базовую версию, стоит дополнить ее рядом интересных и полезных добавлений — вентилятором с терморегулятором, автоматическим выключателем трансформатора, цифровым потенциометром управляемым энкодером, отображение рабочих параметров: тока, напряжения, мощности, заряда, температуры, тепловой защиты, защиты от обратной полярности, системой плавного пуска, сигнализации рабочего состояния (стабилизация напряжения / стабилизация тока / стабилизация температуры / стабилизация мощности / защита сработала), акустическая сигнализация, память настроек и так далее.
Кстати, схема хороша тем, что на её основе можно даже сделать блок питания для напряжения от 0 до 300 В. Понадобится изменить следующее:
- T2 на FQI2P40 (QFET P-Chanel);
- T1 — BUL416 (можете использовать практически любой NPN, например с умножителя в телевизорах с ЭЛТ);
- T3 — BUT11A (транзистор весьма популярный);
- R5 7,5 Ом (для диапазона до 200 мА);
- R12 600 кОм / 1 Вт (для диапазона от 0 до 300 В)
- R11 47 Ом (максимум 30 мА протекает через полевой транзистор при нагрузке 200 мА).
Питание US1 от независимого напряжения + 18 В. Электролиты на входе и выходе блока питания конечно от 450 В. В принципе этого достаточно.
Простой лабораторный блок питания — версия 2
Существует и специальная версия блока питания 2,0. Полевого транзистора в ней нет. Параметры отслеживаются хуже, но все еще на высоком уровне. Транзистор Т2 теперь имеет относительно низкую мощность. Свойства малого падения напряжения на схеме (Low Drop Ouput — LDO) были сохранены.
Преимущества использования полевого транзистора с P-каналом в регулируемом источнике питания очевидны: упрощение применения и отличные параметры стабилизации напряжения и тока. Правила выбора значений элементов приведены на каждой принципиальной схеме. Можете использовать IRF9540 в качестве T2.
Софт старт трансформатора
Принципиальная схема автоматического старта трансформатора прилагается.
Она работает довольно хорошо, потому что:
- Трансформатор оснащен схемой плавного пуска, которая эффективно уменьшает импульс тока;
- 2. МОП-транзистор может быть перегружен в импульсном режиме, то есть он может пропускать гораздо более высокие токи, чем номинально. Здесь он работает с постоянным напряжением, пульсирующим от 0 В до максимального значения.
- Сам МОП-транзистор имеет низкое сопротивление (0,2 Ом) и последовательно с сопротивлением ЭПС электролитического конденсатора и другими паразитными сопротивлениями (например, от трансформатора, диодного моста, проводов) эффективно ограничивает значение максимального тока.
В общем такой БП конечно не предел мечтаний для профессионального радиолюбителя, но в данном случае это вполне приличный и не очень сложный блок питания, как раз для бытовых нужд.
Для создания источника питания использовался трансформатор ТС 120/14, дающий напряжение 2x 24 В и ток 2x 2 А. Подключены обе вторичные обмотки параллельно и получилось солидных 4 ампера. Мост выпрямительный GBU10M и конденсаторы.
Транзисторы: управляющие, как по на схеме BC337, управляемый IRF9540, и 2SC4288A поддерживает его. Помещены оба этих транзистора на довольно большой радиатор от процессора, оборудованного вентилятором.
Корпус раньше служил в качестве корпуса простого усилителя. Из-за большого количества пустого пространства внутри (на вырост) решено было использовать именно его.
Ещё вариант сборки блока питания
Поскольку до этого паял обычным сетевым паяльником, заодно решил построить паяльную станцию.
На боковой стороне корпуса розетка для подключения паяльника, выключатель, позволяющий использовать только станцию или блок питания. Есть также два разъёма, в которые можно подключить мультиметр и в любое время считывать температуру с термопары. Файлы проекта в архиве.
Источник
Блог сисадмина
Добро пожаловать в блог сисадмина-паяльщика
Ремонт и обзор начинки лабораторного блока питания MASTECH HY5003F
Выглядит данное чудо устройство вот так:
Откручиваем выше описанные гайки, и снимаем плату. Выглядит она вот так:
Теперь немного о неисправности. самопроизвольно происходят скачки напряжения. При регулировки напряжение «бегает» как ему вздумается. Смотрите видео:
Снял ещё и видео как разбирал данный агрегат:
После замены переменных резисторов, всё стало нормально работать. Тфу тфу тфу. В общем как то так.
Блок питания намеренно включал нед оконца, вот что получается.
Вот логи при подключенном мультиметре UNI-T UT71E режиме скоростного чтения (4000 отсчетов). СКАЧАТЬ
И из той же софтины несколько диаграмм:
Добавить комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.
Источник
2 схемы
Импульсный блок питания на TL494 своими руками — схема и подробная инструкция по монтажу
Схема импульсного блока питания на TL494
- ШИМ контроллер (IC1) — TL494.
- Операционный усилитель (IC2) — LM324.
- 2 линейных регулятора (VR1, VR2) — L7805AB и LM7905.
- 4 биполярных транзистора T1, T2 — C945 и T3, T4 — MJE13009.
- 2 диодных моста — VDS2 (MB105) и VDS1 (GBU1506).
- 5 выпрямительных диодов (D3–D5, D8, D9) — 1N4148.
- 2 выпрямительных диода (D6, D7) — FR107.
- 2 выпрямительных диода (D10, D11) — FR207.
- 2 выпрямительных диода (D12, D13) — FR104.
- Диод Шоттки (D15) — F20C20.
- 5 дросселей — L1 (100 мкГн), L5 на желтом кольце (100 мкГн), L3, L4 (10 мкГн), L6 (8 мкГн).
- Синфазный дроссель (L2) — 29 мГн.
- 2 импульсных трансформатора — Tr1 (EE16) и Tr2 (EE28–EE33, ER35).
- Трансформатор (Tr3) — BV EI 382 1189.
- Предохранитель (F1) — 5А.
- Терморезистор (NTC1) — 5.1 Ом.
- Варистор (VDR1) — 250 В.
- Резисторы — R1, R9, R12, R14 (2.2 кОм); R2, R4, R5, R15, R16, R21 (4.7 кОм); R3 (5.6 кОм); R6, R7 (510 кОм); R8 (1 Мом); R13 (1.5 кОм); R17, R24 (22 кОм); R18 (1 кОм);
- R19, R20 (22 Ом); R22, R23 (1.8 кОм); R27, R28 (2.2 Ом); R29, R30 (470 кОм, 1–2 Вт); R31 (100 Ом, 1–2 Вт); R32, R33 (15 Ом); R34 (1 кОм, 1–2 Вт).
- Переменные резисторы (R10, R11) — 10 кОм, можно использовать 3 или 4.
- Резисторы (R25, R26) — 0.1 Ом; шунты, мощность зависит от выходной мощности БП.
- Конденсаторы — C1, C8, C27, C28, C30, C31 (0.1 мкФ); C3 (1 нФ, пленочный); C4–C7 (0.01 мкФ); C10 (0.47 мкФ, 275 В, X); C12 (0.1 мкФ, 275 В, X); C13, C14, C19 (0.01 мкФ, 2 кВ, Y); C20 (1 мкФ, 250 В, пленочный); C21 (2.2 нФ, 1 кВ); C23, C24 (3.3 нФ).
- Электролитические конденсаторы — C2, C9, C22, C25, C26, C34, C35 (47 мкФ); C11 (1 мкФ); C15, C16 (2.2 мкФ); C17, C18 (470 мкФ, 200 В); C29, C32, C33 (1000 мкФ, 35 В).
- 2 светодиода — D1 (зеленый, 5 мм) и D2 (красный, 5 мм), либо просто диоды, если не нужна индикация.
- Корпус Z4A.
- Выключатель — 250 В, 6 А.
- Держатель для предохранителя.
- Розетка для подключения к сети 220 В.
- Вилка для подключения к сети 220 В.
- Разъём для выходного напряжения.
- Вентилятор 12 В.
- Вольтметр.
- Амперметр.
- Входное напряжение — 220 вольт переменного тока.
- Выходное напряжение — от 0 до 30 вольт постоянного тока.
- Выходной ток составляет более 15 А (фактически тестированное значение).
- Режим стабилизации напряжения.
- Режим стабилизации тока (защита от короткого замыкания).
- Индикация обоих режимов светодиодами.
- Малые габариты и вес при большой мощности.
- Регулировка ограничения тока и напряжения.
pechatnaya-plata-dlya-impulsnogo-bloka-pitaniya.rar Видео о тестировании данного блока питания:
Требования к прибору
Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:
- регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
- нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.
Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.
Список элементов.
R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор — (Заменяют на КТ961А — все работает)
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ 827А)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод
В итоге я самостоятельно собрал лабораторный блок питания, но столкнулся на практике с тем, что считаю нужным подправить. Ну во первых это силовой транзистор Q4 = 2N3055 его нужно в срочном порядке вычеркнуть и забыть. Не знаю как других устройствах, но в данном регулируемом блоке питания он не подходит. Дело в том, что данный тип транзисторов выходит из строя моментально при коротко замыкании и ток в 3 ампера не тянет совершенно. Я не знал в чем дело пока не поменял его на наш родной совковый КТ 827 А. После установки на радиатор я и горя не знал и больше не возвращался к этому вопросу.
Что же касается остальной схемотехники и деталей, то трудностей нет. За исключением трансформатор — мотать пришлось. Ну это чисто из-за жадности, пол ведра их стоит в углу — не покупать же =))
Ну и чтобы не нарушать старую добрую традицию, я выкладываю результат своей работы на общий суд пришлось по шаманить с колонкой, но в целом получилось не дурно :
Собственно лицевая панель — вынес потенциометры в левую часть в правой разместились амперметр и вольтметр + светодиод красного цвета, для индикации ограничения по току.
На следующей фотографии вид сзади. Тут я хотел показать способ монтажа кулера с радиатором от материнской платы. На этот радиатор с обратной стороны примостился силовой транзистор.
Вот и он, силовой транзистор КТ 827 А. Смонтирован на заднюю стенку. Пришлось просверлить отверстия под ножки, смазать все контактные части теплопроводной пастой и закрепить на гайки.
Вот они….внутренности! Собственно все в куче!
Источник