- Методы определения места повреждения изоляции обмотки электродвигателей от магнитопровода
- Методы диагностики неисправностей асинхронных электродвигателей
- Бугеря Татьяна Игоревна
- Электротехнический факультет
- Кафедра Электропривод и автоматизация промышленных установок
- Специальность Электромеханические системы автоматизации и электропривод
- Анализ способов диагностики асинхронных электродвигателей с короткозамкнутым ротором
- Научный руководитель: к.т.н., доцент Светличный Алексей Васильевич
- Реферат по теме выпускной работы
- Содержание
- Введение
- 1. Актуальность темы
- 2. Цель и задачи исследования, планируемые результаты
- 3. Обзор исследований и разработок
- 3.1 Виды неисправностей и общий вид системы их диагностики
- 3.2 Методы диагностики асинхронного двигателя
- 4. Технические требования к параметрам устройства диагностики по сигналам токов и напряжений статора асинхронного двигателя
- Выводы
Методы определения места повреждения изоляции обмотки электродвигателей от магнитопровода
Для определения места повреждения изоляции обмотки электродвигателя прежде всего необходимо разъединить фазные обмотки и измерить сопротивление изоляции каждой фазной обмотки от магнитопровода или по крайней мере проверить целость изоляции.
При этом удается выявить фазную обмотку с поврежденной изоляцией. Для определения места повреждения изоляции обмотки электродвигателя могут быть использованы различные методы: метод измерения напряжения между концами обмотки и магнитопроводом, метод определения направления тока в частях обмотки, метод деления обмотки на части и метод «прожигания».
При первом методе на фазную обмотку электродвигателя с поврежденной изоляцией подается пониженное переменное или постоянное напряжение и вольтметрами VI и V2 измеряют напряжение между концами обмотки и магнитопроводом. По соотношению этих напряжений можно судить о положении места повреждения обмотки относительно ее концов. Этот метод не обеспечивает достаточной точности при малом сопротивлении обмотки.
Второй метод заключается в том, что постоянное напряжение подается на объединенные в общую точку концы фазной обмотки и на магнитопровод. Для возможности регулирования и ограничения тока в цепь включают реостат R. Направления токов в обеих частях обмотки, разграниченных точкой С соединения с магнитопроводрм, будут противоположными.
Если поочередно касаться двумя проводами от милливольтметра концов каждой катушечной группы, то стрелка милливольтметра будет отклоняться в одном направлении до тех пор, пока провода от милливольтметра не будут присоединены к концам катушечной группы с поврежденной изоляцией. На концах следующих катушечных групп отклонение стрелки изменится на противоположное.
У катушечной группы с поврежденной изоляцией отклонение стрелки будет зависеть от того, к какому из концов ближе место повреждения изоляции; кроме того, величина напряжения на концах этой катушечной группы будет меньше, чем на других катушечных группах, если повреждение изоляции не находится вблизи концов катушечной группы. Таким же образом производится дальнейшее определение места повреждения изоляции внутри катушечной группы.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Методы диагностики неисправностей асинхронных электродвигателей
Двигатель при пуске не разворачивается или скорость его вращения ненормальная . Причинами указанной неисправности могут быть механические и электрические неполадки.
К электрическим неполадкам относятся : внутренние обрывы в обмотке статора или ротора, обрыв в питающей сети, нарушения нормальных соединений в пусковой аппаратуре. При обрыве обмотки статора в нем не будет создаваться вращающееся магнитное поле, а при обрыве в двух фазах ротора в обмотке последнего не будет тока, взаимодействующего с вращающимся полем статора, и двигатель не сможет работать. Если обрыв обмотки произошел во время работы двигателя, он может продолжать работать с номинальным вращающим моментом, но скорость вращения сильно понизится, а сила тока настолько увеличится, что при отсутствии максимальной защиты может перегореть обмотка статора или ротора.
В случае соединения обмоток двигателя в треугольник и обрыва одной из его фаз двигатель начнет разворачиваться, так как его обмотки окажутся соединенными в открытый треугольник, при котором образуется вращающееся магнитное поле, сила тока в фазах будет неравномерной, а скорость вращения — ниже номинальной. При этой неисправности ток в одной из фаз в случае номинальной нагрузки двигателя будет в 1,73 раза больше, чем в двух других. Когда у двигателя выведены все шесть концов его обмоток, обрыв в фазах определяют мегаомметром. Обмотку разъединяют и измеряют сопротивление каждой фазы.
Скорость вращения двигателя при полной нагрузке ниже номинальной может быть из-за пониженного напряжения сети, плохих контактов в обмотке ротора, а также из-за большого сопротивления в цепи ротора у двигателя с фазным ротором. При большом сопротивлении в цепи ротора возрастает скольжение двигателя и уменьшается скорость его вращения.
Сопротивление в цепи ротора увеличивают плохие контакты в щеточном устройстве ротора, пусковом реостате, соединениях обмотки с контактными кольцами, пайках лобовых частей обмотки, а также недостаточное сечение кабелей и проводов между контактными кольцами и пусковым реостатом.
Плохие контакты в обмотке ротора можно выявить, если в статор двигателя подать напряжение, равное 20—25% номинального. Заторможенный ротор медленно поворачивают вручную и проверяют силу тока во всех трех фазах статора. Если ротор исправен, то при всех его положениях сила тока в статоре одинакова, а при обрыве или плохом контакте будет изменяться в зависимости от положения ротора.
Плохие контакты в пайках лобовых частей обмотки фазного ротора определяют методом падения напряжения. Метод основан на увеличении падения напряжения в местах недоброкачественной пайки. При этом замеряют величины падения напряжения во всех местах соединений, после чего результаты измерений сравнивают. Пайки считаются удовлетворительными, если падение напряжения в них превышает падение напряжения в пайках с минимальными показателями не более чем на 10%.
У роторов с глубокими пазами может также происходить разрыв стержней из-за механических перенапряжений материала. Разрыв стержней в пазовой части короткозамкнутого ротора определяют следующим образом. Ротор выдвигают из статора и в зазор между ними забивают несколько деревянных клиньев, чтобы ротор не мог повернуться. К статору подводят пониженное напряжение не более 0,25 U ном. На каждый паз выступающей части ротора поочередно накладывают стальную пластину, которая должна перекрывать два зубца ротора. Если стержни целые, пластина будет притягиваться к ротору и дребезжать. При наличии разрыва притяжение и дребезжание пластины исчезают.
Двигатель разворачивается при разомкнутой цепи фазного ротора. Причина неисправности — короткое замыкание в обмотке ротора. При включении двигатель медленно разворачивается, а его обмотки сильно нагреваются, так как в замкнутых накоротко витках вращающимся полем статора наводится ток большой величины. Короткие замыкания возникают между хомутиками лобовых частей, а также между стержнями при пробое или ослаблении изоляции в обмотке ротора.
Это повреждение определяют тщательным внешним осмотром и измерением сопротивления изоляции обмотки ротора. Если при осмотре не удается обнаружить повреждение, то его определяют по неравномерному нагреву обмотки ротора на ощупь, для чего ротор затормаживают, а к статору подводят пониженное напряжение.
Равномерный нагрев всего двигателя выше допустимой нормы может получиться в результате длительной перегрузки и ухудшения условий охлаждения. Повышенный нагрев вызывает преждевременный износ изоляции обмоток.
Местный нагрев обмотки статора , который обычно сопровождается сильным гудением, уменьшением скорости вращения двигателя и неравномерными токами в его фазах, а также запахом перегретой изоляции. Эта неисправность может возникнуть в результате неправильного соединения между собой катушек в одной из фаз, замыкания обмотки на корпус в двух местах, замыкания между двумя фазами, короткого замыкания между витками в одной из фаз обмотки статора.
При замыканиях в обмотках двигателя вращающимся магнитным полем в короткозамкнутом контуре будет наводиться э. д. с, которая создаст ток большой величины, зависящий от сопротивления замкнутого контура. Поврежденная обмотка может быть найдена по величине измеренного сопротивления, при этом поврежденная фаза будет иметь меньшее сопротивление, чем исправные. Сопротивление измеряют мостом или методом амперметра — вольтметра. Поврежденную фазу можно также определить методом измерения тока в фазах, если к двигателю подвести пониженное напряжение.
При соединении обмоток в звезду ток в поврежденной фазе будет больше, чем в других. Если обмотки соединены в треугольник, линейный ток в двух проводах, к которым присоединена поврежденная фаза, будет больше, чем в третьем проводе. При определении указанного повреждения у двигателя с короткозамкнутым ротором последний может быть заторможенным или вращаться, а у двигателей с фазным ротором обмотка ротора может быть разомкнута. Поврежденные катушки определяют по падению напряжения на их концах: на поврежденных катушках падение напряжения будет меньше, чем на исправных.
Местный нагрев активной стали статора происходит из-за выгорания и оплавления стали при коротких замыканиях в обмотке статора, а также при замыкании листов стали вследствие задевания ротора о статор во время работы двигателя или вследствие разрушения изоляции между отдельными листами стали. Признаками задевания ротора о статор являются дым, искры и запах гари; активная сталь в местах задевания приобретает вид полированной поверхности; появляется гудение, сопровождающееся вибрацией двигателя. Причиной задевания служит нарушение нормального зазора между ротором и статором в результате износа подшипников, неправильной их установки, большого изгиб вала, деформации стали статора или ротора, одностороннего притяжения ротора к статору из-за витковых замыканий в обмотке статора, сильной вибрации ро-тора, который определяют щупом.
Ненормальный шум в двигателе . Нормально работающий двигатель издает равномерное гудение, которое характерно для всех машин переменного тока. Возрастание гудения и появление в двигателе ненормальных шумов могут явиться следствием ослабления запрессовки активной стали, пакеты которой будут периодически сжиматься и ослабляться под воздействием магнитного потока. Для устранения дефекта необходимо перепрессовать пакеты стали. Сильное гудение и шумы в машине могут быть также результатом неравномерности зазора между ротором и статором.
Повреждения изоляции обмоток могут произойти от длительного перегрева двигателя, увлажнения и загрязнения обмоток, попадания на них металлической пыли, стружек, а также в результате естественного старения изоляции. Повреждения изоляции могут вызвать замыкания между фазами и витками отдельных катушек обмоток, а также замыкание обмоток на корпус двигателя.
Увлажнение обмоток происходит в случае длительных перерывов в работе двигателя, при непосредственном попадании в него воды или пара в результате хранения двигателя в сыром неотапливаемом помещении и т. д.
Металлическая пыль, попавшая внутрь машины, создает токопроводящие мостики, которые постепенно могут вызвать замыкания между фазами обмоток и на корпус. Необходимо строго соблюдать сроки осмотров и планово-предупредительных ремонтов двигателей.
Сопротивление изоляции обмоток двигателя напряжением до 1000 в не нормируется, изоляция считается удовлетворительной при сопротивлении 1000 ом на 1 в номинального напряжения, но не менее 0,5 Мом при рабочей температуре обмоток.
Замыкание обмотки на корпус двигателя обнаруживают мегаомметром, а место замыкания — способом «прожигания» обмотки или методом питания ее постоянным током.
Способ «прожигания» заключается в том, что один конец поврежденной фазы обмотки присоединяют к сети, а другой — к корпусу. При прохождении тока в месте замыкания обмотки на корпус образуется «прожог», появляются дым и запах горелой изоляции.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Бугеря Татьяна Игоревна
Электротехнический факультет
Кафедра Электропривод и автоматизация промышленных установок
Специальность Электромеханические системы автоматизации и электропривод
Анализ способов диагностики асинхронных электродвигателей с короткозамкнутым ротором
Научный руководитель: к.т.н., доцент Светличный Алексей Васильевич
Реферат по теме выпускной работы
Содержание
Введение
Асинхронные двигатели (АД) широко используется в производстве, транспортировке, нефтехимической, горнодобывающей, энергетической системах и т. д. Это обусловлено их высокой надежностью, простотой конструкции, высокой перегрузочной способностью и высокой эффективностью. По сравнению с двигателями постоянного тока, асинхронные двигатели являются более прочными, менее дорогими и требуют меньших затрат на обслуживание. Поэтому они являются предпочтительными при выборе промышленных двигателей [1].
Порой, как и любая другая машина такой двигатель может выйти из строя из-за тяжелых рабочих условий, агрессивной рабочей среды, не правильной установки и сборки и т.д.
Отечественный и зарубежный опыт показывает, что внедрение средств диагностирования является одним из важнейших факторов повышения экономической эффективности использования оборудования в промышленности. Назначение диагностики – выявление и предупреждение отказов и неисправностей, поддержание эксплуатационных показателей в установленных пределах, прогнозирование состояния в целях полного использования ресурса [2].
1. Актуальность темы
У электродвигателей после ремонта с разборкой и заменой деталей надежность работы часто снижается. Во время ремонта проблематично выявить скрытые дефекты, такие, например, как дефекты стержней короткозамкнутого ротора или нарушение изоляции обмотки статора [3].
Выбор стратегии и методов диагностирования асинхронных двигателей определяется рядом факторов. Первостепенное значение имеет конечная цель диагностирования, которая зависит от того, на каком этапе жизненного цикла определяется техническое состояние двигателя: на этапе производства, эксплуатации или ремонта [4].
В настоящее время существует потребность диагностики состояния асинхронных электродвигателей в процессе их работы. Своевременно обнаруженное повреждение позволит избежать дальнейшего развития процесса, уменьшить время восстановления, сократить затраты на обслуживание, избежать простоев оборудования, повысить эффективность работы двигателей и производственных механизмов. Поэтому диагностика АД является уникальной научно-практической задачей.
2. Цель и задачи исследования, планируемые результаты
Целью магистерской работы является обзор существующих методов диагностики асинхронного электродвигателя и определение наиболее простого и качественного из них.
Основные задачи исследования:
- Обзор литературных источников и определение существующих методов диагностирования асинхронных двигателей.
- Выделение достоинств и недостатков этих методов на стадии разработки и при практическом применении.
- Выявление оптимального метода диагностики и разработка схемы его практической реализации.
- Определение наилучшего метода диагностики асинхронного двигателя в процессе эксплуатации.
- Разработка схемы практической реализации этого метода.
- Расчет и выбор всех необходимых компонентов.
- Практическая реализация этой схемы.
3. Обзор исследований и разработок
3.1 Виды неисправностей и общий вид системы их диагностики
Различают внутренние и внешние причины неисправностей двигателя. Внутренние неисправности делятся на механические (повреждения подшипников, изнашивание изоляции и обмоток) и электрические (пробой изоляции, повреждения магнитного контура, обрыв стержня ротора). Внешние неисправности могут быть механическими (плохой монтаж, пульсирующая нагрузка, перегруз), электрические (колебания напряжения, перебои в напряжение, неравномерное напряжение), на рисунке 1 показана относительная вероятность появления различных повреждений в асинхронном двигателе:
Рисунок 1 – Вероятность сбоев в АД в процентах
Дефекты подшипников могут быть классифицированы как распределенные или локальные . Распределенные дефекты включают в себя волнистость, шероховатость поверхности и элементы качения без изменения. Локализованные дефекты включают отскоки, ямы и трещины на поверхности качения. Эти локализованные дефекты создают серию ударных вибраций в тот момент, когда движущийся валик проходит по поверхности дефекта, период и амплитуда которого вычисляются по положению, скорости и несущей аномалии. Поврежденными подшипниками производятся механические вибрации. Эти колебания находятся на скорости вращения каждого компонента. Размеры подшипника и скорость вращения машины используются для определения характерных частот, связанных с дорожками качения, а также шарами или роликами. Состояние подшипника определяется путем изучения этих частот. Эта задача выполняется с использованием методов механического вибрационного анализа.
Неисправности в обмотке статора, такие как межвитковое короткое замыкание, обрыв цепи, межфазное замыкание и замыкание фазы с землей, являются одними из наиболее распространенных и потенциально разрушительных неисправностей. Если они не обнаружены, это может привести к катастрофическому сбою двигателя.
Неисправности ротора могут быть вызваны электрическими неисправностями, такими как обрыв стержня или механические сбои, такие как неcоосноcть ротора. Первая неисправность возникает из-за термических напряжений, горячих точек или перенапряжений во время переходных операций, таких как пуск, особенно в крупных двигателях. Сломанный стержень значительно меняет крутящий момент и становится опасным для работы электрических машин. Второй тип повреждения ротора связан с неравномерностью воздушного зазора. Эта ошибка является общим эффектом, связанным с рядом механических проблем в асинхронных двигателях, таких как дисбаланс нагрузки или несоосность вала. Неcоосность вала означает горизонтальное, вертикальное или радиальное смещение между валом и его сцепленной нагрузкой. При несоосности вала ротор будет смещен из своего нормального положения из-за постоянной радиальной силы.
Типичная диагностическая система, показанная рисунке 2, состоит из узла датчиков, который подает сигнал неисправности в блок обработки сигналов, который далее отправляет его результат для анализа экспертными системами, где в конечном итоге обнаруживается соответствующая неисправность.
Рисунок 2 – Система диагностики АД
(анимация: 6 кадров, 7 циклов повторения, 73,8 килобайт)
3.2 Методы диагностики асинхронного двигателя
Идеальный современный способ диагностирования электродвигателей должен отвечать следующим требованиям:
- высокая достоверность и точность выявления неисправностей и повреждений электродвигателя;
- возможность обнаружения всех или значительной части электрических и механических повреждений электродвигателя и связанных с ним механических устройств;
- проведение диагностических измерений дистанционно, что актуально в тех случаях, когда доступ к оборудованию затруднен;
- низкая трудоемкость диагностических работ (измерений) и простота проведения измерений;
- возможность проведения аналитической обработки полученных результатов измерений за короткое время, с применением вычислительных и программных средств, [5].
Ряд источников выделяют метод анализа спектров тока двигателя [1], [5], [6], [7], [8], [9]. Он используется для обнаружения повреждений ротора, несоосности а статоре и неравномерность воздушного зазора.
Анализ сигнатуры тока двигателя основан на обнаружении токовых гармоник с частотами, которые различают каждую категорию неисправностей. Кроме того, не требуется дополнительная установка измерительной системы. Сломанные стержни вызывают асимметрию ротора, искажение распределения тока ротора и, следовательно, изменения магнитодвижущей силы ротора (МДС). Повреждение стержней ротора имеет отличительную характеристику частот, которые могут быть вычислены как:
На единицу скольжения двигателя можно рассчитать, как:
где fs и fr – частота питания и частота двигателя соответственно
р – количество полюсов.
В случае повреждения стержня можно ожидать боковые полосы вокруг частоты питания в спектре мощности фазного тока. В результате боковые полосы (гармоники) первого порядка (k=1) имеют особое значение в обнаружение неисправности поврежденного стержня. Левая боковая полоса fs(1-2ks) обусловлена электрической или магнитной асимметрией ротора, вызванная повреждениями стержней ротора, в то время как правая боковая полоса fs(1+2ks) обусловлена пульсацией скорости или вибрацией.
Амплитуды и присутствие боковых полос зависят от физического положения неисправных стержней ротора, скорости и нагрузки. Расположение боковых полос будет смещаться наружу, если скорость и нагрузка увеличиваются. Доказано, что боковые полосы могут наблюдаться, когда электродвигатель не имеет поврежденных стержней ротора. Это обусловлено тем, что эллиптичность ротора и несоосность вала могут в определенной степени вызвать асимметрию ротора. Тем не менее, амплитуды боковых полос, сформированные в этих случаях, намного меньше по сравнению с теми, которые возникают при поврежденных стержнях ротора. В работе [6] использовались два неисправных двигателя, один с одним сломанным стержнем ротора, другой двигатель – с двумя сломанными стержнями. Роторы этих двигателей были просверлены и использованы в испытаниях для имитации повреждений стержней ротора, а затем сравнивались с исправным двигателем.
Рисунок 3 и рисунок 4 показывают два испытуемых ротора с одним и двумя поврежденными стержнями соответственно. Неисправности были вызваны аккуратным сверлением в стержнях вдоль их высоты таким образом, чтобы отверстие насквозь пронзило стержень.
Рисунок 3 – Ротор с одним поврежденным стержнем
Рисунок 4 – Ротор с двумя поврежденными стержнями
На рисунке 5 показаны спектры тока исправного и неисправного двигателей при разных нагрузках. Амплитуды боковых полос исправного двигателя равны -27,27 дБ (слева) и -34,38 дБ (справа), тогда как они составляют -16,19 дБ (слева) и -19,03 дБ (справа) в случае одного поврежденного стержня и -13,01 дБ (слева) и -14,80 дБ (справа) в случае двух поврежденных стержней. Разность амплитуд левых боковых полос в случае исправного ротора и ротора с двумя поврежденными стержнями составляет 14,26 дБ при 75% от полной нагрузки. Понятно, что амплитуда бокового диапазона увеличивается по мере увеличения нагрузки и степени серьезности неисправности, и что неисправность может быть лучше всего обнаружена при более высоких нагрузках.
Рисунок 5 – Спектры тока асинхронного двигателя при разных нагрузках
В работе [7] был проведен похожий эксперимент, но с тремя поврежденными стержнями ротора.
Эффективным является и метод основанный на анализ вибрации двигателя [6], [7], [9]. Используя спектр вибрации двигателя, можно определить точную скорость и частоту сети, а также частоты, связанные с ошибками. Всегда присущ дисбаланс массы ротора и несоосность вала, что приводит к пиковым компонентам в частоте вращения двигателя и к возникновению гармоник в его вибрационном спектре. Как упоминалось ранее, в случае повреждения стержня ротора происходит колебание скорости с частотой 2sfs. Это колебание действует как частотная модуляция на частоте вращения и на двух частотах боковых полос (fr — 2sfr) и (fr + 2sfr), которые проявляют fr в спектре вибрации. Когда дисбаланс цепи ротора увеличивается, величина колебания скорости, а также величины частоты боковой полосы тоже увеличиваются. Следовательно, величины (fr ± 2sfr) могут быть хорошо измерены при обнаружении повреждений стержня. В работе [6] представлен результат проведения этого метода обнаружения поврежденного стержня с использованием вибрации.
На рисунке 6 показан спектр вибрации двигателя при различной нагрузке. На рисунке видны различия в боковых полосах между исправным состоянием и сломанным стержнем ротора на обеих сторонах спектра вибрации при 75% полной нагрузки. При нормальном состоянии амплитуды боковых полос первого порядка составляют -59,47 дБ (слева) и -55,18 дБ (справа) соответственно. При одном поврежденном стержне ротора амплитуда боковых полос увеличивается до -57,81 дБ и -54,52 дБ, разница составляет 4,29 дБ, а в случае двух поврежденных стержней боковые полосы достигают -53,35 и -49,05 дБ.
Рисунок 6 – Спектры вибрации асинхронного двигателя при разных нагрузках
В работе [7] с помощью спектра вибрации показаны обнаружения повреждений в подшипниках двигателя.
В работах [7], [8] выделяются также интеллектуальные методы. К ним относят cистемы с фази логикой, искусственные нейронные сети, а также фази-нейронные сети. Нейронная сеть может быть использована, чтобы обнаружить, собственную асимметрию и отрицательную частоту сопротивления.
На рисунке 7 представлена схема нейронных сетей для мониторинга состояния асинхронного двигателя [7].
Рисунок 7 – Система диагностики АД с нейронной сетью
Работа [8] представляет собственный метод обнаружения неисправностей и диагностики неисправности переключающего устройства в асинхронном электродвигателе с инвертором напряжения ШИМ. Метод основан на стандартной модели тока статора (рисунок 8)
Рисунок 8 – Система диагностики АД с инвертором напряжения ШИМ
Также известны методы, основанные на анализе акустических колебаний, создаваемых работающей машиной, методы, основанные на измерении и анализе магнитного потока в зазоре двигателя и внешнего магнитного поля, методы, основанные на измерении и анализе температуры отдельных элементов машины, методы диагностики механических узлов (в частности подшипников) основанные на анализе содержания железа в масле, методы диагностики состояния изоляции [9].
По сопоставлению всех технических, методологических и экономических факторов можно сделать вывод, что для практической реализации наиболее перспективными являются методы диагностики АД, основанные на анализе электрических параметров двигателя, а именно спектров напряжений и токов.
4. Технические требования к параметрам устройства диагностики по сигналам токов и напряжений статора асинхронного двигателя
Для вывода технических требований к параметрам устройства диагностики по сигналам токов и напряжений статора асинхронного двигателя, был рассмотрен и проанализирован ряд источников.
Так в публикации [10] основные исследования проводились с такими частотами: спектр тока при неотбалансированном роторе – 120 Гц, вибрация подшипников – 180 Гц, при износе подшипников – 1000 и 3000 Гц.
В статье [11] указывается, что в общем случае при цифровой регистрации токов удовлетворительная точность имеет место при частотах их фиксации в (20 ÷ 30) раз больше частоты сети f1.
В статьях [5] и [9] для сравнения работы нового двигателя и двигателя, прослужившего некоторое время, был выбран диапазон частоты в 1000 Гц, а конкретные примеры диагностики дефектов двигателя проводилась на меньшем диапазоне (150 Гц и ниже).
На основании вышеприведенной информации делаем вывод, что частота дискретизации измерительного канала должна находится в пределах от 1500 до 3000 Гц.
Выводы
На сегодняшний день уже существует множество методов диагностики состояния асинхронного двигателя в процессе его эксплуатации. Все они до сих пор совершенствуются, что подтверждает их актуальность и практическую работоспособность.
В данной работе были рассмотрены наиболее известные из них, и выделено, что наиболее перспективными для практической реализации являются методы диагностики асинхронного двигателя, основанные на анализе электрических параметров двигателя, а именно спектров напряжений и токов. А также выдвинуто требование к частоте дискретизации измерительных каналов для этого метода.
Дальнейшие исследования направлены на следующие аспекты:
- Выбор оптимальной структуры схемы практической реализации метода диагностики асинхронного двигателя;
- Расчет и выбор необходимого оборудования;
- Представление рабочей схемы для практической реализации диагностики асинхронного двигателя в процессе его эксплуатации.
На момент написания данного реферата магистерская работа еще не завершена. Ориентировочная дата завершения магистерской работы: июнь 2017 года. Полный текст работы и материалы по теме могут быть получены у автора или его руководителя после указанной даты.
Источник