- Система подсветки ноутбука, её ремонт или что делать, если не светится экран ноутбука
- Что такое система подсветки матрицы ноутбука и зачем она нужна
- Основные типы поломок системы подсветки
- Вышла из строя лампа подсветки
- Неисправен преобразователь напряжения
- Не подаётся питание на инвертор
- Повреждён шлейф монитора
- Ноутбук ремонт инвертора монитора
- Ремонт и обслуживание инверторов питания ламп подсветки ЖК панелей ноутбуков
- Рекомендуем к данному материалу .
Система подсветки ноутбука, её ремонт или что делать, если не светится экран ноутбука
Жидкокристаллический дисплей — это плоский дисплей, использующий в своей конструкции жидкие кристаллы. Именно такие дисплеи используются в ноутбуках, являясь самой дорогостоящей и хрупкой его частью.
Жидкокристаллический экран обеспечивает вывод графической и текстовой информации и является сложным устройством. Он состоит из жидкокристаллической матрицы(стеклянных пластин, между которых расположены жидкие кристаллы), системы подсветки, шлейфа, управляющей платы и корпуса, в который заключены все компоненты.
В этой статье мы разберём все виды поломок, которые происходят с системой подсветки матрицы ноутбука, основанных на лампах подсветки.
Что такое система подсветки матрицы ноутбука и зачем она нужна
Система подсветки обеспечивает экран светом, который проходя через матрицу, формирует изображение.
Сама система подсветки состоит из двух основных компонентов: самой лампы подсветки и инвертора напряжения.
Лампа подсветки как раз и есть тот элемент подсветки, обеспечивающий матрицу светом. В качестве лампы подсветки выступают обычные флуоресцентные лампы с холодным катодом, которые иногда принято называть лампами дневного света.
Другим, не менее важным компонентом подсветки, является инвертор. Для работы лампы подсветки нужно обеспечить её напряжением в 1000 вольт, а напряжение питания ноутбука всего 15-20. Инвертор преобразовывает напряжение в высоковольтное. Инвертор состоит из трансформатора и платы управления. Кроме преобразования напряжения он выполняет ещё рад различных функций — регулирует яркость подсветки, обеспечивает защиту от перезагрузок и коротких замыканий и прочее.
Основные типы поломок системы подсветки
Если у Вас пропало изображение на экране или появились проблемы с его яркостью, причину проблемы скорее всего стоит искать в работе системы подсветки. Из-за её комплексного устройства, причин выхода из строя подсветки может быть несколько. Вот основные из них:
1. Вышла из строя лампа подсветки.
2. Вышел из строя инвертор.
3. Не подаётся питание на инвертор.
4. Повреждён шлейф матрицы.
Ниже мы рассмотрим все причины подробнее, укажем их основные признаки и причины возникновения.
Вышла из строя лампа подсветки
Лампа подсветки, как и любая другая лампа имеет свой ресурс работы. Со временем она может перегореть. Если яркость экрана уменьшилась или изображение на экране приобрело красноватый оттенок, особенно по углам экрана — это верный признак того, что у Вас скоро перегорит лампа. Лучше предупредить этот процесс и при покраснении экрана или уменьшении яркости лучше сразу обратится к специалистам сервисного центра. Если не сделать это вовремя, вместе с лампой подсветки может выйти из строя и какой либо компонент управляющего модуля посветки (например, плата управления инвертора). Это происходит от того, что при использовании перегорающей лампы увеличивается её потребление тока.
Но в некоторых случаях лампа подсветки выходит из строя внезапно. При этом экран остаётся тёмным, без изображения на нём. Причиной выхода из строя могут послужить заводской брак, короткое замыкание, удар об корпус ноутбука и прочие причины.
Отремонтировать лампу нельзя, её можно только заменить. Из-за особенностей конструкции, лампа подсветки является частью матрицы и её замена — это очень тонкая и сложная операция. Ни в коем случае не проводите её самостоятельно! При отсутствии опыта и нужных инструментов и условий работы Вы рискуете повредить самую дорогую часть ноутбука и её ремонт или замена обойдётся значительно дороже, чем замена лампы в сервисном центре. Выполнять процедуру должен квалифицированный и опытный специалист сервисного центра. Для представления о сложности операции, ниже будет приведена последовательность действий при замене лампы подсветки.
Сначала специалист снимает матрицу и разбирает её. Получив доступ к лампе, он её меняет. Стоит учитывать, что очень трудно найти оригинальную лампу и зачастую приходится искать её аналог. После замены лампы матрица собирается и ставится на место и ноутбук проходит тест на корректную работу лампы.
Как следует из вышесказанного, ремонт очень тонкий, и выполняться он может только в сервисном центре.
Неисправен преобразователь напряжения
Инвертор состоит из двух основных компонентов — трансформатора и платы управления и выйти из строя может любой из них или выход из строя всего инвертора. Причиной поломки являются короткие замыкания, перебои с электропитанием, физическое воздействие и прочие причины.
При выходе из строя трансформатора экран остаётся тёмным при включении. Это связанно с тем, что на лампу не подаётся нужное напряжение и она попросту не включается.
Вышедший из строя трансформатор не подлежит ремонту. Специалистами подыскивается его аналог и он подвергается замене.
Внешние признаки неисправности платы управления могут быть очень разнообразными. Это может быть тёмный экран при включении, мерцание экрана, самостоятельное изменение яркости, самостоятельное отключение подсветки после некоторого времени работы.
Плата управления состоит из множества электронных компонентов и её ремонт в ряде случаев осуществляется заменой сгоревших элементов на плате. В ряде случаев ремонт невозможен или его стоимость сравнима с ценой новой платы. Плата меняется на её аналог.
Если требуется заменить сам инвертор, его копию найти сложно и поэтому иногда приходится искать похожую модель и переделывать разъёмы его подключения к лампе.
Все операции по ремонту и замене инвертора очень сложные. Диагностику и ремонт должны проводить в сервисном центре с помощью специального оборудования и с наличием большого опыта. Не пытайтесь самостоятельно ремонтировать и менять инвертор — Вы рискуете повредить матрицу.
Не подаётся питание на инвертор
При отсутствии подачи питания на инвертор экран в любом случае остаётся тёмным при включении . Причиной отсутствия питания может стать либо обрыв кабеля питания к инвертору, либо поломка контроллера питания на материнской плате.
В случае обрыва провода, производится его замена. Если же проблема в контроллере питания — производится диагностика для выявления неисправного компонента и производится его замена или ремонт.
Любая работа с цепями питания и материнской платой очень тонкая. Кроме паяльного станка и профессионального тестера требуются ряд других сложных инструментов и идеально чистое помещение. Диагностику и ремонт проводите только в сервисном центре.
Повреждён шлейф монитора
Ещё одной причиной неработоспособности системы подсветки может быть повреждение шлейфа идущего к ней от материнской платы. Как и в предыдущем случае, экран остаётся тёмным.
Причиной повреждения является обычно пережим и повреждение шлейфа крышкой ноутбука. Для осуществления ремонта ноутбук разбирают, а шлейф меняют. Разборку ноутбука и замену шлейфа следует осуществлять только в сервисном центре, во избежание повреждения матрицы или материнской платы ноутбука.
Методы профилактики неисправностей системы подсветки
Система подсветки — важная часть экрана ноутбука и её нормальная работа обеспечивает качественное изображение. Для сокращения расходов и предупреждения повреждений системы подсветки и прочих компонентов ноутбука, следует придерживаться следующих простых правил:
1. Избегайте ударов об корпус ноутбука. Часто лампы бьются и выходят из строя именно при физическом воздействии. Не лишним будет переносить ноутбук в специальной сумке, чтобы уменьшить риск удара о корпус.
2. Закрывайте крышку аккуратно и медленно. От быстрого и неаккуратного закрытия крышки может треснуть экран, повредится шлейф, идущий к системе подсветки, и могут порваться шнуры питания.
3. Не включайте ноутбук в сеть с перебоями напряжения или через адаптер, не предназначенный для этой модели. Это приводит к повреждению цепей питания.
4. При покраснении или изменении яркости экрана отнесите ноутбук на диагностику и ремонт в сервис-центр. Это предупредит поломку всей системы подсветки.
5. Не отдавайте устройство на ремонт непроверенным и неквалифицированным специалистам. Это может привести к более серьезной поломке.
Берегите свои деньги и своё время. При поломке такой сложной системы, как система подсветки, помочь Вам смогут только в сервисном центре. Только там есть чистые помещения для ремонта, нужные дорогостоящие инструменты для устранения неисправностей и опытные специалисты. К тому же не забывайте, что залогом успешной и быстрой работы является своевременное обращение к специалистам.
Источник
Ноутбук ремонт инвертора монитора
9zip.ru Ремонт домашней электроники
Самостоятельный ремонт инвертора подсветки экрана ноутбука
В ремонте — ноутбук Samsung R505 со следующим «диагнозом»: не работает экран. При включении загораются индикаторы, запускаются жёсткий диск и вентилятор, слышны звуки перемещения головок винчестера. Это — признак того, что неисправностей в основной части нет.
Экран тёмный, но если посветить фонариком под определённым углом, то начинает просматриваться изображение. Это говорит о том, что неисправна подсветка дисплея.
Как вы уже знаете, часто выходит из строя сама лампа подсветки, и её нужно просто заменить. Но сначала нужно убедиться, в ней ли дело. В подсветке есть ещё так называемый «инвертор» — маленькая платка, которая из низкого напряжения примерно в 14 вольт делает высокое, необходимое для питания лампы с холодным катодом.
Итак, разбираем дисплей, отворачивая винтики и снимая лицевую панель. Отключаем лампу от инвертора и подключаем вместо неё новую — лампа не горит. Питающие напряжения на плату инвертора приходят, сигналы управления тоже есть (разъём 1 ). Делаем вывод о неисправности инвертора.
Проверяем лампу, подключая её к внешнему, рабочему инвертору — лампа не горит. Делаем предположение о неисправности лампы.
Ремонтировать будем последовательно.
Инвертор устроен очень просто: микросхема-контроллер ( 3 ) генерирует частоту и следит за током лампы. Две сборки полевых транзисторов ( 4 и 5 ) «качают» первичную обмотку повышающего трансформатора ( 6 ). Вот и весь инвертор. Казалось бы, применение микросхемы спец.контроллера должно уберегать инвертор от любых неисправностей. Но, как видим на практике, не уберегает.
Начинаем проверять детали. Оказывается перегоревшим SMD-предохранитель ( 2 ). Он одноразовый. Проверяем сборки полевиков — один P-канальный транзистор пробит накоротко. Это бывает при перегрузке: либо короткое замыкание в первичной обмотке повышающего трансформатора, либо замыкание на выходе ( 7 ).
Сборки полевиков здесь применены AO4604. Вместо них можно использовать IRF7319 или IRF7309. Возможно, подойдут: IRF7389, NDS8839, NDS8858, Si4539DY, Si4542. Более подробно — в даташитах, чтобы совпадали по распиновке и параметрам. К сожалению, в наличии из этого не оказалось ровным счётом ничего. Поэтому было принято решение отогнуть от платы выводы той части сборки, которая оказалась неисправной, и припаять проводками транзистор «навесным монтажом». В качестве транзистора был выбран древний, но хороший SMD10P — «с запасом». SMD-предохранитель заменён перемычкой.
После замены деталей инвертор успешно запустился на новую лампу. Со старой лампой проверять не рискнули — и правильно сделали. Так как было подозрение на её неисправность, решено её извлечь. Для этого откручиваются металлические пластины по бокам дисплея, после чего весь «Бутерброд» стёкол и плёнок извлекается из металлической оправки. Внимание! Нельзя допускать расслоения элементов дисплея, так как туда тут же попадёт пыль, удалить которую будет практически невозможно.
В процессе извлечения лампы обнаружилось, что один из концов её силиконового изолятора почернел и имеет следы копоти. Вот и обнаружилась причина выхода из строя инвертора. На одном из выводов лампы происходило искрение, либо между оторвавшимся проводом и выводом, либо между выводом и металлической оправкой дисплея. В любом случае, провод от лампы уже отгорел. Повышенный ток привёл к перегрузке одного из транзисторов, и когда тот перегорел, перегорел и предохранитель. Что характерно, навороченная микросхема-контроллер даже не заметила перегрузки.
Провод был припаян к лампе, заизолирован термоусадочной трубкой. После сборки дисплея и подключения инвертора, на экране появилось полноценное изображение, яркость регулировалась в нужных пределах.
Прогон в течение нескольких часов показал надёжную работу инвертора. Ремонт закончен.
Понравилась статья? Иосиф Виссарионович говорит: поделись с друзьями! | Хочешь почитать ещё про ремонт электроники? Вот что наиболее популярно на этой неделе: Источник Ремонт и обслуживание инверторов питания ламп подсветки ЖК панелей ноутбуковЭкраны ноутбуков представляют собой ЖК панели, подсветка которых (в основном это касается бюджетных устройств) осуществляется электролюминесцентными лампами холодного свечения (CCFL). В большинстве ноутбуков используется одна лампа, установленная снизу, либо лампа в форме буквы Г. «Поджиг» лампы, а также ее питание в рабочем режиме обеспечивает DC/AC-конвертор (далее — инвертор). Инвертор должен выполнить надежный запуск CCFL-лампы напряжением до 1000 В и ее стабильное свечение в течение длительного времени при рабочем напряжении 500. 800 В (в зависимости от размера экрана). Подключение ламп к инверторам осуществляется по емкостной схеме. Рабочая точка стабильного свечения располагается на линии пересечения нагрузочной прямой с графиком зависимости тока разряда от напряжения, приложенного к лампам. В лампах создаются условия для управляемого тлеющего разряда, рабочая точка находится на пологой части кривой, что позволяет добиться стабильного свечения ламп в течение длительного времени, а также обеспечить эффективное управление яркостью. Инвертор выполняет следующие функции:
Структурная схема инвертора На рис. 1 показана типичная структурная схема инвертора питания CCFL-ламп в ноутбуках. Инвертор питается постоянным напряжением 5. 20 В от источника питания ноутбука. Сигнал включения инвертора от центрального процессора ноутбука поступает на ШИМ контроллер. Сформированные этим узлом импульсы поступают на силовой ключ, коммутирующий ток в первичной обмотки импульсного трансформатора. На вторичной обмотке трансформатора формируется высоковольтное синусоидальное напряжение, которое обеспечивает «поджиг» CCFL-лампы. После поджига лампы ее напряжение питания снижается до рабочего уровня (около 500 В) и стабилизируется с помощью обратной цепи. Цепь контроля обеспечивает стабильность работы ШИМ контроллера, а также защиту от короткого замыкания, перенапряжения и токовой перегрузки. Рис. 1. Типичная структурная схема инвертора питания CCFL-ламп в ноутбуках Представленная блок-схема практически реализуется как в дискретном, так и в интегральном исполнении. Инвертор выполняется на отдельной печатной плате (см. рис. 2) и соединяется с материнской платой ноутбука и CCFL-лампой с помощью гибких кабелей. Рис. 2. Внешний вид инверторов питания CCFL-ламп ноутбуков Различные производители ноутбуков используют свои модификации инверторов, некоторые из них представлены в этой статье. Как правило, сигналы, поступающие на контакты интерфейсного разъема инверторов имеют, следующие обозначения: ENA — включение, VIN — питание, BRT ADJ-регулировка яркости. Принципиальные электрические схемы инверторов Рассмотрим принципиальную схему инвертора, применяемого в ноутбуках фирмы SAMSUNG (рис. 3). Рис. 3. Принципиальная электрическая схема инвертора, применяемого в ноутбуках SAMSUNG Через разъем CN1, соединяющий инвертор с основной платой компьютера, поступают напряжение питания +12 В (DC_IN), напряжение включения инвертора +1,5 В (BACKLIT_ON), а также напряжение регулировки яркости +0,1. 0,5 В (BRT_ADJ). Основой этого инвертора является двухтактный автогенератор на элементах Q5, Q6, T1. Рабочая частота автогенератора определяется индуктивностью первичных обмоток Т1 и параметрами транзисторов. Автогенератор питается от источника питания ноутбука через понижающий DC/DC-конвертор на элементах Q3, Q4, L1, D2. Схема на элементах U1A и и1В формирует управляющий ШИМ сигнал, которым коммутируется ключевой каскад Q3, Q4, и задает рабочий цикл схемы. Управляющий сигнал на входе компаратора и1В складывается из сигнала обратной связи, формируемого из выходного напряжения инвертора, и сигнала регулировки яркости BRT_ADJ, формируемого процессором ноутбука. Довольно распространен инвертор (рис. 4), в котором в качестве ШИМ контроллера применяется ИМС MP1101 фирмы MPS. Подобный инвертор используется в ноутбуках HEWLETT PACKARD и COMPAQ. Рис. 4. Принципиальная электрическая схема инвертора, применяемого в ноутбуках HEWLETT PACKARD и COMPAQ Особенностью схемы на ИМС МР1101 является минимальное число внешних компонентов. В состав микросхемы, помимо собственно ШИМ контроллера, входят силовые МОП транзисторы (N-MOSFET), поэтому отпадает необходимость во внешних транзисторах. Выходной каскад реализован по мостовой схеме. Яркость регулируется импульсным сигналом BURST (контакт 3 JP1), который подается на выв. 3 (ByrST) микросхемы. Аналоговый вход регулировки (выв. 1) не используется и подключен к опорному напряжению 5 В (выв. 17). Напряжение включения ноутбука +4,5 В поступает на выв. 4 ИМС. Инвертор вырабатывает напряжение питания лампы 780 В с частотой 70 кГц. Он обеспечивает напряжение поджига лампы около 1,5 кВ. На рис. 5 показана схема инвертора Sumida ML1, который используется в ноутбуках Hewlett PACKARD. Основа данного инвертора — микросхема OZ9938(U2) фирмы О2MICRO. Рис. 5. Принципиальная электрическая схема инвертора Sumida ML1, применяемого в ноутбуках НР Микросхема имеет узлы защиты от короткого замыкания в нагрузке и от разрушения (обрыва) CCFL-ламп. Ток лампы контролируется цепью D1 R28 C2, сигнал с которой поступает на выв. 5 (ISEN) контроллера OZ9938. Напряжение на CCFL-лампе контролируется цепью С2 С5 R3 R5 R6 R11 D2, сигнал поступает на выв. 6 (VSEN). ИМС OZ9938 вырабатывает разнополярные импульсы, которые поступают на полевые транзисторы в составе сборки U1. Стоки транзисторов нагружены на первичную обмотку трансформатора Т1. В отличие от типовой схемы включения OZ9938, в которой к инвертору подключается от 2-х до 6-ти CCFL-ламп, при использовании в ноутбуках (одна CCFL-лампа) нет необходимости подключать дополнительные узлы, тем самым увеличивается стабильность работы, надежность и долговечность инвертора. Инвертор ALPS KUBNKM (рис. 6) используется в частности, в ноутбуках DELL, он выполнен на базе контроллера OZ960 фирмы O2MICRO. Рис. 6. Принципиальная электрическая схема инвертора ALPS KUBNKM, применяемого в ноутбуках DELL На плате инвертора установлен операционный усилитель типа LM358, схема включения которого приведена на рис. 7. Рис. 7. Схема включения LM358 и расположение выводов в корпусе DIP/SO Эта ИМС используется для питания светодиодов подсветки клавиатуры, расположенных на этой же плате. Этим обеспечивается подсветка экрана и клавиатуры при включении инвертора в рабочий режим. Отличие этой схемы от предыдущих в том, что микросхема OZ960 имеет два выхода (выв. 11, 12 и 19, 20), каждый из которых рассчитан на подключение двух МОП транзисторов с разной проводимостью каналов (N- и P-MOSFET). Транзисторы в составе сборок U1 и U3 включены по мостовой схеме, нагрузкой служит первичная обмотка Т1. Такая схема включения позволила увеличить надежность схемы. Сигналы обратной связи по току и напряжению со вторичной обмотки по соответствующим цепям подаются на выв. 2 и 9 U2. Рабочая частота ИМС задается элементами С5, R4, подключенными к выв. 18 и 17 U2, и составляет 63 кГ ц. В режиме поджига частота возрастает до 75 кГц. Яркость регулируется аналоговым сигналом DIM с контакта 3 J1. При этом уровень 0,6 В соответствует минимальной яркости, а уровень 2,1 В — максимальной. Микросхема U2 питается напряжением 5 В (выв. 5) от источника питания ноутбука. Для питания выходного каскада инвертора от этого же источника подается 12 В. Эта цепь защищена предохранителем F1. В ноутбуках ACER применяется инвертор AMBIT. Он выполнен на базе ИМС OZ960 и дополнительного контроллера управления светодиодами подсветки клавиатуры OZ9950. На рис. 8 показана блок-схема микросхемы OZ9950, а на рис. 9 — схема ее включения. Рис. 8. Архитектура ИМС OZ9950 Рис. 9. Схема включения ИМС OZ9950 Эта часть схемы инвертора (рис. 9) применяется в сверхтонких ноутбуках, мобильных телефонах и карманных компьютерах для обеспечения подсветки матрицы с помощью сверхъярких светодиодов. Схема представляет собой повышающий DC/DC-конвертор на элементах L1, U2, D2, который управляется ШИМ контроллером U1. Микросхема OZ9950 работает на частоте 280 кГц. Сигнал обратной связи по току подается на выв. 2 напряжению — на выв. 4 (VSEN). Напряжение питания 5 В подается на выв. 5 U1 и на вход конвертора — дроссель L1. Напряжение аналоговой регулировки яркости подается на выв.3 U1. Уровень 0,8 В соответствует минимальной яркости, а уровень 1,4 В — максимальной. В режиме импульсной регулировки яркости сигнал частотой 100. 300 Гц подается на этот же вывод ИМС в диапазоне уровней 0,4. 1,4 В. Яркость регулируется изменением коэффициента заполнения (рабочего цикла) управляющего сигнала. Автор: Владимир Петров (г. Москва) Рекомендуем к данному материалу .Мнения читателейГеннадий / 26.01.2018 — 17:01 В пункте:Принципиальные электрические схемы инверторов Ошибки в предложении: абз.3 Основой этого инвертора является двухтактный автогенератор на элементах Q5, Q6, T1. Рабочая частота автогенератора определяется индуктивностью первичных обмоток Т1 и параметрами транзисторов. Правильно так:Основой этого инвертора является двухтактный автогенератор на элементах Q5, Q6, T1. Рабочая частота автогенератора определяется индуктивностью первичных обмоток Т1 и емкостью конденсатора C5. там-же:Схема на элементах U1A и и1В формирует управляющий ШИМ сигнал, которым коммутируется ключевой каскад Q3, Q4, и задает рабочий цикл схемы. Управляющий сигнал на входе компаратора и1В складывается из сигнала обратной связи, формируемого из выходного напряжения инвертора, и сигнала регулировки яркости BRT_ADJ, формируемого процессором ноутбука. Должно быть:Схема на элементах U1A и U1B формирует управляющий ШИМ сигнал, которым коммутируется ключевой каскад Q3, Q4, и задает рабочий цикл схемы. Управляющий сигнал на входе компаратора U1B складывается из сигнала обратной связи, формируемого из выходного напряжения инвертора, и сигнала регулировки яркости BRT_ADJ, формируемого процессором ноутбука. абз.7 Ток лампы контролируется цепью D1 R28 C2, сигнал с которой поступает на выв. 5 (ISEN) контроллера OZ9938. Должно быть:Ток лампы контролируется цепью D1 R28 C22, сигнал с которой поступает на выв. 5 (ISEN) контроллера OZ9938. абз.9 На плате инвертора установлен операционный усилитель типа LM358, схема включения которого приведена на рис. 7. Должно быть: Дополнительно на плате с инвертором установлен операционный усилитель типа LM358, схема включения которого приведена на рис. 7. В абз.13 удолите перенос на следующую строку.Должно быть так:В режиме поджига частота возрастает до 75 кГц. Яркость регулируется аналоговым сигналом DIM с контакта 3 J1. При этом уровень 0,6 В соответствует минимальной яркости, а уровень 2,1 В — максимальной. Микросхема U2 питается напряжением 5 В (выв. 5) от источника питания ноутбука. Для питания выходного каскада инвертора от этого же источника подается 12 В. Эта цепь защищена предохранителем F1. В последнем абзаце: Напряжение питания 5В подается на выв.5 U1 и на вход конвертора дроссель L1. Должно быть:Напряжение питания 5В подается на выв.8 U1 и на вход конвертора дроссель L1. Спасибо за статью. Александр / 15.11.2015 — 23:23 Спасибо за отличную статью. Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу: Источник |