Организация ремонта тяговых электродвигателей электроподвижного состава

Технология ремонта тяговых электродвигателей электропоездов постоянного тока

Технология ремонта тяговых электродвигателей электропоездов постоянного тока

1.Введение
Эффективное функционирование железнодорожного транспорта Российской Федерации играет исключительную роль в создании условий для модернизации, перехода на инновационный путь развития и устойчивого роста национальной экономики, способствует созданию условий для обеспечения лидерства России в мировой экономической системе.От состояния и качества работы железнодорожного транспорта зависят не только перспективы дальнейшего социально-экономического развития, но также возможности государства эффективно выполнять такие важнейшие функции, как защита национального суверенитета и безопасности страны, обеспечение потребности граждан в перевозках, создание условий для выравнивания социально-экономического развития регионов.Кроме того, процессы глобализации, изменения традиционных мировых хозяйственных связей ставят перед Россией задачу рационального использования потенциала своего уникального экономико-географического положения. Эффективная реализация транзитного потенциала страны позволит не только получить экономический эффект от участия в международных перевозках, но и создаст новые инструменты влияния России на мировые экономические процессы (формирование новых зон экономического притяжения, установление долгосрочных экономических связей).Российские железные дороги являются второй по величине транспортной системой мира, уступая по общей длине эксплуатационных путей лишь США. По протяженности электрифицированных магистралей российские железные дороги занимают первое место в мире. Российская Федерация в настоящее время осуществляет более 20 процентов грузооборота и 10 процентов пассажирооборота всех железных дорог мира.По своему географическому положению российские железные дороги являются неотъемлемой частью евразийской железнодорожной сети, они непосредственно связаны с железнодорожными системами Европы и Восточной Азии. Кроме того, через порты может осуществляться взаимодействие с транспортными системами Северной Америки. Железные дороги органично интегрированы в единую транспортную систему Российской Федерации. Во взаимодействии с другими видами транспорта они удовлетворяют потребности населения, экономики и государства в перевозках. При этом железнодорожный транспорт является ведущим элементом транспортной системы, его доля в обеспечении пассажирских и грузовых перевозок составляет более 40 процентов от всего транспорта страны.
Ведущее положение железных дорог определяется их возможностью осуществлять круглогодичное регулярное движение, перевозить основную часть потоков массовых грузов и обеспечивать мобильность трудовых ресурсов. Особое значение железных дорог определяется также большими расстояниями перевозок, слабым развитием коммуникаций других видов транспорта в регионах Сибири и Дальнего Востока, удаленностью мест производства основных сырьевых ресурсов от пунктов их потребления и морских портов.Реализация мер по реформированию российских железных дорог была начата Правительством Российской Федерации в 1998 году.Однако, несмотря на успехи структурной реформы железнодорожного транспорта в Российской Федерации, ее мероприятия и результаты оказались недостаточны для того, чтобы в короткие сроки создать эффективные источники развития, позволяющие обеспечить масштабное привлечение средств в развитие отрасли и ее модернизацию, сформировать условия для ее долговременного устойчивого роста и повышения конкурентоспособности на мировом рынке. Российские железные дороги не всегда оказываются способны адекватно и гибко реагировать на внешние вызовы, в результате чего потенциальные возможности для получения экономической выгоды могут обращаться в источник проблем. В настоящее время протяженность «узких мест»* по пропускной способности составляет 8,3 тыс. км, или около 30 процентов протяженности основных направлений сети железных дорог, обеспечивающих около 80 процентов всей грузовой работы железнодорожного транспорта. Анализ проблем, возникших в сфере железнодорожного транспорта, позволил выявить следующие ключевые моменты, являющиеся критическими для дальнейшего социально-экономического роста страны:
— необходимость ускоренного обновления основных фондов железнодорожного транспорта;
— преодоление технического и технологического отставания России от передовых стран мира по уровню железнодорожной техники;
— необходимость снижения территориальных диспропорций в развитии инфраструктуры железнодорожного транспорта, улучшения транспортной обеспеченности регионов и развития пропускных способностей железнодорожных линий;
— необходимость снятия ограничений для роста объемов транзитных грузовых перевозок;
— необходимость повышения безопасности функционирования железнодорожного транспорта;
— недостаточность инвестиционных ресурсов.
Необходимо в период до 2030 года реализовать Стратегию развития железнодорожного транспорта в Российской Федерации до 2030 года (далее — Стратегия). Стратегия должна обеспечить решение задачи эффективной реализации уникального географического потенциала страны на базе комплексного развития всех видов транспорта и связи в части, касающейся российских железных дорог. Необходимость такого долгосрочного планирования при определении путей решения задач развития железнодорожного транспорта в Российской Федерации определяется:
— необходимостью обеспечения опережающего развития сети железных дорог как основы долгосрочного развития отраслей экономики и регионов;
— значительной продолжительностью (порядка 20 лет) периода проектирования, строительства, ввода в эксплуатацию, выхода на проектную мощность и начала окупаемости объектов железнодорожной инфраструктуры;
— масштабностью работ по коренной модернизации железнодорожного машиностроения, необходимостью выхода российских предприятий на соответствие мировому уровню железнодорожной техники, обеспечивающей эффективность и конкурентоспособность российского железнодорожного транспорта.
Стратегия должна стать основой и одновременно инструментом объединения усилий государства и предпринимательского сообщества для решения перспективных экономических задач и достижения крупных социально значимых результатов.Реализация Стратегии будет способствовать превращению железнодорожного транспорта Российской Федерации из фактора возможного риска ограничения роста российской экономики в источник ее устойчивого развития.

2.Назначение и конструкция

Тяговый двигатель электропоезда подвешен жестко к раме тележки, а корпус редуктора опирается на подшипники на оси колесной пары и подвешивается к раме тележки.

Привод имеет одностороннюю зубчатую передачу( шестерня 5 и колесо 8). Тяговый момент передается от вала якоря тягового электродвигателя через упругую муфту 3, шестерню 5 и колесо 7 колесной пары 6. К раме тележки тяговый двигатель 1 жестко подвешивается лапами 2.
Двумя лапами тяговый двигатель установлен на опорные поверхности поперечной балки рамы тележки. Опорные поверхности имеют выступы, на которые устанавливают клинья. В клинья ввернут распорный вал с левой и правой резьбой, благодаря чему клинья перемещаются и притягивают тяговый двигатель к верхним опорным площадкам поперечных балок. Нижние опорные площадки тягового электродвигателя имеют резьбовые отверстия под болты крепления двигателя на поддерживающих кронштейнах средней части поперечной балки.
Тяговые двигатели электропоезда служат для преобразования электрической энергии в механическую, необходимую для вращения колесных пар моторного вагона.
На электропоезда серии ЭТ2М устанавливают тяговые двигатели ТЭД-2У1.

Тяговые двигатели электропоезда служат для преобразования электрической энергии в механическую, необходимую для вращения колесных пар моторного вагона.

Основными частями тягового двигателя являются станина 8 (рис. 1) и якорь 9.Станина имеет кронштейны для закрепления двигателя на тележке вагона и люки для входа и выхода охлаждающего воздуха, а также для осмотра и профилактики щеточно-коллекторного узла. В станине установлены главные полюсы 15 для создания основного магнитного потока и дополнительные полюсы 16 для создания магнитного поля в коммутационной зоне с целью улучшения коммутации тягового двигателя. Сердечники 15 главных полюсов собраны из фасонных листов, отштампованных из электротехнической стали, катушки 14 полюсов двухслойные, с обмотками из медной ленты. Сердечники 16 дополнительных полюсов отлиты из стали с последующей механической обработкой, а обмотки 17 катушек выполнены из медной проволоки и установлены на специальных планках. Изоляцией катушек главных и дополнительных полюсов служат стеклослюдинитовая лента и стеклолента. Катушки в сборе с полюсами пропитаны эпоксидным компаундом и образуют монолитную конструкцию. Устанавливают дополнительные полюсы в нейтральных плоскостях между главными полюсами.
Все основные детали якоря собраны на втулке 2 (рис.2), напрессованной на вал 3. Благодаря этому в случае необходимости можно заменить вал без нарушения целостности других элементов якоря. Сердечник 12 якоря набран из лакированных листов электротехнической стали, спрессованных между обмоткодержателем 1 и втулкой 9 коллектора. Обмоткодержатель 1 отлит из стали совместно с крыльчаткой вентилятора. Катушка 11 якоря состоит из семи одновитковых секций. Катушки и уравнители изолированы стеклослюдинитовой и стеклянной лентами. В пазовой части якоря обмотка удерживается клиньями 10, в лобовых частях — бандажом 4 из стеклобандажной ленты. Коллектор 5 имеет арочную конструкцию. Нажимной конус 6 армирован стеклобандажной лентой для создания необходимой изолирующей поверхности между токоведущими и заземленными частями. Изоляционные манжеты 7 выполнены из стеклослюдопласта. Якорь 9 (см. рис.1) вращается в роликовых подшипниках 4, наружные кольца которых запрессованы в отлитые из стали подшипниковые щиты 2 и 13. Эти щиты монтируют в горловину станины 8 при сборке двигателя. Для добавления смазки в подшипники служат маслоподводящие трубки 6 в крышках 3 и 12 подшипников. Щеткодержатели 11 изготовлены из латуни. Регулируют усилие нажатия пружины на щетку поворотом регулировочного винта нажимного устройства. Кронштейны 10 щеткодержателя выполнены из пластмассы, армированной в резьбовой и контактной частях кронштейнов металлическими деталями. Кабели для подключения электродвигателя изготовлены из многожильного провода с резиновой изоляцией, снаружи двигателя они защищены рукавами. Маркировка проводов выполнена на станине и наконечниках следующим образом: Я1 и Я2 — соответственно начало и конец обмоток якоря и дополнительных полюсов; С1 и С2 — начало и конец обмотки возбуждения.

3. Условия работы на ТПС
Ненормальными условиями эксплуатации являются перегрузка двигателей по току, допущение буксования колесных пар и юза при электродинамическом торможении, неправильное применение рекуперативного и реостатного торможения. Во всех этих случаях, а также при несвоевременной подготовке к работе в зимних условиях возможно повреждение тяговых двигателей.
Тя¬говые двигатели, во время работы подвергаются воздействию динамических сил, возни¬кающих при движении колес по неров¬ностям пути, и вибрациям, которые осо¬бенно велики в зимних условиях, когда верхнее строение пути обладает повы¬шенной жесткостью. Двигатели подвержены и атмосферным воздействиям, в них попадает влажный воздух и пыль. На зажимах двигателей возникают перенапряжения, вызванные атмосферными разрядами, а также рез¬кими изменениями тока.
На ТПС двигатель расположен в про¬странстве, ограниченном габаритами приближения подвижного состава к пути, расстоянием между колесными центра¬ми, зависящим от ширины колеи, между другими частями экипажа. Поэтому дви¬гатель должен иметь наименьшие, согла-сующиеся с общей конструкцией экипажа габаритные размеры и быть доступным для обслуживания. Резкие изменения температуры от —50 до +40 °С и влажности воздуха способствуют отсырению изоляции и конденсации влаги на коллекторе, щеткодержателях и поверх¬ности изоляции. Иногда это сопровож¬дается обледенением, коллектор покры-вается инеем, что затем вызывает силь¬ное искрение при работе двигателя. Пыль, поднимающаяся с пути при дви¬жении, угольная пыль от истирающихся щеток, влажный воздух и снег приво¬дят к загрязнению изоляции и снижению ее диэлектрической прочности.

Источник

Организация ремонта тяговых электродвигателей электроподвижного состава

Стуки и шумы в подшипниках

Наружная очистка тягового двигателя. Наиболее эффективным способом ме­ханизированной очистки является обмывка на машине типа ММД. Это повы­шает производительность труда, качество ремонта, способствует подъему куль­туры производства. Однако пароводяная смесь, попадая внутрь остова, снижает сопротивление изоляции, а так как тяговые двигатели после обмывки под­вергают предремонтной диагностике под напряжением, необходимо производить сушку изоляции, что существенно усложняет технологию ремонта. Поэтому при обмывке соблюдают основные требования: герметизация внутренней полости ос­това от среды моечной камеры; повышение давления внутри остова за счет наддува подогретым воздухом давлением 294 — 392 кПа; изолировка наконечни­ков выводных проводов металлическими стаканами с резиновыми уплотнениями. На тележке моечной машины смонтирована воздушная магистраль с рези­новыми рукавами, которые присоединяют к штуцерам, приваренным к крышке вентиляционной горловины тягового двигателя. К магистрали концевым рука­вом с соединительной головкой присоединяют воздухопровод, идущий через теплообменник моечной машины, где подводимый из деповской магистрали воз­дух нагревается до температуры 80 — 90°С. Тяговые двигатели устанавливают на специальные опоры тележки под углом 45° к продольной оси машины вен­тиляционной горловиной вверх. Двигатели обмывают водой, нагретой до тем­пературы 85 — 90°С, без применения щелочных эмульсий. Эта очистка отлича­ется высоким качеством, а сопротивление изоляции, как правило, возрастает.

Разборка тяговых электродвигателей. Основные требования к процессу раз­борки: механизация трудоемких операций; обеспечение целости деталей и их посадочных поверхностей; достижение наименьшей трудоемкости. Первую опе­рацию по демонтажу — съем шестерен с вала — рекомендуется производить до на­ружной обмывки тяговых двигателей, так как нагрев соединения при наличии загрязнений и масляной пленки в сопряжении может существенно затруднять демонтаж шестерен. В зависимости от конструкции вала шестерни снимают гидровинтовым прессом, комбинированным съемником или гидропрессом.

Гидровинтовой пресс захватами устанавливают на шестерню и закрепляют хомутом. При вращении винтового хвостовика за рукоятку малый силовой поршень, двигаясь в цилиндре, сжимает масло, под давлением которого большой силовой поршень, перемещаясь в цилиндре, воздействует на торец вала, и ше­стерня плавно снимается. Для облегчения съема вращение рукоятки производят не вручную, а электрическим двигателем, подключенным к источнику напря­жения (сварочный агрегат). Рукоятку пресса при этом закрепляют неподвижно упором.

Комбинированный съемник представляет собой обычный гидравлический съемник с ручным или механическим приводом, который дополнен индукцион­ным нагревателем. Порядок действий при съеме: на шестерню надевают захваты, стягивают малым хомутом и надевают индукционный нагреватель; пресс боль­шим хомутом объединяют с захватами; поднимают давление в цилиндре до 3,9 — 5,9 МПа и нагревают шестерню до температуры 120 — 130°С, повышая давление в цилиндре до съема шестерни. Время нагрева должно быть не бо­лее 4 — 5 мин, при этом шестерня не теряет механических свойств, а усилие спрессовки уменьшается в 2 — 3 раза.

Гидропрессовый метод снятия шестерен («метод всплытия») основан на прин­ципе расклинивания масляной пленкой под высоким давлением, обхватывающей детали. В существующей конструкции вала якоря тяговых двигателей НБ-406, НБ-412П, ДТ-9Н предусмотрен подвод масла в зону контакта через отверстие в торце вала и кольцевую маслораспределительную канавку. Для нормальной опрессовки необходимо, чтобы площадь контактного пятна была не менее 80 % площади прилегания; кромки маслораспределительной канавки имели фаски длиной 1,5 мм, выполнены под углом 7°; маслоподводящие отверстия были чи­стыми. Для спрессовки следует применять масло малой вязкости: индустриаль­ное 12,20 или цилиндровое 24 (вискозин). При появлении течи через соедине­ние применяют масло индустриальное 45,50 или авиационное МС-14,20.

Шестерни спрессовывают руч­ным прессом высокого давления или механизированным компрес­сором. Ручной пресс (рис. 75) может создавать давление до 392 МПа. Плунжер 1 переме­щается в канале корпуса под воздействием коромысла 3 при нажатии на рукоятку 4. При ходе 1 плунжера вверх масло подается под воздействием пружины на поршень в плунжерную полость. При движении плунжера вниз масло через обратный клапан 2 выдавливается в маслораздаточную канавку вала и расклини­вает соединение. Давление масла не должно превышать 245—294 МПа.

Механизированный компрессор (рис. 76) смонтирован на тележке. Для спрессовки шестерни штуцер 3 подсоединяют к маслопроводящему отверстию вала якоря тягового двигателя. Нагнетание масла осуществляют пневматическим при­водом. Сжатый воздух давлением 686 кПа попадает в золотниковую распреде­лительную камеру 1, золотник под действием поршня 2 перемещается и откры­вает доступ воздуха в камеру А. Главный поршень 4, перемещаясь, штоком воздействует на плунжер 5, и масло из бачка 8 через плунжер 7 и обратный клапан б поступает в трубку высокого давления и под снимаемую деталь. При движении золотника в обратном направлении воздух попадает в полость В, а из полости А выходит в атмосферу. Главный поршень движется в обрат­ном направлении, и масло засасывается в блок высокого давления, затем цикл повторяется. Так под действием возвратно-поступательного движения плунжера масло нагнетается в гидросистему. При применении перечисленных выше спо­собов снятия шестерни необходимо строго соблюдать правила безопасной работы.

Двигатель после съема шестерен подают на кантователь позиции разборки (рис. 77). Снимают крышку подшипниковой камеры и с помощью индукцион­ного нагревателя снимают лабиринтное кольцо. Для отворачивания болтов под­шипниковых щитов применяют пневматические реверсивные гайковерты ПГ-1, подвешенные на консольных поворотных балках с пружинными балансирными приспособлениями, обеспечивающими удержание гайковерта в заданном подве­шенном положении.

Выпрессовку подшипниковых щитов ведут крановым или ручным гидравли­ческим прессом. Однако неоднократная выпрессовка щитов приводит к ослабле­нию посадки щита и необходимости восстановления натяга. Поэтому распро­странение получил безударный метод выемки и постановки щитов с нагревом горловин остова индукционным нагревателем (рис. 78), состоящим из катуш­ки/и равномерно распределенных на шине 2 магнитопроводов 5. Катушка 1 имеет 35 витков из прямоугольного медного провода площадью сечения 2,1 х 30 мм 2 . Провод изолирован асбестовой лентой, пропитанной составом из жидкого стекла, маршалита и молотого шамота в пропорции 1: 0, 5 : 0,5 м. ч. Напряжение питания 380 В переменного тока частотой 50 Гц, номинальный ток ПО А, мощность 24 кВт,„время нагрева горловины 4 остова 4 — 5 мин

до тем­пературы 130 — 140°С. Индукционный нагреватель за захваты ставят и снимают краном.

Снимают щит со стороны, противоположной коллектору, за рым-болт вынимают якорь, затем перекантовывают остов и снимают щит со стороны коллектора. Щиты направляют на выпрессовку подшипников, обмывку и ремонт, а якорь подают на позицию дефектировки.

Ремонт остова . Технологическая схема ремонта: очистка внутренней полости и элементов магнитной системы, дефектировка и определение полного объема ремонта, ремонт механической части, ремонт электри­ческой части, испытание, окраска. Остов является основной базовой деталью для сборки всех элементов двигателя, испытывает в эксплуатации значительные механические нагрузки, а токоведущие части подвергаются механическим, токовым, электродинамиче­ским нагрузкам, воздействию пыли и атмосферной влаги. При движении т. п. с. остов подвергается вибрациям с ускорением 5 — 17 g , и эти ускорения резко возрастают с увеличением жесткости пути в зимнее время. Частота вибраций остова складывается из возмущающих колебаний около 3 Гц с собственной частотой двигателя 15 — 50 Гц. Кроме того, по данным исследований, вибрации с частотой до 1,2 кГц и амплитудой 42 g пе­редаются остову при значительном износе зубчатой передачи. Значительные ме­ханические воздействия не поглощаются подвешиванием двигателя и являются одной из основных причин образования трещин в остове, ослабления посадки катушек, расслоения и растрескивания их корпусной изоляции, обрывов меж­катушечных соединений и консольной части компенсационной обмотки.

Большое количество охлаждающего воздуха, проходящего через двигатель, с высокой концентрацией пыли является причиной значительных пылевых отло­жений во внутренней полости остова. Анализ пыли, взятой из остова тяго­вого двигателя агрегата ПЭ2М, работающего на откатке горной массы из железнорудного карьера, имеет следующий состав, %: железо общее — 31,2; закись железа — 18,6; железо металлическое — 1,89; медь — 3,78; цинк — следы; окись кальция — 3,99; окись магния — 2,87; окись алюминия — 4,57; сера — 0,88; кварц-28,3; щеточная пыль — 2,92; прочее — 1. Гранулометрический состав пыли неоднороден: на обдуваемой поверхности катушек размер частиц 0,5 — 10 мкм, в технологических углублениях магнитной системы — 20 — 50 мкм. Значитель­ные скопления пыли отмечаются в нижней части полюсных катушек, в местах соеди­нения выводов, на лобовых частях компен­сационной обмотки.

Причинами высокой запыленности яв­ляются отсутствие фильтров и несовершен­ная конструкция остова, не позволяющая периодическую его продувку на технических обслуживаниях и текущих ремонтах. Ис­следования показывают, что слой сухой пыли от 0,5 до 50 мг/см2 пробивается при напряжении 8 — 8,5 кВ, однако при ув­лажнении пыли атмосферной влагой пробивное напряжение снижается до 1 — 1,4 кВ. Указанными причи­нами объясняется повышенная аварийность обмоток якоря и магнитной системы в осенний, зимний и весенний периоды (рис. 79). Поэтому качественная очистка внутренней полости осто­ва, деталей магнитной системы, якоря является важным звеном в технологической цепи ремонта тя­говых двигателей.

Как показал опыт ремонта тяговых двигателей с разборкой, очистка остова продувкой неэф­фективна. Значительное количест­во пыли остается в технологи­ческих углублениях, «мертвых зонах», неровностях и щелях ло­бовых и пазовых частей обмо­ток. При последующей пропитке скопления пыли покрываются лаковой пленкой и являются центрами электри­ческих разрядов, разрушающих изоляцию.

Наиболее эффективным методом очистки является обмывка остова в моеч­ной машине (рис. 80). В камере 1 цилиндрической формы расположен пово­ротный стол 4 и душевая система 2, 3, состоящая из одной боковой, одной центральной и трех фигурных труб с соплами. Обмывка производится одновре­менно снаружи и изнутри с очисткой полостей между полюсами горячей водой температурой 80 — 90°С. Вода нагревается в паровом смесителе 5, расположенном в нижней части камеры, и подается центробежным насосом 6 с подачей 70 м/ч. Камера оборудована вытяжной вентиляцией. При частоте вращения стола 10 об/мин продолжительность обмывки 15 — 20 мин. Очистка характери­зуется высоким качеством, а снижения уровня сопротивления изоляции катушек, пропитанной в термореактивном эпоксидном компаунде ЭМТ-1 («Монолит-2»), практически не происходит. Если после обмывки отмечается резкое падение сопротивления изоляции, это свидетельствует о нарушении корпусной изоляции. Таким образом, наряду с качественной очисткой метод позволяет в известной мере диагностировать состояние изоляции катушек магнитной системы.

После обмывки остов сушат в печи ПАП-32 (рис. 81). Печь состоит из камеры 1, всасывающего вентиляционного канала 2, решетки 4 с устройством для изменения площади ее се­чения, центробежного вентилято­ра 5 с двигателем 6. Камера герметична и состоит из двух отсеков. Один отсек с самоходной тележкой 3 предназначен для загрузки деталей, а в другом раз­мещен вентилятор. Воздух дви­жется по каналам, расположенным в стенках камеры, со скоростью 25 м/с. Температуру печи регу­лируют в пределах 180 – 200°С изменением площади сечения вса­сывающих отверстий решетки. Свежий воздух поступает через заборник, а влажный частияно выходит через выхлопную трубу. Контроль сопротивления изоляции производят периодически и при восстановлении требуемого уровня сопротивления (не менее 5 МОм) сушку прекращают.

Дефектировка и определение полного объема ремонта остова . Для качественного выполнения ремонта следует подробно ознакомить­ся с характером отказов тяговых двигателей в эксплуатации, которые были за­фиксированы в Журнале технического состояния, книге ремонта, паспорте, или вызвать эти данные из информационного банка тягового агрегата. Такие данные целесообразно сгруппировать по роду отказов в дефектной описи, ввести в объем ремонта необходимые работы по восстановлению и контрольные проверки. Это обязательно следует выполнять для тяговых двигателей с признаками «хрони­ческих болезней»: повреждения межкатушечных соединений, выводов катушек, частые случаи повреждений круговым огнем, неудовлетворительная коммутация в эксплуатационных режимах.

Для производства дефектировки остов устанавливают на кантователь с ку­лачковыми захватами (см. рис. 77) и осматривают с поворотом на 360° для выявления дефектов. Наиболее вероятные места появления трещин: торцовые стенки (лучевые трещины от отверстий под болты крепления подшипниковых щи­тов); углы горловин коллекторных люков и вентиляционных окон; средняя часть моторно-осевой горловины; углы ушек для крепления букс моторно-осевых под­шипников; кронштейн подвески. Трещины выявляют методом цветной дефектоско­пии или с помощью магнитных карандашей. Штангой с микрометрической го­ловкой проверяют овальность горловин подшипниковых щитов.

Проверяют диаметр, овальность и конусность моторно-осевых горловин, рас­стояние между гранями пазов для посадки букс моторно-осевых подшипников, непараллельность по длине посадочной поверхности паза в остове для посадки букс, длину остова по внешним кромкам горловины под моторно-осевые под­шипники, толщину приливов остова для крепления букс, расстояние между верхним и нижним поддерживающими выступами подвески двигателя.

Для измерений применяют штанги с микрометрической головкой, нутромеры, штангенциркули, штихмассы. Полученные данные сравнивают с чертежными раз­мерами и допусками на износ. Резьбовые отверстия проверяют проходным и непроходными резьбовыми калибрами. Проходной калибр должен вворачиваться свободно, но без люфта, непроходной — только на две-три первые нитки. По­верочной линейкой и пластинчатым щупом проверяют выработку плоскостей горловин коллекторных люков и окон присоединения вентиляционного патрубка. Осматривают коллекторные люки, проверяют состояние замков.

Проверяют состояние болтов крепления полюсов. Признаком обрыва (ослаб­ления) болта является разрушение компаундной заливки. При систематических случаях обрыва болтов проверяют их целость с помощью ультразвукового контроля без разборки. Отмеченные при осмотре дефекты заносят в опись ре­монта (ремонтный лист). Проверяют посадку катушек магнитной цепи. Призна­ками ослаблений катушки являются сдвиги при легких ударах деревянным мо­лотком по торцу катушки, а также выступание пыли от натертости корпусной изоляции на башмаке полюса и поверхности остова в месте постановки.

Если данные об отказах в эксплуатации свидетельствуют о неудовлетво­рительном состоянии межкатушечных соединений и выводов катушек, необходимо испытать все соединения двойным часовым током в течение 8 — 10 мин. Сте­пень нагрева определяют на ощупь рукой, однако использование этого метода не всегда бывает эффективным, так как толщина изоляции различна и тепло­проводность неодинакова. Более эффективной является проверка со снятием изоляции соединений. При низкой надежности соединений это целесообразно производить даже в том случае, если необходимо демонтировать катушку компенсационной обмотки. Про­веряют плотность посадки ка­тушки компенсационной об­мотки в пазах полюса, клиньев, качество крепления лобовых частей к остову.

П ри слабой коммутацион­ной надежности двигателя, ко­торая проявляется в частых случаях повреждений круговым огнем, необходимо проверить симметрию магнитной цепи: измерить расстояние между осями главных и дополни­тельных полюсов; проверить параллельность расположения оси полюсов отно­сительно оси якоря; измерить концентричность главных и дополнительных полюсов относительно оси якоря; измерить воздушный зазор между ци­линдрической частью якоря и сердечниками главных и дополнительных по­люсов.

При выполнении таких измерений за базовую принимают поверхность расточ­ки горловин. Измерительное устройство (рис. 82), позволяющее выполнить все указанные измерения с одной установки, имеет самоустанавливающиеся штанги 1, располагаемые в горловинах остова 2. В подшипниках 3, 7 вращается вал 4, на который по скользящей посадке установлена втулка 5 с закрепленной измерительной штангой. На подшипнике закреплен лимб 10 с градусными деле­ниями. Рукояткой 9 вращают винт 6, при этом втулка 5 перемещается по валу, а стрелка 11, закрепленная на валу, показывает угол его поворота.

Технология указанного комплекса проверок принята следующей. Обмеливают среднюю часть полюсов, центроискателем находят центр наконечника и чертил­кой намечают ось. Вставляют самоустанавливающиеся штанги и проверяют концентричность подшипников устройства относительно расточки горловин. В под­шипники вставляют вал и закрепляют его стопорными кольцами 8. Расстояние между осями полюсов измеряют поворотом вала и последовательным совме­щением острия измерительной штанги с осью полюса. Результат определяют по показаниям стрелки на лимбе. Таким образом проверяют не только сим­метрию расположения главных и дополнительных полюсов, но также их взаим­ное расположение.

Параллельность расположения оси полюсов проверяют установкой острия штанги на нанесенную ранее риску (геометрическую ось полюса) и при не­подвижном вале перемещают измерительную штангу вдоль вала от начала полю­са до конца. Смещение штанги с оси полюса определит ее непараллельность. Концентричность главных и дополнительных полюсов проверяют установкой штанги на ось полюса и вращением вала, оставляя штангу неподвижной, производят измерения по делениям, нанесенным на подвижную часть штанги.

В оздушный зазор между сердечником полюса и якорем измеряют набором шариковых щупов. Щуп (рис. 83) пред­ставляет собой стальную про­волоку 2 диаметром 2—3 мм с калиброванным шариком 1 на конце. Изменяя диаметр шарика, можно с достаточной точностью измерить воздушный зазор в собранном двигателе через коллек­торный люк.

Если конструкция двигателя не позволяет использовать такой щуп, измерение производят описанным выше устройством (см. рис. 82). Подвижной частью из­мерительной штанги устанавливают радиус цилиндрической части сердечника якоря и, вращая вал, последовательно пластинчатым щупом измеряют зазор между иглой штанги и сердечником полюса. Результаты произведенных контроль­ных проверок сравнивают с допустимыми размерами при выпуске из ремонта (мм), которые для тяговых двигателей НБ-406, НБ-412П и ДТ-9Н должны быть:

Расстояние от оси вращения якоря до поверхности сердечника по оси главных по­люсов тяговых двигателей:

Источник

Читайте также:  Ремонт дтв 2 своими руками
Оцените статью