Организация работ по ремонту тягового двигателя

Технология ремонта тягового электродвигателя

Автор работы: Пользователь скрыл имя, 26 Февраля 2015 в 14:05, курсовая работа

Описание работы

При ремонте работ в электропроцессах, а к таким относятся цех по ремонту ТЭД, в целях предупреждения травматизма, очень важно строго выполнять и соблюдать организационные мероприятия. На каждом предприятии при отсутствии должности главного энергетика, администрация назначает лицо, ответственное за электрохозяйство, в обязанность которого входят обучение, инструктирование и периодическая проверка знаний персонала предприятия.

Содержание работы

Введение………………………………………………………………………. 3
Конструкция и условия работы тягового электродвигателя…….……5
Конструкция и условия работы…………………………..………..……5
Методы ремонта и повышения надежности………………….…….…10
Периодичность и сроки плановых технических осмотров и ремонтов…………………………………………………………..……………11

Технология выполнения операций по ремонту тягового электродвигателя …………………………………………………………. …13
Основные неисправности тягового электродвигателя, их причины и способы предупреждения………………………………….………………….13
Способы очистки, осмотра и контроля деталей………..……………..16
Приспособления, технологическая оснастка, средства механизации и оборудование, применяемое при ремонте тягового электродвигателя………………………………………………………………18

Технология ремонта тягового электродвигателя ……. …..…………22
Технология ремонта тягового электродвигателя …………. ………22
Особенности сборки и проведения испытаний…………..…………. 27
Техника безопасности при ремонте и испытаниях………..………….27

Файлы: 1 файл

kursovaya_rabota_1_polugodie.doc

  1. Конструкция и условия работы тягового электродвигателя…….……5
    1. Конструкция и условия работы…………………………..………..……5
    2. Методы ремонта и повышения надежности………………….…….…10
    3. Периодичность и сроки плановых технических осмотров и ремонтов………………………………………………………… ..……………11
  1. Технология выполнения операций по ремонту тягового электродвигателя …………………………………………………………. …13
    1. Основные неисправности тягового электродвигателя, их причины и способы предупреждения………………………………….…… …………….13
    2. Способы очистки, осмотра и контроля деталей………..……………..16
    3. Приспособления, технологическая оснастка, средства механизации и оборудование, применяемое при ремонте тягового электродвигателя…………………………………… …………………………18
  1. Технология ремонта тягового электродвигателя ……. …..…………22
    1. Технология ремонта тягового электродвигателя …………. ………22
    2. Особенности сборки и проведения испытаний…………..…………. 27
    3. Техника безопасности при ремонте и испытаниях………..………….27

В настоящее время на железнодорожном транспорте все большее внимание уделяется развитию новых технологий, внедряемых в инфраструктуру железнодорожного транспорта. Применяются инновационные технологии эксплуатации и технического обслуживания подвижного состава. Рассматривая этапы модернизации подвижного состава и его узлов можно увидеть, что много внимания уделяется совершенствованию их формы и других качеств, направленных на повышение надежности эксплуатации современных поездов, которые постепенно внедряются на железнодорожном транспорте в настоящее время.

Тяговые двигатели электропоезда служат для преобразования электрической энергии в механическую, необходимую для вращения колесных пар моторного вагона. Современные тенденции увеличения межремонтных пробегов подвижного состава требуют совершенствования технологии ремонта, в том числе и тяговых двигателей электропоездов.

Целью данной курсовой работы является описание современных методов ремонта тяговых электродвигателей электропоездов. Задачей являются рассмотрение технологий технического обслуживания, ремонта и составление маршрутной карты. В качестве предложений рассматриваются современные методы ремонта и диагностики тяговых электродвигателей.

В качестве объекта исследования выбраны методы технологического процесса ремонта тяговых электродвигателей, а предметом исследования является сам тяговый электродвигатель. Исследования и выводы приведенные в курсовой работе основываются на данных, полученных из литературы и иных источников.

  1. Конструкция, условия работы и ремонта тягового электродвигателя
    1. Конструкция и условия работы тягового электродвигателя.

Тяговый двигатель электропоезда подвешен жестко к раме тележки, а корпус редуктора опирается на подшипники на оси колесной пары и подвешивается к раме тележки (Рис. 1).

Привод имеет одностороннюю зубчатую передачу( шестерня 5 и колесо 8). Тяговый момент передается от вала якоря тягового электродвигателя через упругую муфту 3, шестерню 5 и колесо 7 колесной пары 6. К раме тележки тяговый двигатель 1 жестко подвешивается лапами 2.

Двумя лапами тяговый двигатель установлен на опорные поверхности поперечной балки рамы тележки. Опорные поверхности имеют выступы, на которые устанавливают клинья. В клинья ввернут распорный вал с левой и правой резьбой, благодаря чему клинья перемещаются и притягивают тяговый двигатель к верхним опорным площадкам поперечных балок. Нижние опорные площадки тягового электродвигателя имеют резьбовые отверстия под болты крепления двигателя на поддерживающих кронштейнах средней части поперечной балки.

На электропоезда серии ЭТ2М устанавливают тяговые двигатели ТЭД-2У1.

Технические характеристики тягового двигателя

Номинальное напряжение, В. . . 750

Минимальная степень возбуждения, %. . 20

Мощность, кВт. . . . 235

Сила тока, А. . . . 345

Частота вращения, мин 1 . . . 1250

Масса, кг. . . . 2240

Марка щеток . . . ..ЭГ-2А

Высота щетки, мм:

Величина усилия нажатия на щетку, Н (кгс)……. 22,5 — 24,0 (2,2 — 2,4)

Количество щеток . . . ..8

Рис.2. Тяговый двигатель:

1 — вентилятор: 2 — задний подшипниковый щит; 3 — задняя крышка подшипника; 4 — подшипник; 5 — вал якоря; 6 — трубка смазки подшипника; 7 — вентиляционная решетка; 8 — остов (станина); 9 — якорь; 10 — кронштейн щеткодержателя; 11 — щеткодержатель; 12 — передняя крышка подшипника; 13 — передний подшипниковый щит; 14 — катушка главного полюса; 15 — сердечник главного полюса; 16 — сердечник дополнительного полюса; 17 — катушка дополнительного полюса

Рис.3. Якорь двигателя:

I — обмоткодержатель с вентилятором; 2 — втулка якоря; 3 — вал; 4 — бандаж; 5 — коллектор; 6 — нажимной конус коллектора: 7 — изоляционные манжеты; 8 — пластина коллектора; 9 — втулка коллектора; 10 — клин; 11 — обмотка якоря; 12 — сердечник якоря

Основными частями тягового двигателя являются станина 8 (рис. 2) и якорь 9.Станина имеет кронштейны для закрепления двигателя на тележке вагона и люки для входа и выхода охлаждающего воздуха, а также для осмотра и профилактики щеточно-коллекторного узла. В станине установлены главные полюсы 15 для создания основного магнитного потока и дополнительные полюсы 16 для создания магнитного поля в коммутационной зоне с целью улучшения коммутации тягового двигателя. Сердечники 15 главных полюсов собраны из фасонных листов, отштампованных из электротехнической стали, катушки 14 полюсов двухслойные, с обмотками из медной ленты. Сердечники 16 дополнительных полюсов отлиты из стали с последующей механической обработкой, а обмотки 17 катушек выполнены из медной проволоки и установлены на специальных планках. Изоляцией катушек главных и дополнительных полюсов служат стеклослюдинитовая лента и стеклолента. Катушки в сборе с полюсами пропитаны эпоксидным компаундом и образуют монолитную конструкцию. Устанавливают дополнительные полюсы в нейтральных плоскостях между главными полюсами.

Все основные детали якоря собраны на втулке 2 (рис.3), напрессованной на вал 3. Благодаря этому в случае необходимости можно заменить вал без нарушения целостности других элементов якоря. Сердечник 12 якоря набран из лакированных листов электротехнической стали, спрессованных между обмоткодержателем 1 и втулкой 9 коллектора. Обмоткодержатель 1 отлит из стали совместно с крыльчаткой вентилятора. Катушка 11 якоря состоит из семи одновитковых секций. Катушки и уравнители изолированы стеклослюдинитовой и стеклянной лентами. В пазовой части якоря обмотка удерживается клиньями 10, в лобовых частях — бандажом 4 из стеклобандажной ленты. Коллектор 5 имеет арочную конструкцию. Нажимной конус 6 армирован стеклобандажной лентой для создания необходимой изолирующей поверхности между токоведущими и заземленными частями. Изоляционные манжеты 7 выполнены из стеклослюдопласта. Якорь 9 (см. рис.1) вращается в роликовых подшипниках 4, наружные кольца которых запрессованы в отлитые из стали подшипниковые щиты 2 и 13. Эти щиты монтируют в горловину станины 8 при сборке двигателя. Для добавления смазки в подшипники служат маслоподводящие трубки 6 в крышках 3 и 12 подшипников. Щеткодержатели 11 изготовлены из латуни. Регулируют усилие нажатия пружины на щетку поворотом регулировочного винта нажимного устройства. Кронштейны 10 щеткодержателя выполнены из пластмассы, армированной в резьбовой и контактной частях кронштейнов металлическими деталями. Кабели для подключения электродвигателя изготовлены из многожильного провода с резиновой изоляцией, снаружи двигателя они защищены рукавами. Маркировка проводов выполнена на станине и наконечниках следующим образом: Я1 и Я2 — соответственно начало и конец обмоток якоря и дополнительных полюсов; С1 и С2 — начало и конец обмотки возбуждения.

Читайте также:  Ремонт синхронизатора кпп лада гранта

Ненормальными условиями эксплуатации являются перегрузка двигателей по току, допущение боксования колесных пар и юза при электродинамическом торможении, неправильное применение рекуперативного и реостатного торможения. Во всех этих случаях, а также при несвоевременной подготовке к работе в зимних условиях возможно повреждение тяговых двигателей.

Тяговые двигатели, во время работы подвергаются воздействию динамических сил, возникающих при движении колес по неровностям пути, и вибрациям, которые особенно велики в зимних условиях, когда верхнее строение пути обладает повышенной жесткостью. Двигатели подвержены и атмосферным воздействиям, в них попадает влажный воздух и пыль. На зажимах двигателей возникают перенапряжения, вызванные атмосферными разрядами, а также резкими изменениями тока.

На ТПС двигатель расположен в пространстве, ограниченном габаритами приближения подвижного состава к пути, расстоянием между колесными центрами, зависящим от ширины колеи, между другими частями экипажа. Поэтому двигатель должен иметь наименьшие, согласующиеся с общей конструкцией экипажа габаритные размеры и быть доступным для обслуживания. Резкие изменения температуры от —50 до +40 °С и влажности воздуха способствуют отсырению изоляции и конденсации влаги на коллекторе, щеткодержателях и поверхности изоляции. Иногда это сопровождается обледенением, коллектор покрывается инеем, что затем вызывает сильное искрение при работе двигателя. Пыль, поднимающаяся с пути при движении, угольная пыль от истирающихся щеток, влажный воздух и снег приводят к загрязнению изоляции и снижению ее диэлектрической прочности.

1.2 Методы ремонта и повышения надежности

Надёжность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

Для количественной оценки надёжности используют так называемые единичные показатели надёжности (характеризуют только одно свойство надёжности) и комплексные показатели надёжности (характеризуют несколько свойств надёжности):

  • Безотказность — свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.
  • Ремонтопригодность — свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.
  • Долговечность — свойство объекта непрерывно сохранять работоспособность от начала эксплуатации до наступления предельного состояния, то есть такого состояния, когда объект изымается из эксплуатации.
  • Живучесть — свойство объекта сохранять работоспособность при отказе отдельных функциональных узлов.

Индивидуальный метод ремонта основан на возвращении снятых и отремонтированных деталей, агрегатов и узлов на тот же локомотив, с которого их снимали.

При агрегатном методе на ремонтируемый электропоезд устанавливают заранее отремонтированные или новые детали из технологического запаса. В этом случае ремонтные цеха работают не на конкретный электропоезд а на пополнение технологического запаса депо. Агрегатный метод дает существенное сокращение простоя электропоездов в ремонте, причем особую эффективность обеспечивает крупноагрегатный метод, при котором просматривается замена таких крупных узлов как тележки в сборе. Непременным условием агрегатного или крупноагрегатного метода является взаимозаменяемость деталей, агрегатов и узлов. В моторвагонных депо агрегатный метод применяется при выполнении ТР. Внедрение этих методов приводит к значительному повышению производительности труда ремонтных бригад, улучшению качества работ, снижению себестоимости ремонта и исключает непредвиденные задержки, что обеспечивает выпуск из ремонта точно по графику.

При стационарной форме организации ремонтных работ электропоезд в течении всего периода ремонта находиться на одном рабочем месте, оборудованном в соответствии с объемом и характером ремонтных работ, и обслуживается комплексной бригадой рабочих по установленной технологии.

Источник

Организация работ по ремонту тягового двигателя

Стуки и шумы в подшипниках

Наружная очистка тягового двигателя. Наиболее эффективным способом ме­ханизированной очистки является обмывка на машине типа ММД. Это повы­шает производительность труда, качество ремонта, способствует подъему куль­туры производства. Однако пароводяная смесь, попадая внутрь остова, снижает сопротивление изоляции, а так как тяговые двигатели после обмывки под­вергают предремонтной диагностике под напряжением, необходимо производить сушку изоляции, что существенно усложняет технологию ремонта. Поэтому при обмывке соблюдают основные требования: герметизация внутренней полости ос­това от среды моечной камеры; повышение давления внутри остова за счет наддува подогретым воздухом давлением 294 — 392 кПа; изолировка наконечни­ков выводных проводов металлическими стаканами с резиновыми уплотнениями. На тележке моечной машины смонтирована воздушная магистраль с рези­новыми рукавами, которые присоединяют к штуцерам, приваренным к крышке вентиляционной горловины тягового двигателя. К магистрали концевым рука­вом с соединительной головкой присоединяют воздухопровод, идущий через теплообменник моечной машины, где подводимый из деповской магистрали воз­дух нагревается до температуры 80 — 90°С. Тяговые двигатели устанавливают на специальные опоры тележки под углом 45° к продольной оси машины вен­тиляционной горловиной вверх. Двигатели обмывают водой, нагретой до тем­пературы 85 — 90°С, без применения щелочных эмульсий. Эта очистка отлича­ется высоким качеством, а сопротивление изоляции, как правило, возрастает.

Разборка тяговых электродвигателей. Основные требования к процессу раз­борки: механизация трудоемких операций; обеспечение целости деталей и их посадочных поверхностей; достижение наименьшей трудоемкости. Первую опе­рацию по демонтажу — съем шестерен с вала — рекомендуется производить до на­ружной обмывки тяговых двигателей, так как нагрев соединения при наличии загрязнений и масляной пленки в сопряжении может существенно затруднять демонтаж шестерен. В зависимости от конструкции вала шестерни снимают гидровинтовым прессом, комбинированным съемником или гидропрессом.

Гидровинтовой пресс захватами устанавливают на шестерню и закрепляют хомутом. При вращении винтового хвостовика за рукоятку малый силовой поршень, двигаясь в цилиндре, сжимает масло, под давлением которого большой силовой поршень, перемещаясь в цилиндре, воздействует на торец вала, и ше­стерня плавно снимается. Для облегчения съема вращение рукоятки производят не вручную, а электрическим двигателем, подключенным к источнику напря­жения (сварочный агрегат). Рукоятку пресса при этом закрепляют неподвижно упором.

Комбинированный съемник представляет собой обычный гидравлический съемник с ручным или механическим приводом, который дополнен индукцион­ным нагревателем. Порядок действий при съеме: на шестерню надевают захваты, стягивают малым хомутом и надевают индукционный нагреватель; пресс боль­шим хомутом объединяют с захватами; поднимают давление в цилиндре до 3,9 — 5,9 МПа и нагревают шестерню до температуры 120 — 130°С, повышая давление в цилиндре до съема шестерни. Время нагрева должно быть не бо­лее 4 — 5 мин, при этом шестерня не теряет механических свойств, а усилие спрессовки уменьшается в 2 — 3 раза.

Гидропрессовый метод снятия шестерен («метод всплытия») основан на прин­ципе расклинивания масляной пленкой под высоким давлением, обхватывающей детали. В существующей конструкции вала якоря тяговых двигателей НБ-406, НБ-412П, ДТ-9Н предусмотрен подвод масла в зону контакта через отверстие в торце вала и кольцевую маслораспределительную канавку. Для нормальной опрессовки необходимо, чтобы площадь контактного пятна была не менее 80 % площади прилегания; кромки маслораспределительной канавки имели фаски длиной 1,5 мм, выполнены под углом 7°; маслоподводящие отверстия были чи­стыми. Для спрессовки следует применять масло малой вязкости: индустриаль­ное 12,20 или цилиндровое 24 (вискозин). При появлении течи через соедине­ние применяют масло индустриальное 45,50 или авиационное МС-14,20.

Читайте также:  Капитальный ремонт газового колодца

Шестерни спрессовывают руч­ным прессом высокого давления или механизированным компрес­сором. Ручной пресс (рис. 75) может создавать давление до 392 МПа. Плунжер 1 переме­щается в канале корпуса под воздействием коромысла 3 при нажатии на рукоятку 4. При ходе 1 плунжера вверх масло подается под воздействием пружины на поршень в плунжерную полость. При движении плунжера вниз масло через обратный клапан 2 выдавливается в маслораздаточную канавку вала и расклини­вает соединение. Давление масла не должно превышать 245—294 МПа.

Механизированный компрессор (рис. 76) смонтирован на тележке. Для спрессовки шестерни штуцер 3 подсоединяют к маслопроводящему отверстию вала якоря тягового двигателя. Нагнетание масла осуществляют пневматическим при­водом. Сжатый воздух давлением 686 кПа попадает в золотниковую распреде­лительную камеру 1, золотник под действием поршня 2 перемещается и откры­вает доступ воздуха в камеру А. Главный поршень 4, перемещаясь, штоком воздействует на плунжер 5, и масло из бачка 8 через плунжер 7 и обратный клапан б поступает в трубку высокого давления и под снимаемую деталь. При движении золотника в обратном направлении воздух попадает в полость В, а из полости А выходит в атмосферу. Главный поршень движется в обрат­ном направлении, и масло засасывается в блок высокого давления, затем цикл повторяется. Так под действием возвратно-поступательного движения плунжера масло нагнетается в гидросистему. При применении перечисленных выше спо­собов снятия шестерни необходимо строго соблюдать правила безопасной работы.

Двигатель после съема шестерен подают на кантователь позиции разборки (рис. 77). Снимают крышку подшипниковой камеры и с помощью индукцион­ного нагревателя снимают лабиринтное кольцо. Для отворачивания болтов под­шипниковых щитов применяют пневматические реверсивные гайковерты ПГ-1, подвешенные на консольных поворотных балках с пружинными балансирными приспособлениями, обеспечивающими удержание гайковерта в заданном подве­шенном положении.

Выпрессовку подшипниковых щитов ведут крановым или ручным гидравли­ческим прессом. Однако неоднократная выпрессовка щитов приводит к ослабле­нию посадки щита и необходимости восстановления натяга. Поэтому распро­странение получил безударный метод выемки и постановки щитов с нагревом горловин остова индукционным нагревателем (рис. 78), состоящим из катуш­ки/и равномерно распределенных на шине 2 магнитопроводов 5. Катушка 1 имеет 35 витков из прямоугольного медного провода площадью сечения 2,1 х 30 мм 2 . Провод изолирован асбестовой лентой, пропитанной составом из жидкого стекла, маршалита и молотого шамота в пропорции 1: 0, 5 : 0,5 м. ч. Напряжение питания 380 В переменного тока частотой 50 Гц, номинальный ток ПО А, мощность 24 кВт,„время нагрева горловины 4 остова 4 — 5 мин

до тем­пературы 130 — 140°С. Индукционный нагреватель за захваты ставят и снимают краном.

Снимают щит со стороны, противоположной коллектору, за рым-болт вынимают якорь, затем перекантовывают остов и снимают щит со стороны коллектора. Щиты направляют на выпрессовку подшипников, обмывку и ремонт, а якорь подают на позицию дефектировки.

Ремонт остова . Технологическая схема ремонта: очистка внутренней полости и элементов магнитной системы, дефектировка и определение полного объема ремонта, ремонт механической части, ремонт электри­ческой части, испытание, окраска. Остов является основной базовой деталью для сборки всех элементов двигателя, испытывает в эксплуатации значительные механические нагрузки, а токоведущие части подвергаются механическим, токовым, электродинамиче­ским нагрузкам, воздействию пыли и атмосферной влаги. При движении т. п. с. остов подвергается вибрациям с ускорением 5 — 17 g , и эти ускорения резко возрастают с увеличением жесткости пути в зимнее время. Частота вибраций остова складывается из возмущающих колебаний около 3 Гц с собственной частотой двигателя 15 — 50 Гц. Кроме того, по данным исследований, вибрации с частотой до 1,2 кГц и амплитудой 42 g пе­редаются остову при значительном износе зубчатой передачи. Значительные ме­ханические воздействия не поглощаются подвешиванием двигателя и являются одной из основных причин образования трещин в остове, ослабления посадки катушек, расслоения и растрескивания их корпусной изоляции, обрывов меж­катушечных соединений и консольной части компенсационной обмотки.

Большое количество охлаждающего воздуха, проходящего через двигатель, с высокой концентрацией пыли является причиной значительных пылевых отло­жений во внутренней полости остова. Анализ пыли, взятой из остова тяго­вого двигателя агрегата ПЭ2М, работающего на откатке горной массы из железнорудного карьера, имеет следующий состав, %: железо общее — 31,2; закись железа — 18,6; железо металлическое — 1,89; медь — 3,78; цинк — следы; окись кальция — 3,99; окись магния — 2,87; окись алюминия — 4,57; сера — 0,88; кварц-28,3; щеточная пыль — 2,92; прочее — 1. Гранулометрический состав пыли неоднороден: на обдуваемой поверхности катушек размер частиц 0,5 — 10 мкм, в технологических углублениях магнитной системы — 20 — 50 мкм. Значитель­ные скопления пыли отмечаются в нижней части полюсных катушек, в местах соеди­нения выводов, на лобовых частях компен­сационной обмотки.

Причинами высокой запыленности яв­ляются отсутствие фильтров и несовершен­ная конструкция остова, не позволяющая периодическую его продувку на технических обслуживаниях и текущих ремонтах. Ис­следования показывают, что слой сухой пыли от 0,5 до 50 мг/см2 пробивается при напряжении 8 — 8,5 кВ, однако при ув­лажнении пыли атмосферной влагой пробивное напряжение снижается до 1 — 1,4 кВ. Указанными причи­нами объясняется повышенная аварийность обмоток якоря и магнитной системы в осенний, зимний и весенний периоды (рис. 79). Поэтому качественная очистка внутренней полости осто­ва, деталей магнитной системы, якоря является важным звеном в технологической цепи ремонта тя­говых двигателей.

Как показал опыт ремонта тяговых двигателей с разборкой, очистка остова продувкой неэф­фективна. Значительное количест­во пыли остается в технологи­ческих углублениях, «мертвых зонах», неровностях и щелях ло­бовых и пазовых частей обмо­ток. При последующей пропитке скопления пыли покрываются лаковой пленкой и являются центрами электри­ческих разрядов, разрушающих изоляцию.

Наиболее эффективным методом очистки является обмывка остова в моеч­ной машине (рис. 80). В камере 1 цилиндрической формы расположен пово­ротный стол 4 и душевая система 2, 3, состоящая из одной боковой, одной центральной и трех фигурных труб с соплами. Обмывка производится одновре­менно снаружи и изнутри с очисткой полостей между полюсами горячей водой температурой 80 — 90°С. Вода нагревается в паровом смесителе 5, расположенном в нижней части камеры, и подается центробежным насосом 6 с подачей 70 м/ч. Камера оборудована вытяжной вентиляцией. При частоте вращения стола 10 об/мин продолжительность обмывки 15 — 20 мин. Очистка характери­зуется высоким качеством, а снижения уровня сопротивления изоляции катушек, пропитанной в термореактивном эпоксидном компаунде ЭМТ-1 («Монолит-2»), практически не происходит. Если после обмывки отмечается резкое падение сопротивления изоляции, это свидетельствует о нарушении корпусной изоляции. Таким образом, наряду с качественной очисткой метод позволяет в известной мере диагностировать состояние изоляции катушек магнитной системы.

Читайте также:  Ремонт стойки багажника своими руками

После обмывки остов сушат в печи ПАП-32 (рис. 81). Печь состоит из камеры 1, всасывающего вентиляционного канала 2, решетки 4 с устройством для изменения площади ее се­чения, центробежного вентилято­ра 5 с двигателем 6. Камера герметична и состоит из двух отсеков. Один отсек с самоходной тележкой 3 предназначен для загрузки деталей, а в другом раз­мещен вентилятор. Воздух дви­жется по каналам, расположенным в стенках камеры, со скоростью 25 м/с. Температуру печи регу­лируют в пределах 180 – 200°С изменением площади сечения вса­сывающих отверстий решетки. Свежий воздух поступает через заборник, а влажный частияно выходит через выхлопную трубу. Контроль сопротивления изоляции производят периодически и при восстановлении требуемого уровня сопротивления (не менее 5 МОм) сушку прекращают.

Дефектировка и определение полного объема ремонта остова . Для качественного выполнения ремонта следует подробно ознакомить­ся с характером отказов тяговых двигателей в эксплуатации, которые были за­фиксированы в Журнале технического состояния, книге ремонта, паспорте, или вызвать эти данные из информационного банка тягового агрегата. Такие данные целесообразно сгруппировать по роду отказов в дефектной описи, ввести в объем ремонта необходимые работы по восстановлению и контрольные проверки. Это обязательно следует выполнять для тяговых двигателей с признаками «хрони­ческих болезней»: повреждения межкатушечных соединений, выводов катушек, частые случаи повреждений круговым огнем, неудовлетворительная коммутация в эксплуатационных режимах.

Для производства дефектировки остов устанавливают на кантователь с ку­лачковыми захватами (см. рис. 77) и осматривают с поворотом на 360° для выявления дефектов. Наиболее вероятные места появления трещин: торцовые стенки (лучевые трещины от отверстий под болты крепления подшипниковых щи­тов); углы горловин коллекторных люков и вентиляционных окон; средняя часть моторно-осевой горловины; углы ушек для крепления букс моторно-осевых под­шипников; кронштейн подвески. Трещины выявляют методом цветной дефектоско­пии или с помощью магнитных карандашей. Штангой с микрометрической го­ловкой проверяют овальность горловин подшипниковых щитов.

Проверяют диаметр, овальность и конусность моторно-осевых горловин, рас­стояние между гранями пазов для посадки букс моторно-осевых подшипников, непараллельность по длине посадочной поверхности паза в остове для посадки букс, длину остова по внешним кромкам горловины под моторно-осевые под­шипники, толщину приливов остова для крепления букс, расстояние между верхним и нижним поддерживающими выступами подвески двигателя.

Для измерений применяют штанги с микрометрической головкой, нутромеры, штангенциркули, штихмассы. Полученные данные сравнивают с чертежными раз­мерами и допусками на износ. Резьбовые отверстия проверяют проходным и непроходными резьбовыми калибрами. Проходной калибр должен вворачиваться свободно, но без люфта, непроходной — только на две-три первые нитки. По­верочной линейкой и пластинчатым щупом проверяют выработку плоскостей горловин коллекторных люков и окон присоединения вентиляционного патрубка. Осматривают коллекторные люки, проверяют состояние замков.

Проверяют состояние болтов крепления полюсов. Признаком обрыва (ослаб­ления) болта является разрушение компаундной заливки. При систематических случаях обрыва болтов проверяют их целость с помощью ультразвукового контроля без разборки. Отмеченные при осмотре дефекты заносят в опись ре­монта (ремонтный лист). Проверяют посадку катушек магнитной цепи. Призна­ками ослаблений катушки являются сдвиги при легких ударах деревянным мо­лотком по торцу катушки, а также выступание пыли от натертости корпусной изоляции на башмаке полюса и поверхности остова в месте постановки.

Если данные об отказах в эксплуатации свидетельствуют о неудовлетво­рительном состоянии межкатушечных соединений и выводов катушек, необходимо испытать все соединения двойным часовым током в течение 8 — 10 мин. Сте­пень нагрева определяют на ощупь рукой, однако использование этого метода не всегда бывает эффективным, так как толщина изоляции различна и тепло­проводность неодинакова. Более эффективной является проверка со снятием изоляции соединений. При низкой надежности соединений это целесообразно производить даже в том случае, если необходимо демонтировать катушку компенсационной обмотки. Про­веряют плотность посадки ка­тушки компенсационной об­мотки в пазах полюса, клиньев, качество крепления лобовых частей к остову.

П ри слабой коммутацион­ной надежности двигателя, ко­торая проявляется в частых случаях повреждений круговым огнем, необходимо проверить симметрию магнитной цепи: измерить расстояние между осями главных и дополни­тельных полюсов; проверить параллельность расположения оси полюсов отно­сительно оси якоря; измерить концентричность главных и дополнительных полюсов относительно оси якоря; измерить воздушный зазор между ци­линдрической частью якоря и сердечниками главных и дополнительных по­люсов.

При выполнении таких измерений за базовую принимают поверхность расточ­ки горловин. Измерительное устройство (рис. 82), позволяющее выполнить все указанные измерения с одной установки, имеет самоустанавливающиеся штанги 1, располагаемые в горловинах остова 2. В подшипниках 3, 7 вращается вал 4, на который по скользящей посадке установлена втулка 5 с закрепленной измерительной штангой. На подшипнике закреплен лимб 10 с градусными деле­ниями. Рукояткой 9 вращают винт 6, при этом втулка 5 перемещается по валу, а стрелка 11, закрепленная на валу, показывает угол его поворота.

Технология указанного комплекса проверок принята следующей. Обмеливают среднюю часть полюсов, центроискателем находят центр наконечника и чертил­кой намечают ось. Вставляют самоустанавливающиеся штанги и проверяют концентричность подшипников устройства относительно расточки горловин. В под­шипники вставляют вал и закрепляют его стопорными кольцами 8. Расстояние между осями полюсов измеряют поворотом вала и последовательным совме­щением острия измерительной штанги с осью полюса. Результат определяют по показаниям стрелки на лимбе. Таким образом проверяют не только сим­метрию расположения главных и дополнительных полюсов, но также их взаим­ное расположение.

Параллельность расположения оси полюсов проверяют установкой острия штанги на нанесенную ранее риску (геометрическую ось полюса) и при не­подвижном вале перемещают измерительную штангу вдоль вала от начала полю­са до конца. Смещение штанги с оси полюса определит ее непараллельность. Концентричность главных и дополнительных полюсов проверяют установкой штанги на ось полюса и вращением вала, оставляя штангу неподвижной, производят измерения по делениям, нанесенным на подвижную часть штанги.

В оздушный зазор между сердечником полюса и якорем измеряют набором шариковых щупов. Щуп (рис. 83) пред­ставляет собой стальную про­волоку 2 диаметром 2—3 мм с калиброванным шариком 1 на конце. Изменяя диаметр шарика, можно с достаточной точностью измерить воздушный зазор в собранном двигателе через коллек­торный люк.

Если конструкция двигателя не позволяет использовать такой щуп, измерение производят описанным выше устройством (см. рис. 82). Подвижной частью из­мерительной штанги устанавливают радиус цилиндрической части сердечника якоря и, вращая вал, последовательно пластинчатым щупом измеряют зазор между иглой штанги и сердечником полюса. Результаты произведенных контроль­ных проверок сравнивают с допустимыми размерами при выпуске из ремонта (мм), которые для тяговых двигателей НБ-406, НБ-412П и ДТ-9Н должны быть:

Расстояние от оси вращения якоря до поверхности сердечника по оси главных по­люсов тяговых двигателей:

Источник

Оцените статью