Методы ремонт усиление стальных резервуаров

3.9. Бандажирование стенок резервуаров

3.9. Бандажирование стенок резервуаров

3.9.1. Усиление эксплуатирующихся резервуаров бандажами проводится с целью восстановления несущей способности нижних поясов стенки (1—4 пояс), имеющих коррозионный износ в пределах до 20 % от первоначальной толщины листа.

3.9.2. Бандажные усиления для подкрепления стенки и повышения несущей способности, надежности конструкции в эксплуатации целесообразно устанавливать на резервуарах вместимостью 1000—10 000 м 3 как полистовой, так и рулонной сборки.

3.9.3. Бандажные усиления представляют собой разъемные стальные кольца, состоящие из 4—6 полос (в зависимости от длины полосы и диаметра резервуара, стянутых с помощью резьбовых соединений.

На резервуаре может быть установлено 10—20 колец по высоте четырех поясов в зависимости от коррозионного износа металла и геометрического сечения полосы. Необходимое число колец определяется расчетом.

3.9.4. Монтажные работы по установке бандажных усилений следует совмещать с производством ремонта резервуара, подготовленного к выполнению огневых работ.

3.9.5. Решение на усиление резервуара или группы резервуаров бандажами принимается техническими службами нефтебаз, территориальных управлений после получения результатов обследования и комплексной дефектоскопии.

3.9.6. На каждый резервуар, намеченный к производству работ по усилению, должен разрабатываться индивидуальный технический проект с учетом технического состояния резервуара. В проекте приводятся:

  • краткие сведения о техническом состоянии резервуара;
  • расчетная часть;
  • организация монтажных работ;
  • рекомендации по дальнейшей эксплуатации усиленного резервуара.

3.9.7. Общие положения по бандажированию стенок резервуаров приведены в Рекомендациях по восстановлению несущей способности цилиндрических резервуаров способом усиления стенки стальными кольцевыми бандажами и Рекомендациях по эксплуатации резервуаров, усиленных методом постановки кольцевых бандажей (прил. 1, пп. 58, 59).

3.9.8. Резервуар после завершения комплекса ремонтных работ и монтажа бандажных усилений должен пройти гидравлические испытания согласно п. 3.10.15 настоящего Руководства. По завершении испытаний составляется акт о вводе его в эксплуатацию, в котором указывается предельный уровень наполнения усиленного резервуара.

© 2007–2021 «ХК «Газовик». Все права защищены.
Использование материалов сайта без разрешения владельца запрещено и будет преследоваться по закону.

Источник

Методы ремонта резервуаров РВС

При ремонте основания резервуаров подбивают края песчаной подушки, заполняют пустоты под днищем в местах хлопунов и исправляют просевшие участки и отмостки.

Для ремонта основания применяют гидроизолирующий состав (черный или гидрофобный грунт), состоящий из смеси вяжущего вещества и песка. Песок должен быть крупностью 0,1-2 мм. Содержание в песке глинистых и песчаных частиц крупностью менее 0,1 мм должно быть не более 30-40%. В качестве вяжущего вещества применяют жидкие битумы марок А-6 и Б-6 или малосернистый мазут. Содержание кислот и свободной серы в вяжущем веществе не допускается. Количество вяжущего вещества в готовом изолирующем слое принимают в пределах 8-10% по объему смеси.

Ремонт основания выполняют с подъемом резервуара. Для этого к стенке резервуара приваривают прерывистым швом ребра жесткости из швеллера или двутавра, подводят под них домкраты необходимой грузоподъемности и поднимают резервуар на высоту, превышающую величину осадки на 15-20 см. Затем подбивают просевшую часть основания изолирующим материалом до проектной отметки. Резервуар можно поднимать также домкратами, установив их в приямки под днищем резервуаров.

После опускания резервуара нивелируют окрайки днища.

Если под днищем выявлены пустоты или выпучины (рис. 1) размерами, превышающими допустимые, в днище вырезают отверстие диаметром 20-25 см, засыпают в пустоты изолирующую смесь и уплотняют ее. После этого на вырезанное отверстие устанавливают и приваривают накладку из листа толщиной 5 мм. Размеры накладки выбирают так, чтобы обеспечивался нахлест 30-40 мм.

Рис. 1. Методы ремонта пустот под днищем и выпучин в днище.

а — местная просадка основания; б — выпучина в днище; в — участок, отремонтированный методом установки наладки

Днища резервуаров подвержены коррозионному и механическому разрушению. Наиболее часто встречаются трещины в сварных швах и основном металле сегментов и окраек днища, вызванные концентрацией напряжений в нижнем узле резервуара. Для устранения таких трещин срезают уторный уголок (если он есть) длиной 250 мм в каждую сторону от трещины и выявляют границу трещины путем травления дефектного шва 10%-ным раствором азотной кислоты. Концы трещины засверливают сверлом диаметром 6-8 мм, после чего разделывают трещину под сварку.

В случае отсутствия технологической подкладки под шов устанавливают подкладку шириной 150-200 мм, толщиной 5-6 мм

Рис. 2. Трещины в сварных швах сегментов и их устранение.

1 — подкладка; 2 — место трещины; 3 — шов, прикрепляющий сегмент к корпусу; 4 — уторный уголок.

В случае отсутствия технологической подкладки под шов устанавливают подкладку шириной 150-200 мм, толщиной 5-6 мм и длиной, несколько превышающей длину трещины. Заварив трещину, приваривают корпус в месте вырезки уторного уголка и торцы последнего к сегменту (рис. 2).

Аналогично устраняют трещины, распространившиеся из сварного шва на основной металл, а также мелкие трещины в основном металле окраек длиной до 100 мм.

Для устранения трещин длиной 200-300 мм в сегменте окрайки срезают уторный уголок на длину 1500 мм и участок сегмента (окрайки) шириной 500 мм с трещиной по середине. На это место подгоняют вставку встык с зазором 3-4 мм, устанавливают подкладки и приваривают вставку к сегментам окрайки днища и к стенке (рис. 3).

Трещины в швах и основном металле полотнища днища наблюдаются редко. Они появляются в местах пересечения швов. Причина образования таких трещин — отклонение от нормальной технологии сварки днищ резервуаров при их строительстве.

Рис. 3. Замена участка сегмента с трещиной.

а — технологические подкладки.

Рис. 4. Устранение больших выпучин в днище.

Выпуклости высотой до 200 мм устраняют путем заполнения пространств под ними гидроизоляционным материалом, а высотой более 200 мм удаляют. Для этого все сварные швы на участке выпуклости распускают газорезкой. Сильно деформированные листы удаляют и на их место подгоняют новые внахлестку. Сварку осуществляют в последовательности, указанной на рис. 4.

Если требуется замена днища полностью, резервуар поднимают на высоту 150-200 мм и вырезают днище. На отремонтированном основании собирают, сваривают и испытывают новое днище, затем опускают на него резервуар и соединяют днище с корпусом.

В корпусах резервуаров наблюдаются трещины в сварных швах и основном металле. Часто встречаются трещины в местах пересечений швов, вдоль и поперек швов. Продольные трещины в сварных швах, а также поперечные, не распространившиеся на основной металл, устраняют путем засверливания их концов, разделки дефектного места под сварку (под углом 60-70°) и двухсторонней заварки дефектных мест электродами диаметром 3 мм.

Для устранения продольных трещин длиной более 150 мм, начинающихся с любого горизонтального шва, а также поперечных трещин, выходящих на основной металл, вырезают дефектный участок (с трещиной посередине) шириной 1000 мм на всю высоту листа, разделывают кромки листов пояса резервуара и подогнанной вставки (рис. 5). Затем распускают горизонтальные швы в обе стороны от вставки по 500 мм, подгоняют вставку в стык или внахлестку и приваривают. Порядок производства сварочных работ при удалении листов с трещиной показан на рис. 6. Трещины в основном листе корпуса устраняют аналогично.

Рис. 5. Удаление горизонтальных и вертикальных сварных швов с трещиной

(цифры показывают последовательность сварки, стрелки — направление сварки).

Читайте также:  Кто может проводить проверку достоверности сметной стоимости капитального ремонта

Рис. 6. Технология производства сварочных работ при удалении листов с трещиной в основном металле.

Обозначения те же, что на рис. 5

Чтобы удалить пересекающиеся трещины в сварных швах (рис. 7), вырезают отверстие диаметром 500 мм с центром в точке пересечения сварных швов и устанавливают изнутри заплату диаметром 1000 мм. Толщина заплаты равна толщине листов этого пояса. Сначала сварку производят снаружи, затем внутри резервуара обратноступенчатым методом, длина ступени 200-250 мм.

Сравнительно часто встречается трещина по основному металлу I пояса, начинающаяся от места приварки резервуарного оборудования (рис. 8). В таких случаях лист удаляют полностью; иногда вырезают участок шириной не менее 2000 мм на всю высоту пояса. Новый лист монтируют, как описано выше.

При наличии расслоений, раковин и крупных вмятин, удаляют весь лист при помощи газорезки. Сборка и подгонка новых листов на ремонтируемое место зависит от их толщины. При толщине менее 5 мм листы собирают внахлестку, а при толщине 6 мм и больше — в стык. Размер нахлестки в пределах 30-40 мм.

При сборке листов в стык зазор между стыкуемыми элементами должен быть не менее 2 мм и не более 4 мм. При зазорах более 4 мм сварку ведут на подкладке толщиной, равной толщине листа. Свариваемые листы должны иметь скос кромок под углом 30-35°. При сварке необходимо следить, чтобы расстояние между пересекающимися сварными швами в днище и кровле было не менее 200 мм, а в корпусе резервуара не менее 250 мм.

Сварочные работы при ремонте резервуара ведут при положительной температуре окружающей среды. Ручную сварку при ремонте выполняют обратноступенчатым способом с двух сторон. Длина ступени не должна превышать 200-250 мм. Количество слоев швов зависит от толщины листов: при толщине 4-5 мм число слоев составляет 1, при толщине 6-7 мм — 2, при толщине 8-9 мм — 3 и при толщине 10-12 мм — 3-4.

Рис. 7. Устранение трещин, образовавшихся в месте пересечения швов.

Рис. 8. Трещина, начинающаяся от места вварки резервуарного оборудования.

1 — лист первого пояса; 2 — лист второго пояса, 3 — воротниковый фланец лазового люка, 4 — днище.

При сварке внахлестку размер ступени возрастает до 300- 500 мм. При капитальном ремонте резервуаров проверяют отклонение корпуса от цилиндрической формы при помощи отвеса. Эти отклонения могут быть в виде выпуклостей и вмятин. Они появляются при строительстве и в процессе эксплуатации резервуара и в основном в средних и верхних поясах, которые имеют меньшую жесткость; если стрела прогиба вмятин или выпуклостей превышает допустимую величину, их исправляют.

Допустимые величины отклонений поверхности (стрела прогиба) от вертикальной образующей цилиндра, соединяющей нижний и верхний края дефектного места, зависят от размеров дефекта и не должны превышать: 15 мм при длине дефекта по вертикали 1500 мм, 30 мм- при длине дефекта 3000 мм и 45 мм-при длине дефекта до 45000 мм.

При наличии в корпусе горизонтальных гофр с размерами, превышающими приведенные в табл. 1, их исправляют.

Для исправления вмятины в ее центр приваривают прерывистым швом круглую накладку из листовой стали толщиной 5-6 мм и диаметром 120-150 мм. К накладке приваривают серьгу. Правку производят при помощи трактора (ручной лебедки), трос от которого прикрепляют к серьге.

После правки дефектное место тщательно осматривают. Если не обнаружено трещин, изнутри резервуара на дефектное место прерывистым швом приваривают элемент жесткости — уголок, завальцованный по радиусу окружности резервуара, длиной, превышающей размеры вмятины на 25 мм. Если в листе образовалась трещина, его следует заменить.

Источник

Способы ремонта резервуаров путем их подъема или опускания

В настоящее время существует большая потребность в работах, связанных с восстановлением проектного положения крупногабаритных резервуаров. С удалением районов строительства крупных хранилищ нефти в места со слабонесущими, переувлажненными грунтами потенциально закладывается возможность развития неравномерных осадок оснований РВС. Поэтому важно разработать и научно обосновать простой и безопасный метод подъема крупногабаритных резервуаров.

В настоящее время существует несколько способов ремонта, позволяющих устранить различные виды осадок резервуаров. Все технологии можно разделить на два принципиально различных вида:

– технологии, предусматривающие опускание приподнятой части резервуара;

– технологии, предусматривающие подъем осевшей части резервуара. К первому типу относится метод желонок (горизонтального бурения). Суть метода поясняется на рис. 23. При помощи желонок бурятся отверстия под корпусом РВС. Диаметр желонок изменяется от 30 до 200 мм. Отверстия выполняются на нескольких уровнях по вертикали с шагом по периметру 1,25 м. После этого резервуар заполняется водой или нефтепродуктом, основание в месте ослабления отверстиями деформируется. При необходимости пробуренные отверстия разрушают воздуходувкой или струей воды.

Рисунок 23 – Способ ремонта резервуара при помощи желонок

Как отмечается в работах авторов, этим методом удается исправить осадки порядка 5 – 6 см, иногда до 10 см, но он обладает большой трудоемкостью. Приводится пример одного из ремонтов, когда было пробурено 3500 отверстий за 20 дней. Кроме того, таким способом можно исправить только осадки типа «крен».

Подобный метод устранения осадки разработан в УНИ В.В. Любуш-киным. Отличие заключается в том, что для ослабления несущей способности основания используется траншея (рис. 24).При воздействии веса от заполненного резервуара происходит выдавливание грунта из-под резервуара в предварительно выкопанную траншею.

В способе, предложенном УНИ (Уфимским нефтяным институтом), на практике очень сложно следить за изменением осадки в процессе заполнения резервуара и, по-видимому, невозможно остановить быстрый рост осадок (например, при потере устойчивости массива грунта) вследствие большой инертности «нагружающего устройства». Видимо, поэтому, несмотря на очевидную простоту, данные способы широкого практического применения не нашли.

Рисунок 24 – Способ, разработанный УНИ

Следующим способом ремонта резервуаров является способ двойного днища, применение которого для реконструкции действующих резервуаров, имеющих большой крен, дало хорошие результаты. Суть метода заключается в том, что на старом днище устраивается песчаная подушка и гидроизолирующий слой, монтируется новое днище и контурная плита (окрайка днища), удаляется часть стенки между старым и новым днищем, устраняется крен резервуара, затем приваривается днище к контурной плите и последняя к стенке. Этот метод позволяет устранить крен в пределах 1/500–1/300. Недостатком метода двойного днища является большая трудоемкость и большой объем сварочно-монтажных работ. В отечественной практике этот метод также широко применяется. Самой распространенной ошибкой при реализации данного метода является жесткое закрепление старого и нового полотнища днища и «подвешивание» окрайков.

Рассматриваемые далее способы относятся к технологии, предусматривающей подъем осевшей части резервуара.

В работе предлагается поднимать резервуар при помощи воздушной подушки. Сжатый воздух закачивается в специальные скаты, закрепленные на первом поясе резервуара и под днище РВС (рис. 25).Затем в образовавшееся пространство тремя насосами закачивают специальный быстросхватывающийся раствор. Приводится пример подъема этим способом крупногабаритного резервуара диаметром 76,5 м (его масса составляла 17 МН, давление под резервуаром достигало 0,004 МПа). Автор указывает, что таким способом удавалось поднимать и перемещать довольно крупные резервуары, а после ремонта основания вновь возвращать их на проектное положение.

По сравнению с другими способами подъема преимущество этого за­ключается в том, что не нужно применять дополнительных мер к обеспече­нию прочности днища, поскольку оно равномерно поднимается вместе со стенкой. В то же время для производства работ требуется произвести до­полнительную отсыпку грунта шириной 1,5–2 м, учитывая то, что диаметр резервуара составлял 76,5 м, получается значительный объем земляных работ. Для реализации проекта японскими фирмами использовались специ­альные материалы для скатов на основе нейлона, разнообразная строительная техника, например бетоносмесители двухковшовые с электронными дозаторами для приготовления быстросхватывающегося раствора, цементное хранилище на 600 кН с автоматическим подсчетом выдачи и многое другое. Очевидно, что применение этого способа ремонта в наших условиях крайне проблематично.

Читайте также:  Ремонт коробки передач ниссан тиида

По данным компании IТАС, большая часть неравномерных осадок ре­зервуаров в США устраняется при помощи воздушных подушек-домкратов. При этом предпринимаются дополнительные меры по обеспечению жест­кости днищ. Сами подушки изготавливаются из современных высокопроч­ных материалов, используемых даже при производстве бронежилетов. Для нагнетания воздуха применяются обычные компрессоры.

Известен способ подъема РВС при помощи наращивания обвалования и заполнения его водой. При этом резервуар всплывает. Очевидно, что для проведения дальнейших работ по ремонту необходима специальная техника, в частности манипуляторы. Этот способ также описан японскими иссле­дователями.

Рисунок 25 – Подъем резервуара при помощи воздушной подушки

Основным способом, применяемым как у нас в стране, так и за рубежом, является способ с использованием механических подъемных устройств.

Действующей инструкцией по ремонту резервуаров предусматривается осуществлять подъем РВС в следующей последовательности. Резервуар освобождают от нефтепродукта, пропаривают и дегазируют, после чего к стенке резервуара через 2,5–3,0 м приваривают ребра жесткости из двутавра № 20 длиной 6–8 м. Под эти двутавры подводят домкраты и осуществляют подъем. Затем производят ремонт основания и срезают ребра жесткости. Недостатками метода является большая трудоемкость подгото­вительных работ, обусловленная необходимостью обязательной зачистки, пропарки, приварки ребер жесткости и непосредственно сварочными работами, а в последующем и демонтажем этих ребер. Утверждается, что рассматриваемая технология разработана только для резервуаров вместимостью до 5000 м 3 . И несмотря на имеющиеся серьезные недостатки, этот способ является до сегодняшнего дня единственным «узаконенным» способом подъема РВС и до недавнего времени применялся для ремонта крупногабаритных резервуаров.

Существует еще один способ ремонта резервуаров, при помощи лож­ных штуцеров, но он разработан для малогабаритных резервуаров и для данного исследования интереса не представляет. Попытки подъема РВС-20000 в районе г. Нижневартовска привели к возникновению аварийной ситуации.

Наиболее широкое распространение получили способы подъема РВС с применением гидродомкратов грузоподъемностью от 30 до 50 тс. Все они имеют много общего, но отличаются в основном местом приложения усилия от гидродомкрата.

Наиболее полно исследованным в настоящее время является способ подъема РВС при помощи инвентарных ребер жесткости. Этот метод является модификацией способа с приваркой ребер жесткости по окружности, но по сравнению с ним существенно снижает трудоемкость подготовительных робот. Однако авторы, указывают, что в местах соединения инвентарных ребер жесткости с крюками (рис. 26),приваренными к корпусу РВС, возникает моментное напряженное состояние, которое может спровоцировать потерю устойчивости резервуара при подъеме.

Известен другой способ подъема резервуаров, при котором возле резервуара отрывают приямки, частично разрушают фундаментное кольцо, кладут шпалы (рис. 27),на которые устанавливается гидродомкрат. При этом способе требуется удаление значительной части грунта, который за годы эксплуатации уже претерпел большую осадку, кроме того, при разрушении фундаментного кольца удаляется часть арматуры и обычно, впоследствии, качественно восстановить его не удается. Тем не менее, этот метод довольно часто применяется, хотя, по мнению ремонтных служб, он является более опасным (были случаи вырыва домкратов), чем рассматриваемые далее.

Рисунок 26 – Способ ремонта РВС с применением инвентарных ребер жесткости

Рисунок 27 – Способ ремонта РВС с устройством приямков

К следующей группе относятся способы с применением различных вспомогательных устройств. Способ, описанный выше, показан на рис 27.Здесь, как и в предыдущем случае, необходимо производить устройство технологического приямка. Остальные способы этого не требуют, необходимо лишь сделать небольшие углубления в фундаментном кольце для установки подъемных устройств. Автором настоящего исследования запатентована одна из разновидностей подобного устройства. На рис. 28показано устройство, которое использовалось при подъеме РВС-20 ООО на ЛПДС «Кондак. В данном случае были использованы гидродомкраты грузоподъемностью 2 МН. При включении одного гидродомкрата произошла местная потеря устойчивости стенки, поскольку к тому времени не были решены вопросы о порядке включения и расстановки гидродомкратов при подъеме.

Рисунок 28 – Способ ремонта РВС с применением подставок-подъемников

Рисунок 29 – Устройство для подъёма РВС

Наибольшее применение практике ремонта крупногабаритных резервуаров нашел способ, разработанный при участии УМН ЗиСЗС . Подъемник типа «ножницы» подводится под стенку резервуара в небольшое углубление, выполненное в фундаментном кольце, и производится подъем одновременно всеми установленными домкратами (рис. 30).Подъем обычно продолжается от 2 дней до недели. После чего под днище производится подбивка и резервуар опускают, затем выполняют гидроиспытания и дефектоскопию. Принцип работы устройства схематично показан на рис. 31.Существенным преимуществом метода является то, что перед проведением ремонтных работ не требуется зачистка и пропарка резервуара, поскольку отсутствуют огневые работы.

Рисунок 30 – Устройство «ножницы»

Рисунок 31 – Способ подъема peзервуара устройством «ножницы»:

1– неподвижная часть подъемника; 4–ось вращения; 2– подвижная часть подъемника; 5 – железобетонное кольцо; 3– домкрат; 6– стенка резервуара

Несмотря на, казалось бы, очевидные преимущества последнего способа, нередко происходят различные аварии при его практической реализации. Наиболее часто образуются трещины в днище, уторном шве и фундаментном кольце РВС. Наиболее часто встречающимся дефектом, который появляется в процессе некачественной подбивки, а выявляется уже па этапе гидроиспытании резервуара, является разрушение нахлесточного шва между полотнищем днища и окрайкой.

В зарубежных публикациях более сдержанно относятся к способам ремонта при помощи гидродомкратов, поскольку видят в них ряд трудно разрешимых проблем. Так, в работах некоторых авторов указывается, что подъем резервуаров большого объема домкратами для последующего устранения их неравномерной осадки представляется невозможным. Причины этого авторы видят в необходимости усиления днища резервуара, они считает, что обойтись без армирования днища невозможно. В других работах авторы полагают, что ремонт резервуара нередко, напротив, может привести к опасности увеличения деформаций металлоконструкций резервуара, при условии, что необходимо добавить, что нормативно-техническая документация допускает подъём резервуаров при помощи различных грузоподъемных механизмов: подъемных кранов или трубоукладчиков. Закрепление чаще всею производился за стенку РВС через ложные штуцера. Область применения данных технологий в документах не оговаривается, хотя разработаны они для резервуаров объемом менее 5000 м 3 . Попытки использования данных технологий при ремонтах крупногабаритных резервуаров практически всегда приводили к возникновению аварийных ситуаций, поэтому в данной работе они не рассматриваются.

Для исправления резервуаров, оболочка которых претерпела деформации, превышающие установленные стандартами нормы, применяют различные методы. При строительстве некоторых крупных нефтебаз и хранилищ работы по исправлению резервуаров стали частью технологии их строительства. Обычно такие работы выполняют после проведения гидравлических испытаний и обжатия основания после глубинного водопонижения и т.п., а также в порядке планового ремонта и при развитии опасных неравномерных осадок основания в эксплуатационный период.

Подобные работы сопровождаются ремонтом несущего слоя основания или заменой части фундамента, пришедшего в негодность. В большинстве

Специальная методика комплексного ремонта фундамента и исправления оболочки резервуара разработана в Японии. Она обеспечивает подъем на значительную высоту (1,7 м) всей стенки или большей ее части с тем, чтобы краевые участки фундаментов были доступны для людей и механизмов. Для обеспечения оптимальных условий работы подъемники размещают с шагом до 2 м. При этом применяют средства синхронизации работы подъемников, представляющие собой единую гидравлическую систему управления ими. Скорость подъема определяется проектом и выдерживается с помощью автоматики. Ремонтные работы на практике выполняются по специальным проектам, при разработке которых учитываются тип фундамента и резервуара, его вместимость, степень неравномерности осадки основания. В результате по этим данным выбирают подъемное оборудование, определяют число опор и порядок их размещения в плане, а также выполняют расчет напряжений в оболочке в зависимости от расстояния между подъемниками. При необходимости разрабатывают способ усиления конструкций резервуара, его фундамента и основания.

Читайте также:  Таблица планового ремонта оборудования

Перед началом восстановительных работ резервуар промывают, де­монтируют трубопроводы, устанавливают заглушки и удаляют все вспомогательное оборудование. Вокруг резервуара освобождают пространство шириной не менее 2.5 м. Опоры подъемников устанавливают на бетонных фундаментах, а подъемники закрепляют анкерными болтами. С внешней стороны устанавливают опорные выступы, строительные леса и подъемники. Подъемники устанавливают строго вертикально. Затем устанавливают насосную систему, пульт управления, клапаны и стойки, прокладывают электрокабели и трубопроводы между устройствами, обеспечивающими равномерный подъем, крепят измерительные приборы, позволяющие регистрировать высоту подъема и опускания резервуара, а также его горизонтальность. После этого резервуар поднимают за счет повышения давления в гидросистеме и регулярно контролируют осадку опор и подъемников, а также измеряют напряжения в точках опор резервуара. Такой же тщательный контроль производится при опускании резервуара после усиления основания.

Эта методика успешно применялась при восстановлении нефтяного резервуара вместимостью 10 тыс. м 3 (высота 22,7 м, диаметр 22,4 м, масса конструкций 270 т). Для подъема использовали 36 подъемников с максимальной грузоподъемностью 25 т. расположенных на расстоянии 2 м друг от друга. Работы выполнялись в соответствии с японскими нормами по технике безопасности при проведении восстановительных работ, связанных с подъемом и опусканием нефтяных резервуаров, получивших неравномерную осадку.

Большие восстановительные работы, но обеспечению нормальной работы резервуара вместимостью 24 тыс. м 3 для аммиака были проведены в Индии. Резервуар имел диаметр 41,6 м и высоту 17,4 м. Железобетонные набивные сваи диаметром 50 см изготовлены по методу «Франки» с помощью извлекаемой обсадной трубы, погружавшейся до глубины ЗЛД—34,7 м. Вдоль восьми концентрических окружностей располагалось 217 свай с расстоянием между ними в ряду, равным пяти диаметрам сваи. Верх свай был объединен гибкой плитой из армированною бетона, установленной примерно на расстоянии 1 м над поверхностью земли для обеспечения вентиляции и предотвращения повреждений, связанных с заморозками на поверхности. При толщине плиты в центре 50 см, а на периметре 40 см обеспечивался необходимый уклон от центра к периферии. Проектная несущая способность свай составляла 880 Н. Сваи проходили через слой слабой морской глины толщиной 26 м и заглублялись примерно на 8 м в подстилающий слой туго-пластичной глины.

До введения в эксплуатацию резервуар был подвергнут гидравлическо­му испытанию водой. Предполагаемая испытательная нагрузка составляла 137,5 МП, а вода закачивалась в резервуар со скоростью, обеспечивавшей приращение нагрузки около 2,7 МП в день. При достижении нагрузки 72 МН на сваях крайнего ряда были отмечены трещины. Вода из резервуара была откачана. Измерения показали, что плита под днищем прогнулась, приняв блюдцеобразную форму, а отклонение в центре от проектного положения составило 45 см без значительных деформаций на периферии.

Последующие статические испытания показали, что несущая способность некоторых свай не превышала 180 кН, в то время как другие имели незначительную осадку даже при нагрузке 1400 кН. Резкое уменьшение несущей способности некоторых сван может быть объяснено разрывом ствола сваи при бетонировании или значительным сужением по глубине основания.

Перемещение резервуара под новый фундамент было сопряжено с высокой стоимостью работ и значительным временем на его устройство. В результате было принято предложение, предусматривающее проведение ремонтных работ с частичной компенсацией фундамента и подъем деформированной плиты ростверка с восстановлением ее первоначальной конфигурации.

Подъем плиты осуществлялся несколькими этапами. Плиту временно поддерживали с помощью стальной рамы, которую закрепляли ниже уровня выреза. Все сваи, за исключением свай крайнего ряда, разрезали для введения гидравлических и винтовых домкратов. Арматурные стержни разрезали и отгибали, а верхнюю и нижнюю поверхности вырезанной части сваи выравнивали с помощью раствора. В вырезанную часть сваи вставляли деревянные прокладки и три домкрата – два винтовых грузоподъемностью 120 кН и один гидравлический грузоподъемностью 300 кН. После этого поддерживающие стальные рамы убирали. Расстояние между винтовыми домкратами было достаточным для установки между ними гидравлического домкрата. Подъем выполняли с помощью гидравлических домкратов, а регулировку винтовых домкратов проводили после каждой операции подъема. Подъем лонной плиты контролировали нивелиром, установленным на жестко фиксированной деревянной платформе. Кроме того, постоянно проводили измерение расстояний между поверхностями зазора, вырезанного в сваях.

Таким образом, для достижения проектного подъема непрерывно работали 350 винтовых домкратов н 22 гидравлических домкрата грузоподъемностью 300 кН и выше. За первый час работы подъем был осуществлен примерно на 2 см. Полный подъем в центре (на 55 см) был достигнут за 10 дней. В течение этого времени производилось наблюдение за уровнем донной плиты, и ее последовательный подъем на разных стадиях представлялся в графической форме (рис. 32).

Рисунок 32 – Положения плиты ростверка:

1 – после подъема; 2– промежуточное; 3 – после гидроиспытаний

После завершения подъема домкраты убирали, а на их место в зазоре сван плотно забивали стальную таврообразную плиту.

Для увеличения жесткости подземной конструкции и уменьшения осадки был сооружен дополнительный фундамент диаметром 42.5 м. глубиной около 5 м. Фрагмент такого фундамента в разрезе приведен на рис.33.

Поскольку сван внешнего ряда имели высокую несущую способность и незначительные осадки при нагрузке 880 кН в отличие от свай внутренних рядов, они были изолированы от дополнительного фундамента с помощью кожухов, что позволяло им работать отдельно. Такая система, по мнению авторов работы, давала возможность дополнительному фундаменту саморегулироваться при осадке.

При повторном испытании водой до нагрузки 50 МН существенных осадок фундамент не испытывал. В центре резервуара полные осадки плиты ростверка и дополнительного фундамента были почти равными. Однако на периферии осадки дополнительного фундамента превышали осадки соответствующих точек плиты ростверка. Очевидно, это было связано с работой кожухов, допускающих свободное движение свай крайнего ряда относительно дополнительного фундамента. При загружении до нагрузки 11,4 МН максимальная разность осадок в различных точках дополнительною фундамента составляла 23 мм, а его максимальный наклон был равен 1/1130. Максимальная разность осадок в различных точках дополнительного фундамента составляла 23 мм, а его максимальный наклон был равен 1/1130. Максимальная разность осадок в различных точках плиты составляла 34 мм, а осадка по периметру резервуара изменялась от 63 до 90% осадки ее в центре. Состояние основания и фундамента резервуара было признано нормальным, и в дальнейшем он был введен в эксплуатацию и заполнен жидким аммиаком.

Рисунок 33 – Усиление свайного фундамента резервуара

1 – резервуар; 2 – плита ростверка; 3 – кольцевая стена в грунте; 4 – кожух из монолитного бетона; 5 – железобетонное ребро дополнительной плиты; 6 – торкретбетон;

Источник

Оцените статью