Переменный резистор ремонт своими руками

Разборка и ремонт переменных резисторов на примере советских СПЗ-30 и СП-1

Как известно, переменные резисторы, которые во всевозможной звуковой аппаратуре служат для регулировки громкости, тембра и прочего стереобаланса, со временем изнашиваются. И при вращении ручек регуляторов из колонок раздаётся хрип, треск, щёлканье, и другие немузыкальные звуки.
Причём громкость их по мере износа меняется от едва заметного шороха до треска вполне сравнимого с уровнем полезного сигнала.

Сейчас, когда в продажу хлынула музыкальная техника с цифровым кнопочным управлением, для многих меломанов проблема отошла в прошлое.
Но и сейчас ещё много найдётся любителей музыки предпочитают слушать её через старый добрый советский, импортный или самодельный усилитель со старыми добрыми переменниками.

Надеюсь, что кому-то из вас эта статья пригодится. Хотя возможно, что я очередной раз берусь с умным видом объяснять очевидные вещи.

Содержание / Contents

Приходит время и регулятор, верой и правдой прослуживший не один десяток лет и переживший иногда сам аппарат, в котором был установлен изначально, начинает хрипеть. Обычно за это ругают советские переменные резисторы. Но, рано или поздно, беда настигает регулятор независимо от страны-производителя.

У того, кто взялся сию беду устранять, есть два пути решения проблемы. Попытаться вернуть работоспособность старому переменнику или заменить на новый.

Заменить, конечно, хороший выход, только на что?
Если повезёт, в куче запчастей, скопившихся у радиолюбителя с незапамятных времён, можно найти другой такой же переменник или с близкими параметрами. Но где гарантия, что и он скоро не захрипит. По возрасту он, возможно, почти ровесник заменяемому и неизвестно где стоял, как часто его крутили и в каких условиях аппарат эксплуатировался.

Если поблизости есть магазин, или ещё какое заведение торгующее радиодеталями можно купить там изделие «братской узкоглазой республики», представляющее из себя подстроечник, к которому наспех приделали корпус и ось. Такой резистор обычно практически никак не защищённое от попадания внутрь пыли влаги и прочего наружного мусора. А выводы иногда приклёпаны к угольной «подкове» так, что болтаются даже у нового резистора, гарантируя те же хрипы, треск и пропадание звука.

Возможно, где-то поближе к цивилизации можно добыть качественную деталь, но судя по ценам в музыкальных магазинах, где иногда продаются переменники для электрогитар, цена может составить очень большую долю от цены самого ремонтируемого изделия.

Поэтому я рекомендую вскрыть хрипящий переменник и оценить возможность приведения его в чувство своими силами.

↑ Вскрытие покажет. Потенциометр СПЗ-30 изнутри

Будем считать, что сопротивление между крайними выводами измерено, существует, не сильно превышает указанное на корпусе и не «плавает». В противном случае деталь можно спокойно выбросить, ну или пустить на запчасти. Где-то в литературе встречал способ изготовления из деталей СП3, малогабаритного многопозиционного переключателя.

Отгибаем 4 усика, помеченные стрелками, и снимаем крышку. Любуемся на нехитрый внутренний мир:

А пока, небольшое «лирическое отступление».
Почти к каждому, кто связал свою жизнь с радиолюбительством, рано или поздно все знакомые, родственники, родственники знакомых и знакомые родственников тащат на ремонт свою убитую технику. Бывает что и из-за «хрипатого» регулятора.

Приносящие делятся на две категории.
1. Простые пользователи — как правило, несут свой аппарат сразу же, как только неисправность дала о себе знать.
2. Более или менее продвинутые пользователи — перед тем как принести, пытаются исправить сами, пользуясь своими «знаниями» или советами «знающих».
От таких частенько слышал примерно такой монолог: «Я сам пытался сделать. Спиртом, водкой, „тройным одеколоном“ протирал. Маслом капал, карандашом подкову натирал, толчёный карандаш с маслом смешивал и капал. Пара дней и снова то же самое. Сделай что-нибудь! Задолбало, блин. »

Вот так и выглядят обычные советы, которые гуляют в народе и даже иногда помогают (иначе б не гуляли).

Действительно — глядя на заляпанную старой почерневшей смазкой угольную «подкову» первая мысль, которая приходит в голову — почистить всё это хозяйство прямо так — через щель между диэлектрической шайбой одетой на вал и стенкой пластмассового корпуса.
Но всё же лучше продолжить разборку. И доступ к очищаемым поверхностям лучше будет, а там глядишь — и ещё что интересное обнаружится.

Разгибаем упорное кольцо:

И вытаскиваем ось, вместе с текстолитовой шайбой с закреплённым на ней подвижным контактом.
Сразу же внимательно рассматриваем состояние угольного слоя на «подкове».

В данном случае неплохо сохранился. Значит, в дальнейших действиях есть какой-то смысл. Если же он стёрся настолько, что на месте где должен быть графит видно текстолитовую основу — «медицина бессильна». Хотя если честно — за время с 80-х годов встречал только два (!) настолько затёртых переменника. Один из них стоял в магнитофоне «Маяк-232», работавшем в одной из школ. Там, видимо из-за заводского брака, рассыпалась угольная щётка на подвижном контакте и подкову просто сточило металлическим пружинным электродом. Я так подумал, потому что переменник был сдвоенный, а второй резистор блока был ещё вполне нормальным. Магнитофону на тот момент лет десять было, если не больше.

Теперь поверхность подковы можно, и даже нужно очистить от «вековой грязи» (особенно после «толчёного карандаша в масле») спиртом или чистым бензином для зажигалок. Заодно нужно почистить пружинные контакты, соединяющие центральный вывод с движком.
А потом внимательно посмотреть на поверхность, по которой эти контакты должны скользить:

Даже при таком качестве фото видно, что выглядит это место, мягко скажем, страшновато. Контакты протёрли заметную «траншею», которая из-за слоя смазки кажется глубже, чем на самом деле. А если разглядеть получше, можно увидеть, что поверхность металла где-то замазалась, где-то окислилась и надёжный контакт видит только во снах о давно ушедшей молодости.

Очищаем металл от старой, иногда затвердевшей до полного сходства с парафином, смазки и грязи, графитной пыли. При необходимости счищаем окись ластиком. Жаль старые добрые советские красные ластики уже не найти. А сколько ими было двоек в дневнике подтёрто, чтобы легче на тройки исправить. А контактов в телевизионных ПТК почищено (часто зря). О прочих тумблерах и П2К вообще молчу.

Пришло время заняться угольной щёткой подвижного контакта

За «долгую счастливую жизнь» поизносилась, конечно. Жаль нет под рукой совершенно нового такого же переменника, чтобы уточнить насколько. Поэтому чаще оценивал степень износа «на глазок».
Если осталось около одного миллиметра — ещё поживёт, если меньше 0,5 мм — делал новую из грифеля карандаша, или угольного стержня от случайно подвернувшейся разряженной пальчиковой батарейки (АА). Вырезал обычно тем ножом, который в этот момент был под рукой, потом выравнивал контактную поверхность об напильник. Что-то похожее когда-то описывалось в журнале «Радио».

Читайте также:  Ремонт бензонасоса honda dio

Насчёт материала: как-то встречал в Сети спор, что лучше — угольный стержень от батарейки или карандаш. А если карандаш, то какой твёрдости. Сам пока к определённому выводу не пришёл. То, что делал для себя пока работает и то хорошо. А использовал в основном те карандаши, которыми в тот момент пользовался сам, твёрдостью где-то на уровне «ТМ» — «Т». А твёрдость угольных стержней из батареек, кто ж её знает-то.

Перед установкой щётки на законное место я делал ещё одну вещь. Кончик пружинного контакта, примерно от отверстия для щётки, отгибал на небольшой угол (зелёная стрелка на фото). А также стачивал мелкой шкуркой, надфилем или, в крайнем случае, ножом заусенцы на краях этого отверстия и торцах пружины, если были. Как-то спокойней потом, хотя в реальной пользе от этого действия не уверен.

Перед окончательной сборкой все трущиеся поверхности смазывал машинным маслом (самым густым, какое было в наличии), Если была возможность – «Литолом» или «ЦИАТИМ-ом». Что-то другое в наших краях достать сложнее.

После подобных процедур все посторонние звуки обычно пропадают и надолго.

↑ Немного про СП-1

И контакт этот между выводом и движком переменника появляется и пропадает по собственному желанию. Не исключено, что встречаются и СП3 с болтающимся на заклёпке центральным контактом, но мне такие пока не попадались.

Для устранения неисправности, как многие догадались, достаточно пропаять это соединение. Для большей надёжности можно пропаять и со стороны вывода, хотя чаще всего это не требуется.
Кстати, угольный слой очень даже неплохо сохранился для переменного резистора с металлическими щётками из устройства конца 70-х годов.

Вот такие достаточно простые рекомендации по возвращению к активной жизни захрипевших переменных резисторов. Правда, здесь я рассмотрел только один тип, но повторюсь — другие отличаются только способом разборки-сборки. Составные части и места возможного появления неисправностей одинаковы.

P.S. Бывает, можно купить новый переменник с описанным дефектом. Неизвестно ведь сколько, где и в каких условиях он хранился до этого. Даже если и выглядит как новый.
На всякий случай, перед установкой в изделие, стоит проделать вышеописанные операции. Анекдот про «доработать напильником» не просто так придумали. Я сам несколько раз сталкивался с тем, что «свежий» регулятор «шуршит» при приближении движка к крайним точкам. Обычно после чистки и смазки «болезнь» пропадает. Недавно поставил свежекупленые малогабаритные СПЗ-40 в темброблок электрогитары, и сразу же пришлось снова снимать все четыре резистора и проводить те же процедуры.
С тех пор работает второй год без нареканий.

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Источник

Разборка и ремонт переменных резисторов на примере советских СПЗ-30 и СП-1

Назначение и принцип работы

Резистор
, он же “сопротивление”, он же “резюк” — простейший, но, не побоюсь этого слова, важнейший элемент любой электрической цепи. Не могу представить ни одной работоспособной схемы, где не используется хотя бы один резистор. Так что же это такое и зачем он нужен? А нужен он, согласно названию, для электрического сопротивления, которое, в свою очередь, применяется для преобразования силы тока в напряжение и наоборот, а также для ограничения силы тока. Звучит немного запутанно, но на примерах все станет понятнее.
Закон Ома
— основное правило для электрических цепей, описывающее взаимоотношения между главными ее параметрами: напряжением, силой тока и сопротивлением. За один из этих параметров — сопротивление — и отвечает наш резистор. Закон Ома, как все фундаментальное, гениален и прост. Выглядит так:

, где:
U
— напряжение в Вольтах (В, V);
I
— сила тока в Амперах (А);
R
— сопротивление в Омах (Ом, Ohm).
Его же, повинуясь законам математики, можно записать как: I=U/R
и
R=U/I
. Таким образом, зная или специально задавая любые два параметра из трех, мы всегда можем точно вычислить или установить третий.

Например, если подключить светодиод, практически не имеющий внутреннего сопротивления, напрямую к питанию, мы получим в цепи ток, стремящийся к бесконечности (U/0), то есть, по факту, короткое замыкание. Светодиод попросту сгорит, не верите — проверьте. Поэтому, даже в такую простейшую схему обязательно следует добавить резистор, он уменьшит силу тока с бесконечности до того значения, которое обеспечит светодиоду долгие годы счастливой жизни. Номинал резистора подбирается исходя из вольтажа питания и характеристик светодиода, в нашем случае для подключения сигнального светодиода к Ардуино достаточно резистора на 220-240 Ом.

Примечание для перфекционистов:
светодиоды в зависимости от цвета (читай, состава материала полупроводника), немного отличаются по характеристикам, и для каждого из них стоило бы выбрать собственный, максимально подходящий. Но, как правило, в реальной жизни никто этим не заморачивается и применяет к ним всем первый более-менее близкий к заветным 220-240 Ом “резюк”, что вполне допустимо и оправдано.

Это лишь один простейший пример использования резистора в качестве ограничителя тока, а еще они применяются для двунаправленного преобразования “ток-напряжение”, создания делителей напряжения, в том числе для измерителей тока, в RC-цепях для сглаживания пульсаций и борьбы с “дребезгом” контактов и многого другого. Часть применений мы рассмотрим ниже на конкретных примерах.

Содержание / Contents

  • 1 Вскрытие покажет. Потенциометр СПЗ-30 изнутри
  • 2 Немного про СП-1

Приходит время и регулятор, верой и правдой прослуживший не один десяток лет и переживший иногда сам аппарат, в котором был установлен изначально, начинает хрипеть. Обычно за это ругают советские переменные резисторы. Но, рано или поздно, беда настигает регулятор независимо от страны-производителя.
У того, кто взялся сию беду устранять, есть два пути решения проблемы. Попытаться вернуть работоспособность старому переменнику или заменить на новый.

Заменить, конечно, хороший выход, только на что? Если повезёт, в куче запчастей, скопившихся у радиолюбителя с незапамятных времён, можно найти другой такой же переменник или с близкими параметрами. Но где гарантия, что и он скоро не захрипит. По возрасту он, возможно, почти ровесник заменяемому и неизвестно где стоял, как часто его крутили и в каких условиях аппарат эксплуатировался.

Если поблизости есть магазин, или ещё какое заведение торгующее радиодеталями можно купить там изделие «братской узкоглазой республики», представляющее из себя подстроечник, к которому наспех приделали корпус и ось. Такой резистор обычно практически никак не защищённое от попадания внутрь пыли влаги и прочего наружного мусора. А выводы иногда приклёпаны к угольной «подкове» так, что болтаются даже у нового резистора, гарантируя те же хрипы, треск и пропадание звука.

Читайте также:  Ремонт сотовых по франшизе

Возможно, где-то поближе к цивилизации можно добыть качественную деталь, но судя по ценам в музыкальных магазинах, где иногда продаются переменники для электрогитар, цена может составить очень большую долю от цены самого ремонтируемого изделия.

Поэтому я рекомендую вскрыть хрипящий переменник и оценить возможность приведения его в чувство своими силами.



Основные характеристики и разновидности

Резистор выбирается для каждого случая применения в зависимости от назначения и параметров конкретной цепи. К основным характеристикам относятся:

  • Номинальное сопротивление.
    Основное свойство, измеряемое в Ом и его производных: кОм, МОм и так далее.
  • Точность.
    На сколько процентов может отличаться реальное сопротивление от заявленного.
  • Предельная рассеиваемая мощность.
    Какую мощность способен выдерживать (рассеивать) резистор при долгой стабильной работе. Мощность измеряется в Ваттах и вычисляется по формуле P=I^2*R. Чем мощнее резистор, тем он крупнее и тем толще его “ноги”.
  • Предельное рабочее напряжение.
    Тут все понятно и так.

Резисторы также отличаются по:

  • Способу монтажа:
    DIP и SMD,
  • Конструкции
    : проволочный или металлопленочный,
  • Характеру изменения сопротивления
    , и об этом поговорим немного подробнее.

Несмотря на одинаковую роль — ограничение тока — резисторы могут сильно отличаться по возможности изменения сопротивления
, которое определяется стоящими перед ним задачами. Итак, резистор бывает:

  • Постоянным
    . “Обычный” резистор с четко установленным номинальным сопротивлением, которое не меняется, во всяком случае при допустимых режимах работы.
  • Переменным
    . Используются в качестве регуляторов-крутилок или ползунков, а также как датчиков положения.

  • Подстроечным.
    Почти то же самое, что переменный, но более точный и не рассчитанный на частую регулировку, а потому, обычно, более мелкий и “под отвертку”.

  • Термистором.
    Сопротивление меняется в зависимости от температуры, применяется как грубый, но надежный “градусник” в измерительных приборах и системах автоматизации.

  • Фоторезистором.
    Сопротивление меняется в зависимости от освещенности. Применений масса, от управления освещением, до датчиков охранных систем.

  • Тензорезистором.
    Сопротивление зависит от деформации, которая, в свою очередь, зависит от приложенной нагрузки. Используются в весах и прочих приборах для измерения физических воздействий.
  • Варистором.
    Сопротивление зависит от приложенного напряжения, незаменим в качестве локального предохранителя. При превышении заданного порога напряжения резко увеличивает сопротивляемость, тем самым спасая остальные элементы цепи от мучительного и, порой, недешевого сгорания.

Номинал постоянного резистора в корпусе DIP

кодируется на корпусе в виде цветных полос, включая класс точности и температурный коэффициент.


В интернете существует масса онлайн калькуляторов, способных облегчить задачу “дешифровки” номинала.
Номинал SMD

резистора пишется прямо на корпусе цифрами и буквами.


Переменные
, как термисторы и варисторы, метятся уже по-разному, в зависимости от типа, размера, вида и производителя. Обычно в виде надписи на корпусе.


В любом случае, номинал всегда можно узнать “вручную”, имея под рукой омметр, обычно входящий в состав мультиметра. Но следует иметь в виду, что мультиметры тоже имеют ограничения, слишком малые и слишком большие значения способны зафиксировать далеко не все, особенно из класса любительских. А для сопротивлений ниже 1 Ом и выше 1 МОм вообще есть специальные приборы, называемые соответственно, миллиомметр и мегаомметр, используемые для специальных задач, таких как измерение сопротивления изоляции и заземления.



Типы переменных резисторов

Проволочный

Состоит из трубчатого пластмассового или керамического каркаса, на который в виде однослойной обмотки уложена тонкая проволока с высоким сопротивлением (манганиновая или константановая).

По поверхности проволоки скользит металлический ползунок, который при перемещении касается следующего витка обмотки раньше, чем сойдет с предыдущего – этим обеспечивается плавность регулировки.

Для надежности контакта ползунка и токопроводящего слоя поверхность проволоки тщательно полируется.

Тонкопленочный

Состоит из каркаса в виде подковообразной диэлектрической пластины, покрытой тонкой пленкой, изготовленной из углерода, бора, металлизированных или композиционных материалов. По поверхности пленки скользит ползунок, прочно связанный с регулировочным механизмом.

Стандартные номиналы и комбинации

Выпускаемые современной промышленностью резисторы имеют ряд стандартных номиналов. Точнее даже не ряд, а 6 рядов: Е6, Е12, Е24, Е48, Е96, Е192. Цифра после буквы “”Е” указывает на число логарифмических шагов. Не вдаваясь в матан, можно сказать так — каждый следующий ряд имеет шаг вдвое мельче, чем у предыдущего. Например, для номинала 100 по шкале E6, есть 16 номиналов по шкале Е192, от 100 до 120 включительно. Разумеется, это находит отражение и в точности резистора, от 20% для Е6, до 0.1% и выше для Е192. Требуемая точность, зависит от конкретной задачи и выбирается конструктором сети (то есть вами) каждый раз индивидуально. По опыту, для большинства DIY-проектов достаточен ряд Е24 (5%), он же широко представлен в точках продаж радиодеталей.
Однако, иногда нам требуется нестандартное сопротивление, которого нет в любимом спичечном коробке с резисторами и даже в соседнем магазине. В этом случае можно и нужно прибегнуть к комбинированию двух и более имеющихся. Есть всего три вида этого приема — два простых: последовательное


и одно сложное, то есть комбинация из предыдущих двух комбинаций, называемое “смешанным соединением
”.


Результирующее
сопротивление при последовательном соединении
считается как сумма сопротивлений входящих в него резисторов:
R=R1+R2+R3+….При параллельном
— как частное от деления произведения сопротивлений на их сумму, что звучит страшнее, чем выглядит:

Смешанное же считается по тем же правилам, но в два этапа, сначала разбивается на участки, которые можно посчитать по правилам последовательного или параллельного соединения, затем умозрительно заменяем эти участки на сопротивления с полученными результатами и считаем еще раз общую картину.


Таким образом из подручных материалов мы можем быстро получить сопротивление практически любого номинала, в том числе такое, которое не купить даже на заказ и за бешеные деньги. Изредка комбинирование очень выручает, а значит должно состоять на вооружении каждого электронщика.

Маркировка переменных резисторов

Российская маркировка переменных сопротивлений до 1980 года – например, СП4-18:

  1. Тип изделия обозначается СП.
  2. Первая цифра – разновидность материала и технология изготовления – 4.
  3. Вторая – регистрационный номер типа резистора –18.

Маркировка группы по технологии изготовления и материалу:

  • 1 – непроволочные тонкослойные углеродистые и бороуглеродистые;
  • 2 – непроволочные тонкослойные металлопленочные и металлооксидные;
  • 3 – непроволочные композиционные пленочные;
  • 4 – непроволочные композиционные объемные;
  • 5 – проволочные;
  • 6 – непроволочные тонкослойные металлизированные.

Сейчас действует новая система маркировки переменных и подстроечных резисторов – например, РП1-46:

  1. Тип изделия обозначается РП.
  2. Первая цифра определяет группу по материалу резистивного элемента (1 – непроволочные, 2 – проволочные и металлофольговые).
  3. Вторая цифра – регистрационный номер разработки конкретного типа сопротивления.

Внимание! Единого стандарта маркировки регулировочных резисторов не существует – маркировка импортных отличается от российской.

Таблица номиналов

Справка: По ГОСТ 103 18-80 номинальные сопротивления должны соответствовать значениям ряда, полученного умножением или делением на 1,0; 1,5; 2,2; 3,3; 4,7; 6,8; умноженное на 10 в n-степени, где n – целое положительное число.

1 Ом 10 Ом 100 Ом 1 кОм 10 кОм 100 кОм 1 МОм 10 МОм
1.5 Ом 15 Ом 150 Ом 1.5 кОм 15 кОм 150 кОм 1.5 МОм 15 МОм
2.2 Ом 22 Ом 220 Ом 2.2 кОм 22 кОм 220 кОм 2.2 МОм 22 МОм
3.3 Ом 33 Ом 330 Ом 3.3 кОм 33 кОм 330 кОм 3.3 МОм 33 МОм
4.7 Ом 47 Ом 470 Ом 4.7 кОм 47 кОм 470 кОм 4.7 МОм 47 МОм
6.8 Ом 68 Ом 680 Ом 6.8 кОм 68 кОм 680 кОм 6.8 МОм 68 МОм
Читайте также:  Ремонт фризера для мягкого мороженого

Примеры использования

В начале статьи я привел самый простой пример использования резистора в качестве ограничителя тока, не будем повторяться. Таким же образом резистор применяется на сигнал ключа некоторых транзисторов, к управляющей линии адресных светодиодов и так далее, где слишком высокий ток не нужен, но может сжечь электронные компоненты.
Следующее интересное и востребованное применение: резистивный делитель напряжения


Входящее напряжение уменьшается пропорционально отношению резисторов, входящих в этот делитель, которые еще в народе называются “плечи”. Для расчета напряжения, которое мы получим на выходе, используем простую формулу:
Uout = Uin * R2/(R1+R2)

Нетрудно подсчитать, что, к примеру, при равных “плечах” мы получим напряжение вдвое меньше входящего. Подбирая резисторы, можно установить на выходе любое напряжение в диапазоне от U- до U+, что иногда очень полезно.

Практически, это самый простой, хоть и не самый лучший, способ получить нужное напряжение в пределах имеющегося, важно лишь помнить о мощности резисторов, если речь идет об относительно большом токе, а также о том, что КПД такого “источника питания” далек от идеального.

Принцип резистивного делителя используется в потенциометрах. Скользящий контакт делит резистор на две половины, передвигаясь между ними, благодаря чему на среднем контакте устанавливается уровень напряжения в зависимости от его положения.

Фоторезистор, меняющий сопротивление от освещения, подключается в схему как один из плеч делителя. Вторым плечом выступает резистор постоянный. Таким образом выходное напряжение будет полностью зависеть от освещенности, и его легко измерить при помощи АЦП.


Точно так же работает тензодатчик и любой другой датчик, основанный на принципе переменного сопротивления.

Отдельный частный случай резистивного делителя — измеритель силы тока. В этом случае роль одного плеча играет измеряемая нагрузка, а второго так называемый шунт или токоизмерительный резистор. Его главной особенностью является низкое и сверхнизкое сопротивление, от 0.1 Ом. Да, он вызывает некоторое падение напряжения, несколько десятых процента, но обычно это не сказывается на работоспособности схемы. Если же подобное понижение критично, берется резистор еще более низкоомный, например 0.01 Ом, при нем падение будет в пределах сотых процента, что соизмеримо с погрешностью даже самого малошумного блока питания. Вообще, расчет резистивного датчика тока — это тема отдельной статьи, подробно останавливаться на этом здесь не будем, рассмотрим лишь принцип работы в общих чертах.

На рисунке приведена схема простого резистивного “амперметра”


Слева цепь с нагрузкой в виде лампочки, которую следует измерять. Токоизмерительный резистор устанавливается между нагрузкой и “землей” (обведен красным квадратом), его задача формировать делитель сильно “перекошенный” в сторону нагрузки, чтобы создавать небольшое напряжение между центральным контактом делителя и “землей”. Напряжение это исчисляется милливольтами (то самое драгоценное падение на питании нагрузки, которое желательно минимизировать), поэтому справа мы пририсовали схему неинвертирующего операционного усилителя, доводящего измеряемое напряжение до размеров, уверенно определяемых АЦП. Так как чаще всего DIY- мастера используют родной АЦП Ардуино, питание усилителя и резисторы на входе подобраны под максимальное напряжение 5В.
Внимательный читатель наверняка заметит, что на неинвертирующем входе усилителя, по иронии судьбы, сигнал подается тоже через резистивный делитель (обведен синим квадратом), его соотношение плеч формирует коэффициент усиления. Вот и еще один пример применения, никуда без делителей и резисторов!

Еще одна полезная в хозяйстве схема — RC-цепь

. Фактически это тоже разновидность делителя, только в качестве одного из плеч вместо резистора установлен конденсатор. Отсюда и название “RC”: R (resistor) — резистор, C (capacitor) — конденсатор. Замечательное свойство этой сборки состоит в том, что она обладает некоторой инертностью, на зарядку конденсатора через резистор требуется время и на разрядку тоже. Это время называется “постоянной времени RC-цепи”. Постоянная времени напрямую зависит от емкости и сопротивления и вычисляется по формуле: T=RC. Например, при резисторе 1 кОм и конденсаторе 100 мкф постоянная будет равна 100 мс. В течение этого времени цепь держит заряд, в результате чего сглаживаются резкие перепады, например дребезг контактов. Да, дребезг можно не только “переждать” программно, но и подавить аппаратно, что иногда гораздо проще и правильнее сделать, например, если сигнал подается на ножку прерывания.

отлично сглаживает помехи и усредняет неровный, колеблющийся сигнал. Вместо длинного программного кода с множеством замеров и обработкой различными алгоритмами зачастую достаточно впаять на вход АЦП две копеечные радиодетальки.

Пример из жизни. На первом скриншоте с осциллографа сигнал — нагрузка от вентилятора, как она есть.


Сигнал весьма неровен, вычислять среднее арифметическое значение, медиану или применять фильтр Калмана — это грузить и без того не безграничную память и не беспредельные вычислительные ресурсы микроконтроллера, причем без гарантии на успех. Попробуем сделать это проще и изящнее. Глядя на сетку и ее масштаб, видим, что всплеск длится около миллисекунды, значит постоянная времени должна быть не меньше, а лучше больше раза в два-три. Согласно формуле подбираем конденсатор на 10 мкф и резистор на 220 Ом, расчетная постоянная 2.2 мс, вполне достаточно. Собираем, смотрим что получилось.


Просто шикарная прямая линия! Снимать показания с такого сигнала — одно удовольствие для АЦП контроллера.

Необходимы Ардуино запчасти для проектов? Купить Arduino комплектующие можно в нашем магазине 3DIY!

Выводы

Великое в малом — так можно сказать про резистор и прочие минимальные электронные “кубики”: конденсатор, транзистор, диод и прочие. Несмотря на кажущуюся простоту, нельзя недооценивать важность этих фундаментальных элементов, ведь именно из них состоит все многообразие огромного мира электроники. Без знаний их свойств и возможностей невозможно познать работу более крупных деталей и компонентов, и тем более уметь полноценно применять их на практике.

Как увеличить сопротивление переменного резистора

Для увеличения сопротивления придется немного потрудиться, но можно увеличить сопротивление в два раза:

  • разбирают ползунковый резистор, вынимают из него «подкову» с токопроводящим слоем:
  • ножом или мелкозернистой наждачной бумагой с внешнего и внутреннего конца дорожки, по которой перемещается ползунок, аккуратно счищают часть графитового слоя.

Уменьшить сопротивление намного легче – нужно параллельно резистору подключить в цепь постоянное сопротивление.

Источник

Оцените статью