Подготовительные работы по ремонту моста
РЕКОМЕНДАЦИИ ПО РЕМОНТУ ЖЕЛЕЗОБЕТОННЫХ МОСТОВ
(конструктивные и технологические решения)
СОСТАВЛЕНЫ кандидатами технических наук В.И.Шестериковым, С.А.Мусатовым, инженерами Е.А.Антоновым, А.В.Бугуруслановым, Л.М.Максименко, О.В.Николаевой.
УТВЕРЖДЕНЫ Минавтодором РСФСР. Протокол N 18 от 21 октября 1984 г.
В документе приведены технические решения и технология ремонта различных элементов с дефектами мостового полотна, пролетных строений и опор железобетонных мостов. Рассмотрены методы устранения наиболее часто встречающихся дефектов в гидроизоляции, деформационных швах, пролетных строениях с каркасной арматурой массивных и свайно-стоечных опорах, а также методы защиты бетонных поверхностей от разрушения, способы установки новых ограждений.
В основу их положены разработки Гипродорнии, а также материалы существующих документов: Ремонт железобетонных мостов. Техническое пособие для службы эксплуатации автомобильных дорог. — Минск, Миндорстрой БССР, 1978; Техническое пособие по ремонту железобетонных мостов для службы эксплуатации автомобильных дорог. — Алма-Ата: Минавтодор КазССР, 1982.
Рекомендации могут быть использованы мостовыми мастерами и прорабами при подготовке и выполнении ремонтных работ, а также при составлении проектно-сметной документации по ремонту.
ОБЩАЯ ЧАСТЬ
Настоящие «Рекомендации по ремонту железобетонных мостов» предназначены для мостового мастера и прораба ремонтно-мостового участка при выборе ими наиболее эффективного конструктивного и технологического решения по ремонту железобетонных мостов. Приведенные сведения позволяют также более полно составить проектно-сметную документацию и спланировать организацию ремонтных работ.
В документе приведены технические и технологические решения по наиболее распространенным видам ремонтных работ. Они даны с учетом накопленного в стране опыта, в соответствии с действующими нормативными и методическими материалами. Все рекомендации практически касаются сооружений с каркасной арматурой — ребристых, сборных, диафрагменных и бездиафрагменных пролетных строений (постройки 60-70-х годов), монолитных пролетных строений (постройки 50-х годов и раньше), опор свайно-эстакадного типа или опор-стенок. Обследования указанных сооружений на автомобильных дорогах Российской Федерации показали, что в большинстве случаев им свойственны следующие дефекты:
повреждение гидроизоляции как в местах примыкания к тротуарам, так и по всей площади моста;
разрушение деформационных швов;
повреждение бордюров или ограждений, отсутствие последних или их недостаточная высота;
разрушение покрытия и нарушение водоотвода;
выщелачивание бетона пролетных строений как следствие поврежденной изоляции;
повреждение защитного слоя балок пролетных строений или недостаточная (в соответствии с современными требованиями по долговечности) толщина защитного слоя;
сколы бетона в балках пролетных строений и опорах; сколы раковин на бетонной поверхности;
нарушение объединения пролетных строений по диафрагмам;
разрушение подферменных площадок или ригелей под балками;
повреждение или разрушение опорных узлов (опорных частей, пролетных строений над опорными частями);
трещины в железобетонных пролетных строениях и опорах и другие дефекты.
Наличие в мостах перечисленных наиболее распространенных дефектов предопределило и состав документа, включающего рекомендации по ремонту элементов мостового полотна (гидроизоляции, деформационных швов, ограждения и бордюра), устранению поверхностных дефектов и заделке трещин, ремонту пролетных строений (поперечное объединение, надопорные узлы и опорные части), ремонту опор.
В зависимости от характера и объема повреждений указанные работы относят к текущему или среднему ремонту. Текущий ремонт включает следующие виды работ: исправление отдельных элементов ограждений или замену части бордюров, ремонт или замену элементов деформационных швов (мастик, скользящих листов или покрытий у швов), ямочный ремонт покрытия, восстановление слоев одежды вдоль деформационных швов, устранение раковин, сколов и отдельных трещин, нанесение защитных покрытий на бетонные поверхности, восстановление отдельных элементов перил и тротуаров, локальное исправление кладки опор и опорных частей. Средний ремонт включает следующие виды работ: восстановление защитного слоя, торкретирование и нанесение эпоксидных покрытий на значительной площади, инъектирование трещин, восстановление поперечного объединения пролетных строений, ремонт тела опор и опорных узлов, ремонт гидроизоляции, установку или наращивание ограждений по всей длине, переустройство или восстановление деформационных швов, а также восстановление свайных опор и замену опорных частей с подъемкой пролетных строений.
Поскольку на сети автомобильных дорог РСФСР эксплуатируют искусственные сооружения, имеющие недостаточный габарит, или они рассчитаны под нагрузки, отличающиеся от современных, в «Рекомендациях» дан ряд технических решений по уширению малых мостов и усилению элементов балочных пролетных строений и опор. Здесь также приведена конструкция смотрового приспособления (люльки), с помощью которой представляется возможным осуществлять осмотр и ремонт фасадных поверхностей сооружений. Люлька может крепиться к любому транспортному средству.
РЕМОНТ ГИДРОИЗОЛЯЦИИ
Повреждения гидроизоляции проезжей части проявляются в виде мокрых пятен, образования высолов и подтеков воды на нижних поверхностях плиты пролетных строений, застоя воды под тротуарами. Причины нарушения гидроизоляции: износ гидроизоляционного слоя под воздействием внешних факторов, некачественное сопряжение гидроизоляционного слоя с бордюром, применение недолговечных материалов и некачественное устройство гидроизоляционных слоев. В результате снижается долговечность пролетного строения.
РЕКОМЕНДУЕМЫЕ СХЕМЫ РЕМОНТА ГИДРОИЗОЛЯЦИИ
Вид требуемого ремонта гидроизоляции определяется характером и величиной дефектов, их местоположением.
I. РЕМОНТ ИЗОЛЯЦИИ ТРОТУАРОВ (РИС.1)
Рис.1. Схема изоляции тротуарного блока:
1 — тиоколовая (битумная) мастика; 2 — литой асфальт; 3 — штраба; 4 — мастика; 5 — раствор М300;
6 — пробитое отверстие = 40 мм через 135 см
Внешние признаки — протечки воды под тротуаром на фасад, повреждения консолей плит крайних балок и тротуарных консолей.
вскрывают вкладные тротуарные плиты. Верху балок придают поперечный уклон цементным раствором. Поверхность их покрывают битумным лаком за 2-3 раза или тиоколовой битумной мастикой;
при отсутствии возможности выхода воды из под тротуара в ребре тротуарного блока пробивают отверстия = 40 мм для удаления воды;
нижнюю часть секций тротуарных блоков, поверхность плиты и упоров, стенки тротуаров покрывают битумным лаком;
после укладки плит устраивают покрытие из литого асфальта. Зазоры заполняют битумной мастикой.
II. РЕМОНТ ГИДРОИЗОЛЯЦИИ В МЕСТЕ ПРИМЫКАНИЯ К ТРОТУАРУ
Внешние признаки — появление мокрых пятен в ближайшем продольном стыке омоноличивания балок, образование высолов и сталактитов на нижней поверхности консолей плит пролетных строений.
Возможные варианты ремонта:
А. Улучшение гидроизоляционных свойств одежды в месте примыкания к тротуару без снятия защитного слоя (рис.2)
Рис.2. Схема ремонта гидроизоляции без удаления защитного слоя:
а — вырубка слоев; б — выполнение ремонтных работ;
1 — штраба 3х4 см, залитая мастикой; 2 — защитный слой; 3 — гидроизоляция; 4 — выравнивающий слой;
5 — асфальтобетонное покрытие; 6 — слой гидрофобизации 10%-ной ГКЖ-94; 7 — слой битумлака;
8 — новое асфальтобетонное покрытие
Указания по производству работ:
1) вырубают пневмоинструментом покрытие шириной 1 м вдоль тротуаров; 2) в защитном слое нарезают штрабу сечением 3х4 см, очищают паз от бетона и пыли, заливают горячей мастикой; 3) поверхность защитного слоя очищают от пыли щетками вручную, сушат продувкой сжатым воздухом. На поверхность наносят 10%-ный водный раствор ГКЖ-94 в два слоя и битумный лак; 4) восстанавливают асфальтобетонное покрытие.
Б. Ремонт изоляции в месте примыкания к тротуару с удалением защитного слоя (рис.3)
Рис.3. Схема ремонта гидроизоляции с удалением защитного слоя:
а — вырубка слоев; б — выполнение ремонтных работ;
1 — тротуарный блок; 2 — плита проезжей части; 3 — выравнивающий слой; 4 — старая гидроизоляция; 5 — старый защитный слой;
6 — старое покрытие; 7 — новая оклеечная изоляция; 8 — новый защитный слой; 9 — новое асфальтобетонное покрытие
Указания по производству работ:
1) вырубают пневмоинструментом покрытие шириной 1 м вдоль тротуаров; 2) вырубают цементобетонный защитный слой шириной 0,8 м; 3) по очищенной поверхности гидроизоляции укладывают двухслойную новую гидроизоляцию; 4) восстанавливают защитный слой из цементного раствора М300 с армированием металлической сеткой; 5) восстанавливают покрытие из мелкозернистого асфальтобетона.
В. Ремонт гидроизоляции в месте примыкания к тротуару с увеличением высоты бордюра (рис.4)
Рис.4. Схема ремонта гидроизоляции с наращиванием бордюра:
1 — тротуарный блок; 2 — новая гидроизоляция тротуара и проезжей части; 3 — покрытие на тротуаре;
4 — приставной бетонный бордюр; 5 — бетонный прилив; 6 — старая гидроизоляция; 7 — старый защитный слой;
8 — старое покрытие; 9 — выравнивающий слой
Внешние признаки — образование щели между тротуаром и бордюром, недостаточная высота бордюра над проезжей частью, фильтрация воды с проезжей части на консоли крайних балок.
Указание по производству работ:
1) выполняют пневмоинструментом ступенчатую вырубку асфальтобетонного покрытия шириной 1 м и защитного слоя шириной 0,8 м; 2) удаляют приставной бордюр, а на его место устанавливают бордюрный камень высотой 0,5 м либо устраивают монолитный бордюр из бетона М400 с каркасным армированием; 3) бетонирование бордюра (20х50 см) осуществляют одновременно с устройством цементобетонного защитного слоя толщиной 4 см; 4) устраивают бетонный прилив или восстанавливают асфальтобетонное покрытие.
III. РЕМОНТ ГИДРОИЗОЛЯЦИИ ПО ВСЕЙ ПЛОЩАДИ МОСТА
Внешние признаки — протечки воды через швы плиты проезжей части и в деформационные швы, высолы и сталактиты по низу плиты пролетного строения, повреждения по фасаду торцов балок и тротуаров.
Указания по производству работ по вариантам:
а) устройства нового слоя: 1) снимают асфальтобетонное покрытие; 2) устраивают двухслойную оклеечную гидроизоляцию по защитному слою; 3) наращивают бордюр высотой до 0,5 м; 4) укладывают защитный слой из асфальтобетона; 5) восстанавливают асфальтобетонное покрытие;
б) замены существующего слоя: 1) вырубают асфальтобетонное покрытие и защитный слой; 2) снимают полностью изоляцию; 3) очищают поверхность выравнивающего слоя; 4) устраивают трехслойную битумную изоляцию с армированием двумя слоями стеклоткани или с применением гидростеклоизола; 5) наращивают бордюр высотой до 0,5 м; 6) улучшают гидроизоляцию тротуаров и бордюров; 7) восстанавливают защитный слой из цементного раствора М300; 8) восстанавливают покрытие из мелкозернистого асфальтобетона.
РЕКОМЕНДУЕМЫЕ СОСТАВЫ БИТУМНЫХ МАСТИК ДЛЯ ГИДРОИЗОЛЯЦИИ
Источник
Подготовительные работы по ремонту моста
ИНФОРМАЦИОННЫЙ ЦЕНТР ПО АВТОМОБИЛЬНЫМ ДОРОГАМ
РЕКОНСТРУКЦИЯ, РЕМОНТ И СОДЕРЖАНИЕ ИСКУССТВЕННЫХ СООРУЖЕНИЙ
СНиП 2.05.03-84* Мосты и трубы. Изд. офиц.; Введ. 01.01.86. — М.: Госстрой СССР, 2000. — 213 с.
*Настоящие нормы распространяются на проектирование новых и реконструкцию существующих постоянных мостов (в том числе путепроводов, виадуков, эстакад и пешеходных мостов) и труб под насыпями на железных дорогах (колеи 1520 мм), линиях метрополитена и трамвая, на автомобильных дорогах (включая внутрихозяйственные дороги в колхозах, совхозах и других сельскохозяйственных предприятиях и организациях, дороги промышленных предприятий), на улицах и дорогах городов, поселков и сельских населенных пунктов.
1.1* . При проектировании новых и реконструкции существующих мостов и труб следует:
выполнять требования по обеспечению надежности, долговечности и бесперебойности эксплуатации сооружений, а также безопасности и плавности движения транспортных средств, безопасности для пешеходов и охране труда рабочих в периоды строительства и эксплуатации;
предусматривать безопасный пропуск возможных паводков и ледохода на водотоках, а, кроме того, на водных путях — выполнение требований судоходства и лесосплава;
принимать проектные решения, обеспечивающие экономное расходование материалов, экономию топливных и энергетических ресурсов, снижение стоимости и трудоемкости строительства и эксплуатации;
предусматривать простоту, удобство и высокие темпы монтажа конструкций, возможность широкой индустриализации строительства на базе современных средств комплексной механизации и автоматизации строительного производства, использования типовых решений, применения сборных конструкций, деталей и материалов, отвечающих стандартам и техническим условиям;
учитывать перспективы развития транспорта и дорожной сети, реконструкции имеющихся и строительства новых подземных и наземных коммуникаций, интересы благоустройства и планировки населенных пунктов, перспективы освоения земель в сельскохозяйственных целях;
предусматривать меры по охране окружающей среды (в том числе предотвращение заболачивания, термокарстовых, эрозионных, наледных и других вредных процессов), по поддержанию экологического равновесия и охране рыбных запасов.
1.2. Основные технические решения, принимаемые при проектировании новых и реконструкций существующих мостов и труб, следует обосновывать путем сравнения технико-экономических показателей конкурентоспособных вариантов.
1.3*. При проектировании реконструкции мостов и труб следует учитывать их физическое состояние, грузоподъемность конструкций, продолжительность и режим эксплуатации сооружений после реконструкции.
При строительстве вторых путей, проектировать железнодорожные мосты и трубы следует с учетом конструктивных особенностей и опыта эксплуатации сооружений на действующем пути.
1.79*. Все части пролетных строений, видимые поверхности опор и труб должны быть доступны для осмотра и ухода, для чего следует устраивать проходы, люки, лестницы, перильные ограждения (высотой не менее 1,10 м), специальные смотровые приспособления, а также закладные части для подвески временных подмостей. В мостах с балочными пролетными строениями и подвижными опорными частями следует предусматривать условия для выполнения работ по регулированию положения, ремонту или замене опорных частей.
1.80. У каждого конца мостового сооружения или трубы при высоте насыпи свыше 2 м для железнодорожных и свыше 4 м для автодорожных сооружений следует, как правило, устраивать по откосам постоянные лестничные сходы шириной 0,75 м.
1.81*. В необходимых случаях (например, при строительстве мостов и труб в опытном порядке, при применении для мостов внешне статически неопределимых систем, чувствительных к осадкам, при создании в стальных конструкциях предварительно напряженного состояния и др.) в проектной документации следует предусматривать установку специальных марок или других приспособлений, необходимых для осуществления контроля за общими деформациями, а также за напряженным состоянием отдельных его элементов.
1.82. На железнодорожных мостах и в путепроводах тоннельного типа при их длине свыше 50 м следует предусматривать площадки-убежища в уровне железнодорожного проезда через 50 м с каждой стороны проезда, располагаемые в шахматном порядке. При длине моста или путепровода до 100 м площадки-убежища допускается устраивать по одной с каждой стороны проезда.
На линиях, где предусмотрена скорость движения поездов свыше 120 км/ч, а также на мостах в районах со средней температурой наружного воздуха наиболее холодной пятидневки с обеспеченностью 0,98 ниже минус 40°С расстояние между площадками-убежищами должно быть не более 25 м.
1.83. Противопожарное оборудование на железнодорожных мостах должно соответствовать Указаниям по устройству и конструкции мостового полотна, утвержденным МПС, на автодорожных — перечню, согласованному с минавтодорами союзных республик.
1.84*. Все металлические конструкции мостовых сооружений должны быть заземлены, если они расположены на расстояниях менее 5 м от контактной сети на постоянном токе и менее 10 м от контактной сети на переменном токе. Также должны быть заземлены железобетонные и бетонные конструкции, поддерживающие контактную сеть.
1.85. При проектировании путепроводов и пешеходных мостов через пути электрифицированных железных дорог над контактной сетью следует предусматривать устройство ограждающих и предохранительных вертикальных щитов (сеток) высотой 2,0 м. Допускается применение с каждой стороны моста горизонтальных щитов (сеток) длиной не менее 1,5 м.
1.86. Железнодорожные мосты и путепроводы на путях перевозки ковшей с жидким чугуном и горячим шлаком должны иметь вместо перил специальные предохранительные ограждения, высота которых должна быть на 20 см выше верха ковшей. При этом через 50 м с каждой стороны следует предусматривать площадки-убежища, располагаемые в шахматном порядке.
Конструкции путепроводов, под которыми предполагается проход слитко-, чугуно- или шлаковозных составов, должны иметь специальные экраны, ограничивающие нагрев ограждаемых конструкций до температуры не выше 100°С.
1.87*. На всех мостах не допускается прокладка нефтепроводов, нефтепродуктопроводов и, как правило, линий высоковольтных электропередач (напряжением свыше 1000 В). Кроме того, на железнодорожных мостах не допускается прокладка газопроводов и канализационных трубопроводов, а также водопроводных линий.
При специальном технико-экономическом обосновании на автодорожных, городских и пешеходных мостах допускается прокладка в стальных трубах тепловых сетей, водопроводных линий, напорной канализации и газопроводов с рабочим давлением не более 0,6 МПа (6 кгс/см 2 ).
Во всех случаях должны быть предусмотрены меры по обеспечению сохранности моста, а также непрерывности и безопасности движения по нему в случаях прорывов и повреждений трубопроводов и кабелей. Для этого на больших и средних мостах линии электропередачи и другие коммуникации, как правило, а на железнодорожных мостах обязательно должны иметь устройства для выключения этих линий и коммуникаций с обеих сторон моста.
1.88*. Мосты должны иметь приспособления для пропуска линий связи, предусмотренных на данной дороге, и других коммуникаций, разрешенных для данного сооружения, а на железных дорогах (в том числе и на линиях, где электрическая тяга поездов первоначально не предусмотрена) и в городах при троллейбусном и трамвайном движении — также устройства для подвески контактной сети.
Для прокладки труб и кабелей следует, как правило, предусматривать специальные конструктивные элементы (выносные консоли, поперечные диафрагмы, наружные подвески и т.п.), не препятствующие выполнению работ по текущему содержанию и ремонту моста.
Прокладка коммуникаций под тротуарными плитами и на разделительной полосе допускается при защите от повреждений во время эксплуатации как коммуникаций, так и конструкций моста. В случае прокладки коммуникаций в замкнутых полостях блоков под тротуарными плитами необходимо устройство в них гидроизоляции и отверстий для водоотвода.
1.89. Железнодорожные и автодорожные мосты с разводными пролетами, а также мосты с совмещенной проезжей частью (для неодновременного движения рельсовых и безрельсовых транспортных средств) должны быть ограждены с обеих сторон сигналами прикрытия, находящимися на расстоянии не менее 50 м от въездов на них. Для городских мостов расстояния от въездов до сигналов прикрытия устанавливаются по согласованию с ГАИ МВД РФ. Открывание сигналов прикрытия должно быть возможно только при неразведенном положении разводного пролета, а также при незанятом состоянии совмещенного проезда.
Железнодорожные мосты с разводными пролетами, а также однопутные мосты на двухпутных участках дороги должны быть защищены предохранительными (улавливающими) тупиками или устройствами путевого заграждения.
Для больших железнодорожных мостов следует предусматривать устройство заградительной и оповестительной сигнализации, а также контрольно-габаритных устройств в соответствии с Правилами технической эксплуатации железных дорог (ПТЭ), утвержденными МПС.
Судоходные пролеты на мостах через водные пути должны быть оборудованы освещаемой судовой сигнализацией.
1.90. У охраняемых мостов следует предусматривать помещения для охраны моста и соответствующие устройства.
Около больших железнодорожных мостов, а также автодорожных и городских мостов длиной свыше 200 м следует предусматривать помещения площадью 16 — 25 м 2 для их обслуживания и, кроме того, в обоснованных случаях — помещения для компрессорных.
На больших железнодорожных мостах для механизации работ по текущему содержанию и ремонту следует, по согласованию с МПС, предусматривать устройство линий подачи сжатого воздуха и воды, а также линий продольного электроснабжения с токоразборными точками.
СНиП 3.06.07-86 Мосты и трубы. Правила обследований и испытаний. — Изд. офиц. — М.: Гос. Строит. комитет СССР, 1988. — 41 с.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Обследования и испытания мостов и труб проводятся для выявления состояния и изучения работы этих сооружений.
Обследования мостов и труб могут проводиться как самостоятельный вид работ (без проведения испытаний).
Испытания и обкатку сооружений допускается проводить только после выполнения обследований (см. п. 3.1) и с учетом полученных по ним данных.
1.2. Работы по обследованиям и испытаниям мостов и труб должны выполняться специализированными подразделениями (мостоиспытательными станциями, мостоиспытательными лабораториями 1 ) министерств и ведомств, осуществляющих строительство или эксплуатацию мостов и труб.
1 В дальнейшем организации, проводящие работы, именуются мостостанциями.
К выполнению работ по обследованиям с испытаниями или обкаткой могут привлекаться исследовательские подразделения вузов, имеющих кафедры мостов. Вопросы о возможности привлечения к испытаниям вузов, не имеющих кафедр мостов, должны решаться госстроями союзных республик по представлениям минвузов.
Обследования мостов и труб как самостоятельный вид работ допускается проводить также комиссиями, назначенными приказами руководителей министерств и ведомств, осуществляющих строительство или эксплуатацию сооружений.
1.3. Для решения отдельных вопросов, возникших при проведении обследований и испытаний, заказчик указанных работ по предложению мостостанции должен привлекать к совместной работе с ней организации, осуществляющие специальные виды работ (водолазные станции, буровые партии, грунтовые лаборатории, группы по контролю технического состояния и правильности эксплуатации электрических и контактных сетей и др.), а также представителей Госавтоинспекции и других органов государственного надзора.
Привлеченные организации должны работать под общим методическим руководством мостостанции, а полученные ими данные (материалы) должны учитываться при принятии решений мостостанциями.
1.4. При приемке в эксплуатацию все законченные строительством мосты и трубы должны быть обследованы; мосты, указанные в п. 1.5, должны быть, кроме того, испытаны, а мосты, указанные в п. 1.6. — обкатаны.
1.5. Испытаниям при приемке в эксплуатацию должны, как правило, подвергаться мосты с опытными и впервые применяемыми конструкциями.
Испытания других вводимых в эксплуатацию мостов (имеющих большие пролеты, а также большую повторяемость основных несущих элементов) могут проводиться по решениям приемочных комиссий, по требованиям проектных и эксплуатационных организаций, а также в связи с выполнением соответствующими организациями научно-исследовательских и опытных работ. Необходимость проведения испытаний в указанных случаях должна быть обоснована.
1.6. Вводимые в эксплуатацию и не подвергаемые испытаниям (по п. 1.5) железнодорожные мосты и мосты под пути метрополитена, а также автодорожные мосты под нагрузки АБ (см. СНиП 2.05.03-84) должны быть обкатаны.
1.7. Обследования мостов и труб, находящихся в эксплуатации, должны проводиться регулярно (в плановом порядке) с периодичностью, установленной в ведомственных руководствах (инструкциях) по текущему содержанию сооружений.
1.8. Испытания эксплуатируемых сооружений должны проводиться в случаях, когда решение вопросов, связанных с эксплуатацией сооружений, не может быть получено только расчетным путем по данным обследований.
Потребность в проведении испытаний эксплуатируемых сооружений может возникнуть также после их капитального ремонта или реконструкции (усиления), при наличии в частях или элементах неисправностей, в случаях уточнения расчетной грузоподъемности, оценки эффективности мер, предусматриваемых для обеспечения безопасного пропуска отдельных тяжелых нагрузок, а также в других обоснованных случаях.
Необходимость проведения испытаний обосновывается мостостанциями, выполняющими обследования; решения о проведении испытаний принимаются организациями, осуществляющими эксплуатацию сооружений.
1.9. Обследования и испытания мостов и труб следует проводить по заранее разработанным программам, составленным исполнителями работ с учетом предложений заинтересованных организаций.
В программах должны быть отражены основные задачи и общая цель предпринимаемых работ, приведены содержание и объемы работ по обследованию, намечены конструкции и их элементы (сечения), подвергаемые исследованию при испытаниях, указаны нагрузки для статических и динамических испытаний, определены виды и состав отчетных технических документов.
Положения программ испытаний автодорожных и городских мостов в части определения величины испытательной нагрузки и схем намечаемых загружений должны разрабатываться на основании проектных расчетных материалов.
Программы согласовываются с заказчиком-организацией, осуществляющей строительство или эксплуатацию сооружения, и утверждаются руководителем организации, в подчинении которой находятся исполнители работ.
Примечания: 1. Для обследований, проводимых мостостанциями ведомств, эксплуатирующих сооружения, и осуществляемых в порядке ведения текущего содержания сооружений, составление программ работ не является обязательным.
2. Для разработки программ испытаний мостов проектные организации обязаны по запросам мостостанций предоставлять им необходимые для испытаний расчеты.
1.10. Руководитель работ мостостанций может, учитывая особенности объекта, а также местные условия, конкретизировать и дополнить отдельные положения предварительно разработанной программы: наметить проведение отдельных дополнительных видов работ (см. п. 2.3), определить состав и объем подготовительных работ, уточнить степень подробности осмотра конструкций и объем контрольных измерений, уточнить места установки измерительных приборов и схемы загружения моста испытательной нагрузкой, наметить наиболее рациональный порядок загружения моста при испытаниях.
Проводимые уточнения и дополнения должны быть направлены на решение основных задач, намеченных программой.
1.11. Подготовительные работы, связанные с проведением обследований и испытаний (устройство временных подмостей и смотровых приспособлений с выделением необходимых материалов и рабочей силы, предоставление испытательной нагрузки, регулирование движения на мосту и под мостом в период испытаний и др.), должны выполняться:
на вновь построенных сооружениях — строительной организацией, возводившей объект;
на эксплуатируемых сооружениях — организацией, в ведении которой находится объект.
1.12. Обследование и испытания мостов и труб необходимо проводить при благоприятных погодных условиях, когда имеются условия для осмотра всех частей сооружения, не нарушается работа устанавливаемых измерительных приборов, нет препятствий для безопасного передвижения испытательной нагрузки, возможно выполнение требований по технике безопасности работ и охране труда персонала, занятого на работах.
Не следует проводить обследования и испытания в ненастную погоду, при температуре наружного воздуха при испытаниях ниже минус 20°С, при обследовании ниже минус 30°С, при наличии на конструкциях снежного покрова, инея, наледи, а также над рекой во время ледостава и ледохода.
Инструкция по уширению автодорожных мостов и путепроводов: ВСН 51-88 / Минавтодор РСФСР, Миндорстрой УССР, Миндорстрой БССР. — М, 1990. — 128 с.
2. ОЦЕНКА СОСТОЯНИЯ ЭКСПЛУАТИРУЕМОГО МОСТА
2.1. При оценке состояния сооружения устанавливают наличие дефектов в нем, определяют несущую способность элементов и грузоподъемность сооружений с учетом повреждений (трещин, коррозии арматуры или металла, или других ослаблений сечения, деформаций связей и т.д.) по специальным методикам. 1
1 Результаты обследования заносят в книгу искусственного сооружения
Для оценки несущей способности элементов должны быть известны все геометрические размеры и армирование элементов, характеристики материалов (металл, бетон, арматура, грунты). Эти данные принимаются по имеющейся технической документации и, при необходимости, по результатам специальных обследований и изысканий, проводимых перед разработкой проекта.
Обследование выполняют в соответствии с требованиями, изложенными в действующих нормативных документах.
2.2. Результаты обследования и испытаний (если их проводили) должны быть представлены в виде отчета, содержащего необходимую информацию для разработки ТЭР и последующего проектирования реконструкции объекта, в том числе;
схемы фактического расположения и размеры элементов сооружения;
ведомость дефектов с соответствующими схемами, фотографиями и объемами соответствующих ремонтных работ;
сведения о размывах и деформациях русла;
прочностные и деформативные характеристики материалов со ссылкой на проектную, исполнительскую документацию или результаты испытания материалов;
ссылки на стандарты, регламентирующие физико-механические характеристики материалов, из которых изготовлены основные несущие элементы;
данные по грузоподъемности всего сооружения на момент обследования (при необходимости);
предложения по использованию существующего сооружения в целом или отдельных его частей при уширении со схемами расположения элементов и объемами основных работ.
Для сталежелезобетонных пролетных строений оценка состояния должна характеризовать и степень участия железобетонной плиты в совместной работе с главными балками. При необходимости это можно определить по результатам статических испытаний пролетного строения.
2.3. Обследование конструкций с целью оценки их технического состояния перед разработкой проекта реконструкции производят для надземных элементов. Скрытые элементы обследуют только в случае видимых признаков начала разрушения открытых частей при наличии коррозии бетона подферменной площадки береговой опоры из-за плохой гидроизоляции шкафной стенки и протекания воды через стыки ее элементов; при деформации опор или наличии сведений из документации на мост о низком качестве строительных работ. Однако следует иметь в виду, что вскрытие грунта за шкафной стенкой нежелательно, поскольку исключает возможность учета в расчетах упрочнения грунта.
В русловых опорах проводят подводные обследования с определением фактического состояния конструкций и величин размывов.
2.4. Грузоподъемность железобетонных балочных пролетных строений эксплуатируемого моста определяют в соответствии с требованиями ВСН 32-78 [1], а сталежелезобетонных пролетных строений по Инструкции [4] путем пересчета конструкций современными методами, учитывающими пространственную работу сооружения и неупругие деформации (в необходимых случаях).
Допускается устанавливать грузоподъемность пролетных строений по результатам специальных испытаний, фиксирующих фактические деформации в арматуре растянутой зоны и хомутах, бетоне сжатой зоны, бетоне элементов, испытывающих крутильные деформации, а также фиксирующих раскрытие силовых трещин. Усилия определяют только в основных расчетных сечениях элементов и сечениях с дефектами, снижающими несущую способность.
2.5. При оценке жесткости диафрагм учитывают наличие трещин в диафрагмах, состояние мест приварки накладок, несовпадение полудиафрагмы в плане.
При смещении полудиафрагм в плане до 15 мм изменение поперечной жесткости можно не принимать в расчет. При большем смещении полудиафрагм и наличии дефектов в сварных швах накладок степень снижения поперечной жесткости принимают пропорционально степени снижения несущей способности объединения или устанавливают экспериментальным путем по результатам испытаний моста.
При смещении полудиафрагм свыше 50 мм, отрыве накладок и повреждениях в сварных швах распределение нагрузок между балками пролетных строений определяют в предположении шарнирного объединения сборных балок в уровне плиты проезжей части.
Фактическая жесткость балок пролетных строений может быть определена как теоретически, так и по результатам статических или динамических испытаний.
2.6. При оценке несущей способности элементов пролетных строений сечение арматуры принимают с учетом ослабления металла коррозией. Внешним признаком коррозии арматуры является наличие трещины вдоль нее в защитном слое бетона. Фактическое сечение арматуры определяют по результатам замеров на полностью оголенной арматуре на каком-либо участке или на арматуре, оголенной с одной стороны. При этом, если не представляется возможным замерить фактический диаметр неповрежденной арматуры, его определяют по толщине коррозии, принимая, что наличие окислов толщиной 5 мм соответствует повреждению металла на глубину 1 мм.
ОДН 218.012-99. Общие технические средства к ограждающим устройствам на мостовых сооружениях, расположенных на магистральных автомобильных дорогах. Изд. офиц. Отрасл. дор. нормы. — М., 1999. — 13 с.
1. Область применения
Настоящие отраслевые дорожные нормы (ОДН) распространяются на конструкции ограждений недеформируемого и деформируемого типа, устанавливаемые на мостовых сооружениях автомагистралей Российской Федерации, в том числе на автомобильных дорогах международного класса. Нормы применяются на всей территории Российской Федерации.
Предметом нормирования настоящих ОДН являются требования к мостовым ограждениям, на основании которых осуществляется выбор (из числа сертифицированных конструкций) и разработка новых конструкций ограждений для мостов, а также определение области применения разработанных ранее конструкций. Нормы являются обязательными для применения органами государственного управления автомобильными дорогами, органами надзора, проектными и научно-исследовательскими организациями, предприятиями и организациями дорожного хозяйства России независимо от ведомственной подчиненности и форм собственности.
Методические рекомендации по содержанию мостовых сооружений автомобильных дорог / Росавтодор. — М., 1999. — 86 с.
5. Содержание мостовых сооружений
5.1. Содержание элементов мостового полотна
5.1.1. Нарушение водонепроницаемости проезжей части железобетонных, бетонных и каменных мостов способствует просачиванию воды на главные балки, опоры и опорные части. Если влага попадает в трещины бетона или кладки, то могут произойти выщелачивание бетона (или раствора) и коррозия арматуры. Поэтому при содержании проезжей части моста и подходов к нему необходимо следить за состоянием покрытия и водоотвода, надежностью (прочностью) оградительных устройств, тротуаров и перил, состоянием деформационных швов и гидроизоляции, а также за чистотой элементов конструкции проезжей части.
5.1.2. В процессе эксплуатации на проезжей части могут появиться неровности, волны, выбоины, трещины в покрытии и излишняя толщина покрытия, может произойти износ покрытия с обнажением нижних слоев проезжей части и арматурных сеток защитного слоя, а также разрушение покрытия около деформационных швов. Появление отдельных дефектов в покрытии способствует застою воды, что ведет к более интенсивному разрушению всего покрытия. Такие дефекты устраняют в наиболее короткие сроки.
На мостовых сооружениях без гидроизоляции дефекты в покрытии вообще недопустимы, так как оно выполняет роль гидроизоляции и при образовании трещин и нарушении водоотвода создаются условия для просачивания воды на несущие элементы. Поэтому дефекты здесь надо устранять немедленно.
При небольших повреждениях покрытия их устраняют обычным ямочным ремонтом, а в случае значительных повреждений (на всей длине или ее части) его заменяют, устраивая новое с соблюдением необходимых уклонов проезжей части. Толщина нового покрытия должна быть не больше, чем предусмотрено проектом моста; излишняя толщина может увеличить собственный вес пролетных строений и тем самым снизить их грузоподъемность. Поэтому на конструкциях, имеющих значительное провисание пролетных строений, выравнивать покрытие нужно только после ремонта главных несущих конструкций.
Нельзя допускать увеличение постоянной нагрузки на сооружение, вызываемое различными обстоятельствами.
5.1.3. В период ухода за проезжей частью необходимо уделять большое внимание состоянию водоотвода, так как его нарушение приводит к застаиванию воды на покрытии. Нарушение водоотвода может быть вызвано не только повреждением покрытия, но и отсутствием соответствующих уклонов, необходимого количества водоотводных устройств (трубок), а также их засорением или неправильным расположением.
Если на проезжей части образуются лужи, то, определив основные причины их образования, надо принимать срочные меры к их устранению — восстановить уклоны, отремонтировать покрытие и т.п. На загрязненной проезжей части водоотвод также не будет осуществляться, поэтому проезжую часть, водоотводные трубки и деформационные швы нужно регулярно очищать от посторонних предметов, грязи, мусора и воды, снега и льда. Весь мусор удаляют обязательно за пределы моста; категорически запрещается заметать мусор в водоотводные трубки, на деформационные швы и на конусы устоев. Очищать проезжую часть желательно механизированным способом, используя соответствующие уборочные машины, с последующей доочисткой вручную зон шириной 1 м вдоль ограждений безопасности.
Для труднодоступных мест целесообразно использовать мобильные компрессорные установки (например, для прочистки водоотводных трубок и лотков под деформационными швами). Водоотводные трубки и лотки — основные элементы, обеспечивающие отвод воды, и поэтому они всегда должны быть в исправном состоянии, чтобы обеспечить отвод воды за пределы моста.
5.1.4. В зимнее время особое внимание следует обращать на то, чтобы на проезжей части не образовывалась ледяная корка, так как это может привести к аварийной ситуации на мосту. Поверхность покрытия следует посыпать песком, топливным шлаком, дробленым камнем и пр. В ряде случаев на дорогах для устранения гололеда проезжую часть посыпают хлористыми солями. Однако на мостах этого делать нельзя.
Удаление снега на большинстве мостов допускается путем его сбрасывания через перильные ограждения в подмостовую зону. На путепроводах удаление снега производится путем погрузки его в автотранспортные средства с последующим транспортированием к месту выгрузки. После уборки снега на проезжей части чистят тротуары и перила.
5.1.5. Гидроизоляция проезжей части является элементом моста, от состояния которого во многом зависит долговечность сооружения. Характер повреждения гидроизоляции определяется при ее вскрытии. Внешними признаками нарушения гидроизоляции без вскрытия могут быть подтеки и следы выщелачивания бетона, образовавшиеся на нижней поверхности плиты проезжей части около швов, трещин, пор, щелей и пр. Иногда в местах просачивания влаги образуются сталактиты в виде сосулек из извести.
Дефекты водоотвода и гидроизоляции выявляются быстрее в периоды продолжительных и ливневых дождей. Все дефекты гидроизоляции, как правило, устраняются при ремонте проезжей части пролета или всего моста, однако локальный ремонт гидроизоляции в отдельных случаях можно выполнить в рамках ППР.
5.1.6. Деформационные швы — ответственные элементы сооружений, и неисправное их состояние приводит к нарушению нормальной работы пролетных строений на температурные воздействия и к разрушению краев плиты проезжей части около швов от временной нагрузки. В результате вода и грязь могут проникать на опоры и опорные части. Под деформационными швами пролетные строения должны иметь возможность свободного перемещения. Все предметы, которые мешают этому, нужно убирать (например, лишний бетон и остатки опалубки под швами между главными балками соседних пролетов и у шкафных стенок).
Внешним осмотром определяют загрязнение деформационных швов, нарушение самого шва и покрытия около него, проверяют наличие и состояние деталей крепления и элементов шва и пр.
В швах закрытого типа опасно образование трещин при понижении температуры, когда пролетные строения сокращаются, а ширина шва увеличивается. В образовавшиеся трещины попадает вода и посторонние включения. Вода в зазорах и трещинах замерзает и вызывает разрушение покрытия и самого шва. При нарушении изоляции швов вода может проникать на поверхность опоры и опорные части или скапливаться в нижней части компенсаторов, способствуя интенсивному разрушению шва. В швах с мастичным заполнением распространенным повреждением является образование трещин в мастике и по контакту ее с покрытием из-за недостаточной эластичности мастики.
Как правило, это бывает, когда применяют битум вместо мастики. Поэтому при ремонте швов необходимо применять только рекомендуемые мастики.
При содержании швов с резиновыми компенсаторами необходимо следить, чтобы в резиновых вкладышах не было трещин, ослабления или нарушения их крепления.
5.1.7. Для предотвращения коррозии все металлические элементы мостового полотна — ограждения безопасности, перила и др. — грунтуются и затем окрашиваются. Перед нанесением лакокрасочных материалов поверхность должна быть тщательно подготовлена — очищена от грязи, старой краски, рыхлых слоев продуктов коррозии, обезжирена, обеспылена и только потом загрунтована. Такие работы на мостовых сооружениях должны выполняться ежегодно. Целесообразно применять оцинкованные конструкции.
5.1.8. В местах сопряжения моста с насыпью могут происходить просадки покрытия и образовываться порожки, нарушающие нормальное движение транспорта при въезде на мост и съезде с него и способствующие разрушению концевых участков проезжей части моста от ударов движущихся автомобилей. Появление просадок может быть вызвано разными причинами: плохим уплотнением грунта насыпи при строительстве подходов; разрушением тела насыпи и конуса из-за неправильного водоотвода, переувлажнения и размыва грунта; применением мерзлого грунта, а также смещением или разрушением переходных плит. Местам сопряжения моста с насыпью при содержании сооружения должно уделяться повышенное внимание. Эти дефекты выявляются внешним осмотром или при вскрытии насыпи.
Работы по содержанию сопряжения сводятся к поддержанию нормального водоотвода, досыпке и уплотнению грунта в местах размыва, ликвидации неровностей в покрытии.
5.3. Содержание опорных частей
Металлические детали опорных частей регулярно очищают от ржавчины и окрашивают (см. п. 5.2.2). Рабочие поверхности стальных опорных частей смазываются графитовой эмульсией, состоящей из вязкого масла с добавлением графита. Необходимо следить за исправностью защитных кожухов, футляров, отсутствующие крышки футляров должны быть своевременно восполнены. При уходе за резиновыми опорными частями следят, чтобы они не загрязнялись веществами, содержащими жир, масло и другие вредные примеси.
Подвижность железобетонных валковых опорных частей, расположенных в колодце, в значительной степени зависит от состояния заполнения пространства между стенками колодцев и валками. Заполнение должно быть эластичным. Это обеспечивается паклей, пропитанной битумом и размещенной только в верхней части колодцев. Если заполнение засорится каменной мелочью или пылью, то оно теряет свои упругие свойства и препятствует повороту валков. Из колодцев должны быть убраны доски от опалубки, куски бетона, щебень и другие предметы, препятствующие повороту валков. Для отвода воды в стенках колодцев должны быть отверстия.
В местах опирания можно наблюдать перекосы опорных плит, неплотности между ними и эксцентрическое расположение плит. Дефекты опорных частей, как правило, устраняют при подъеме пролетных строений или снятии с них нагрузки.
В консольно-подвесных пролетных строениях необходимо обращать особое внимание на состояние опорных столиков, на которых расположены опорные части подвесных балок. В опорных столиках могут появляться трещины или сколы бетона под опорными частями из-за того, что углы столиков недостаточно армированы.
Во всех случаях опорные части необходимо возвращать в проектное положение с учетом фактической температуры на момент исправления их положения.
5.4. Содержание опор
Содержание опор заключается в поддержании чистоты их ригелей и подферменных площадок, регулярном осмотре элементов, как в надводной, так и подводной частях конструкций с целью выявления и своевременного устранения дефектов, оказывающих влияние на долговечность и грузоподъемность сооружения, а также наблюдении за положением опор и опорных частей.
При содержании опор нельзя допускать, чтобы на подферменных площадках и уступах застаивалась вода, скапливался мусор, грязь и прочие посторонние предметы, так как при наличии трещин в этих местах влага будет проникать в тело опоры и разрушать ее. Особенно это вредно для старых опор, где под влиянием атмосферных воздействий возникли глубокие трещины.
Нормальный водослив обеспечивается при гладкой поверхности подферменных площадок и наклонных уступов опор и при наличии на них уклонов в наружную сторону не менее 2%. Однако, эти условия часто не выполняются, и вода застаивается на конструкции опор. В ряде случаев для отвода воды на горизонтальных поверхностях опор устраивают уклоны, применяя цементный раствор. Однако такое покрытие недолговечно, так как температурные деформации раствора и бетона под ним разные, в результате происходит растрескивание раствора или его отслоение, если нарушена технология ремонтных работ. В таких случаях надо очистить горизонтальные поверхности опоры от остатков раствора и мусора и устроить новые сливы.
При осмотре гибких опор из сборных железобетонных элементов особое внимание следует уделять состоянию их насадок и свай, находящихся в уровне переменного горизонта воды. Разрушение бетона защитного слоя, каверности в стыках элементов, а также трещины на отдельных участках устраняются с применением материалов и технологических операций, используемых при ремонте бетонных поверхностей пролетных строений. Обязательной заделке подлежат все трещины, ширина которых на поверхностях свай, расположенных в уровне переменного горизонта воды, превышает 0,2 мм, а также превышающих 0,3 мм на остальных участках конструкции. Заделку трещин следует осуществлять после определения причин их возникновения, оценки влияния трещин на долговечность и грузоподъемность опор. Так, перед устранением вертикальных трещин в корне консоли ригеля и на его участках между стойками, а также на поверхностях стоек из железобетонных оболочек следует устанавливать гипсовые маячки и по результатам наблюдений выбрать способ ремонта.
Возникновение ряда дефектов в элементах опор, влияющих на грузоподъемность конструкции, требует выполнения работ по их усилению. При наличии глубоких продольных раскалывающих трещин в насадках опор устраивают металлические объемлющие бандажи из уголков и арматурных стержней или прибетонируют к стойкам опор в их верхней части железобетонные кронштейны. Возникновение глубоких сколов бетона в насадках опор под ребрами балок пролетных строений, уложенных без опорных прокладок, в ряде случаев, требует развития площадки опирания за счет увеличения ширины насадки (или установки металлических опорных столиков), а наличие вертикальных силовых трещин прогрессирующего развития в насадке между сваями требует ее усиления. Разрушение бетона свай в уровне переменного горизонта воды, существенно уменьшающее площадь их рабочего сечения, устраняют с устройством железобетонных рубашек (иногда устраивают бетонные рубашки в металлическом бандаже из листовой стали).
В профилактических целях целесообразно производить гидрофобизацию насадок опор один раз в пять лет. Состояние массивных опор определяют внешним осмотром и остукиванием ее поверхности. Такой осмотр позволяет обнаружить большинство дефектов, в том числе и скрытого характера. Так, например, следы выщелачивания раствора на облицовке опоры указывает на неисправности сливных площадок, наличие трещин и полостей внутри кладки, пустот между облицовкой и телом опоры; в массивных устоях необсыпного типа следы выщелачивания указывают на неудовлетворительное состояние дренажа и отсутствие или неисправность изоляции опоры. Для определения глубины и характера распространения трещин в теле опоры, в необходимых случаях надо вскрыть облицовку, а ширину трещин замерить щупом. Сквозные трещины можно определить путем нагнетания в них подкрашенной жидкости. Обнаружить скрытые дефекты возможно при помощи ультразвуковых и других акустических приборов.
Особое внимание при осмотре следует уделять массивным опорам с каменной облицовкой и кладкой на известковых или цементно-песчаных растворах низкой прочности, имеющих значительные сроки эксплуатации. Разрушение этих опор начинается с нарушений в швах кладки, через которые проникает вода и, замерзая, разрушает контакт между облицовкой и кладкой. В результате этого, отдельные облицовочные камни (или группы камней) вываливаются и происходит разрушение кладки с образованием сквозных трещин в опорах, а при низкой прочности материала тела опоры возможно его выщелачивание фильтрующей водой с образованием в кладке раковин и пустот. Ремонтные работы включают периодическую расшивку швов с укреплением или заливкой камней кладки, а также восстановление сливных поверхностей. Расшивку швов выполняют цементно-песчаным раствором, а восстановление сливов с помощью полимерных растворов, соблюдая ровность их поверхности при наличии уклонов в наружную сторону не менее 2%.
Дефекты, возникающие на локальных участках поверхностей массивных опор из монолитного и сборно-монолитного бетона, устраиваются с применением материалов и технологий, используемых обычно при ремонте бетонных поверхностей пролетных строений. При выветривании поверхностного слоя бетона с обнажением арматуры, наличии раковин, каверн, технологических швов и истирания на значительных поверхностях опоры для ремонта желательно применять метод торкретирования. Восстановление целостности тела опоры при наличии глубоких трещин, влияющих на несущую способность конструкции, возможно выполнять методом цементации, но предпочтительнее применять инъектирование трещин с помощью полимерных композиций.
При уходе за опорами необходимо систематическое наблюдение за состоянием фундаментов и подводной части русловых опор. В результате воздействия водного потока или наличия агрессивной среды в воде, опора может оказаться недолговечной и постепенно разрушиться. Кроме того, механическое воздействие льда и плывущих предметов может вызвать сколы и истирание бетона и кладки, как тела опоры, так и фундаментной ее части, а подмыв опор привести к осадкам, кренам или сдвигу конструкций. Особенно опасны такие дефекты для свайно-стоечных опор и опор-стоек, где при разрушениях бетона плиты фундамента по ее периметру возможна потеря ее конструктивных связей со сваями, а уменьшение толщины плиты может привести к ее пролому и осадке тела опоры. Для наблюдения за состоянием подводной части опор надо привлекать специальные подразделения водолазов.
Осадки, крены и другие деформации опор выявляют систематическими инструментальными наблюдениями. При длительных наблюдениях за положением опор целесообразно устанавливать (закладывать) на опорах марки и связывать их отметки с постоянным репером с помощью теодолитных или нивелирных ходов. Такие измерения надо выполнять регулярно с обязательной регистрацией полученных данных в журнале наблюдений или книге искусственного сооружения.
Для обеспечения беспрепятственного и безаварийного пропуска транспорта по мостам и путепроводам в условиях дефицита денежных средств приоритетным направлением в общей структуре мостостроительных работ в ближайшие годы будет не только строительство новых, но и ремонт и содержание старых искусственных сооружений.
В этих условиях от специалистов дорожного хозяйства, занятых ремонтом и содержанием сооружений, особо требуется грамотное решение возникающих перед ними вопросов.
Настоящее пособие составлено на основании накопленного опыта в дорожных организациях России по ремонту и содержанию автодорожных мостов и предназначено для работников линейной службы эксплуатации — ДОРОЖНОГО (МОСТОВОГО) МАСТЕРА — как руководство по организации работ по содержанию мостов.
В пособии изложены обязанности дорожного (мостового) мастера; способы формирования производственного подразделения, им возглавляемого для выполнения работ; рассмотрен порядок ведения технического учета сооружений, их осмотра; методы оценки технического состояния сооружений; приведены характерные дефекты элементов сооружений, конструкций, причины их появления, последствия и способы их устранения; изложены требования к материалам, используемым при ремонте и содержании, а также включены материалы справочного характера, которые могут быть использованы при принятии конкретных решений в повседневной практике.
В основу пособия положены ГОСТы, СНиПы и другие действующие нормативные документы, а также научные разработки в области эксплуатации мостов.
Ремонт и содержание мостов представляет совокупность организационных и технических мероприятий, обеспечивающих сохранность (долговечность) и безопасную работу сооружения в исправном состоянии в течение его расчетного срока службы. Хотя срок службы в Российской нормативной практике еще не регламентирован, его следует оценивать не менее 70 — 80 лет, в то время, как в Европе его нормативная величина определена в 100 лет.
Основными задачами ремонта и содержания мостовых сооружений являются:
— обеспечение круглогодичного, непрерывного, безопасного и комфортного движения транспортных средств с установленными расчетными для дороги скоростями и расчетными осевыми нагрузками, а также движения пешеходов;
— обеспечение технически исправного состояния сооружений и расчетного срока их службы при минимальных затратах труда и материально-технических ресурсов;
— систематическое улучшение транспортно-эксплуатационного состояния сооружений с учетом роста интенсивности движения и массы транспортных средств на автомобильных дорогах;
— поддержание в надежном состоянии внешнего вида сооружений.
Первичным звеном эксплуатационной службы мостов является производственное подразделение, возглавляемое дорожным (мостовым) мастером.
РАЗДЕЛ I . СЛУЖБА ДОРОЖНОГО (МОСТОВОГО) МАСТЕРА
Обязанности дорожного (мостового) мастера
Дорожный (мостовой) мастер является ответственным лицом, обеспечивающим надежную работу мостовых сооружений на вверенном ему участке автомобильной дороги. На должность дорожного (мостового) мастера назначаются лица, имеющие специальное образование.
В своей работе дорожный (мостовой) мастер руководствуется действующими нормативами, документами по содержанию автодорожных мостов.
На дорожного (мостового) мастера возлагаются следующие обязанности:
— осуществление контроля и анализа технического состояния сооружений;
— ведение и хранение всей технической документации, связанной с осмотром, обследованием, ремонтом и содержанием сооружений;
— проведение текущих осмотров в сроки, установленные нормативными документами;
— выявление строительных и эксплуатационных дефектов, фиксирование их в натуре и в технической документации;
— организация и ведение наблюдения за изменением дефектов во времени;
— проведение контрольно-инструментальных измерений для выявления общих деформаций элементов сооружений (отдельных измерений);
— проведение подготовительных работ для проведения специального осмотра (устройство подмостей, регулирование движения на мосту, очистка от грязи и т.д.);
— определение объемов ремонтных работ сооружению и средств на их выполнение;
— организация, обеспечение и контроль выполнения работ по надзору и содержанию;
— организация пропуска ледохода и паводковых вод;
— осуществление контроля за пропуском негабаритных тяжеловесных грузов по сооружениям;
— постоянное повышение своей квалификации, изучение поступающих нормативных документов по ремонту и содержанию искусственных сооружений.
Изложенные обязанности являются основой для разработки должностной инструкции дорожного (мостового) мастера.
Состав производственного подразделения, возглавляемого дорожным (мостовым) мастером.
Дорожный (мостовой) мастер является непосредственным руководителем специализированных звеньев, бригад по ремонту и содержанию искусственных сооружений.
Протяженность искусственных сооружений для создания специализированного звена (бригады) по их ремонту и содержанию, возглавляемого мастером назначается в зависимости от наличия искусственных сооружений и местных условий.
Численность звена — 3 — 4 человека
бригады — 6 — 8 человек
Количество звеньев определяется объемом трудозатрат на ремонт и содержание сооружений.
Общее выражение для определения численности рабочих под работы имеет вид:
N — численность рабочих в структурном подразделении;
Tkj , Tgj — суммарные годовые трудозатраты на виды работ для выделенной группы искусственных сооружений (соответственно для капитальных мостов, деревянных мостов)
j — виды работ; j = 1, 2, 3, 4… — надзор, уход, профилактика, ППР, ремонт и реконструкция (усиление и уширение);
250 — расчетное число рабочих дней в году.
Общие трудозатраты, необходимые для расчета численности структуры службы определяются для капитальных мостов по нижеуказанной формуле, как сумма трудозатрат по всем сооружениям выделенной группы на все виды работ (без реконструкции).
Tkj = Lmi×K1i×K2 i×(0,24 + 1,2 K3i) + 10 K3 i×K4 i + 20 K3 i×K5 i×K6 i
Сумма в круглых скобках отражает численность рабочих для выполнения всего комплекса работ по содержанию сооружения, остальные слагаемые — численность соответственно при планово-предупредительном ремонте (ППР) и ремонте моста (путепровода).
Lmi — фактическая длина i -г o моста
n — число мостов в выделенной группе
K 1 i — коэффициент, учитывающий ширину моста и принимаемый как отношение фактической (В) ширины моста (суммарная величина габарита и ширина двух тротуаров с учетом разделительной полосы) к базовой ширине 10 м, т.е.
K 2 i — коэффициент условия расположения сооружения
1,1- на федеральных дорогах
1,2 — в населенных пунктах
1,0 — в прочих случаях
K 3 i — коэффициент трудоемкости работ, равный:
2,6 — для мостов с металлическими и сталежелезобетонными пролетными строениями
1,0 — для железобетонных мостов
1,5 — для железобетонных путепроводов через железную или автомобильную дорогу
2,0 — для железобетонных путепроводов через электрифицированную железную дорогу
0,93 — для каменных и бетонных мостов
1,6 — для деревянных мостов.
K 4 i — коэффициент, учитывающий возраст сооружения при ППР
0,05 — для сооружений в возрасте до 20 лет
0,1 — для сооружений в возрасте 21 — 40 лет
0,2 — для сооружений в возрасте более 40 лет
K 5 i — коэффициент сложности сооружения, применяемый:
1,2 — для рамных и арочных конструкций, а также балочных коробчатого сочетания
1,1 — для неразрезных, балочно-консольных и балочно-подвесных систем
1,0 — для разрезных балочных систем
K 6 i — коэффициент, учитывающий возраст сооружения при ремонте
0,03 — при возрасте до 20 лет
0,05 — при возрасте 21 — 30 лет
0,07 — при возрасте более 30 лет
0,24; 1,0; 1,2-эмпирические коэффициенты.
Пример расчета численности рабочих
В качестве примера рассмотрен участок автомобильной дороги, эксплуатируемый одним подразделением, на котором имеется 10 сооружений, общей протяженностью 1200 п.м.
Исходные данные по мостам и расчеты трудозатрат представлены в таблице.
В результате расчета получено:
подразделение только по содержанию мостов:
подразделение: содержание + ППР:
Разбивка общей численности рабочих по звеньям и бригадам проводится в зависимости от объемов и местоположения ремонтных работ.
Могут быть созданы специализированные звенья по содержанию крупных сооружений:
металлических и сталежелезобетонных мостов
длиной свыше 100 м
железобетонных длиной свыше 300 м
деревянных длиной свыше 150 м
или территориально обособленные группы сооружений.
Для большого объема работ создаются комплексные бригады по 9 — 12 человек.
Абрамов Д.Л. Пособие по расчету сечений балочных деревянных мостов с разбросанными прогонами. — М.: Союздорнии, 1998. — 125 с.
Настоящее Пособие позволяет строить (подбирать сечения элементов моста), определять грузоподъемность и производить усиление деревянных мостов со сближенными прогонами без использования проекта и расчетов.
4. УСИЛЕНИЕ МОСТОВ
Если в результате расчета грузоподъемность моста в целом или его отдельных элементов окажется недостаточной (менее проектной), то следует произвести усиление моста. Усиление требуется и в тех случаях, когда по исправному мосту предполагается пропуск нагрузки, превышающей расчетную. Усиление существующего моста производится только в том случае, если оно требует меньше времени, чем постройка нового необходимой грузоподъемности.
Потребность в усилении элементов моста определяется по напряжениям от гусеничной нагрузки класса НГ-60. Если напряжение в элементах моста превышает расчетное сопротивление древесины (прил. 4 настоящего Пособия), то усиление необходимо.
4.1. Способы усиления мостов.
Существуют разные способы усиления элементов мостов, применение которых зависит от степени потери элементом моста прочности.
При конструкции пролетного строения, состоящей из сплошного слоя пластин (нижнего настила), уложенных на смежные прогоны, грузоподъемность прогонов определяют для совместного сечения пластин и прогонов. Загнивание как пластин, так и прогонов сказывается на грузоподъемности прогонов и это следует учитывать при усилении элементов моста.
При загнивании только пластин поверх существующего настила целесообразно укладывать дополнительный сплошной или колейный настил из досок, брусьев или отесанных бревен.
Колеи устраивают шириной 1 м на расстоянии друг от друга 1 м. Доски стыкуют вразбежку. Колеи из 4 — 5 брусьев или бревен, окантованных с двух или четырех сторон и соединенных болтами или металлическими штырями, стыкуют над насадками промежуточных опор. Колеи в стыках соединяют скобами или каждый конец колеи крепят к прогонам двумя-тремя штырями.
Усиление прогонов производят путем укладки поверх настила дополнительных колей из брусьев или бревен, подведением дополнительных прогонов или дополнительных опор в середине пролета, заменой сложных прогонов составными путем соединения бревен скобами или досками на гвоздях.
Устройство колей из брусьев (бревен) описано выше. При подведении дополнительных прогонов их принимают тоньше основных на 3 — 4 см; при толщине, равной толщине основных прогонов, один конец подводимого прогона затесывают на длине 60 — 70 см таким образом, чтобы высота его была на 3 — 4 см меньше высоты концов основных прогонов. Конец прогона, имеющий удлиненную стеску, укладывают на насадку и продвигают по ней до отказа; затем поднимают другой конец и продвигают прогон в обратную сторону, чтобы он вошел между проезжей частью и насадкой. Для плотного соприкосновения уложенного прогона с пластинами между прогонами и насадкой забиваются парные клинья.
Существует и такой способ проведения дополнительных прогонов. Новые прогоны принимают такого же сечения, как и старые, а для облегчения заводки их на насадки производят вывешивание старых прогонов при помощи клиньев или домкратов.
Подведением дополнительных прогонов грузоподъемность их может быть увеличена до 50%. Но этот способ применим лишь при небольшой высоте опор и при расстоянии между прогонами не менее 70 см.
В качестве дополнительных опор обычно применяют рамные и свайные. Свайные опоры подводят только в том случае, если большая глубина воды и слабый грунт затрудняют установку рамных опор. Для обеспечения установки рам или насадок свайных опор подводимая опора должна иметь такую высоту, чтобы между насадкой и прогонами оставался зазор 10 см. В него после установки опоры под каждым прогоном забивают парные клинья и крепят их гвоздями к насадке. При устройстве дополнительных свайных опор забивку свай (особенно при небольшой высоте моста) производят через проезжую часть) с которой снимают настил, мешающий установке свай, или вырезают в нем отверстия.
Усиление сложных (двухъярусных) прогонов производят, как было сказано выше, путем нашивки наклонных досок с обеих сторон. Бревна прогонов предварительно подтесывают с боков на глубину 2 — 3 см.
Усиление опор может быть произведено усилением отдельных ее элементов или опоры в целом.
Усиление насадки, подвергающейся изгибу, достигается увеличением числа точек ее опирания. Один из способов, применяемый в случае высоких опор и при загнивании насадки сверху, заключается в следующем. На расстоянии 10 — 15 см от низа насадки с обеих сторон опоры врубают в сваи горизонтальные брусья и прикрепляют их болтами. Между брусьями под местами опирания прогонов на насадку устанавливают прокладки, прикрепляемые к брусьям болтами. Над поставленными прокладками между насадкой и брусьями забивают парные клинья, которые являются дополнительными опорами для насадок.
Другой способ усиления насадки на изгиб заключается в установке дополнительных стоек между основными сваями (стойками). Он применяется на суходолах при небольшой глубине воды. Подводимые стойки внизу опирают на коротыши и соединяют с существующими сваями опоры горизонтальными и диагональными схватками. Для обеспечения плотного прилегания к насадке стойки должны быть на 1 — 2 см длиннее; их загоняют под насадку ударами кувалды, топора или расклинивают.
При загнивании свай вверху (по бокам) в местах их сопряжения с насадкой площадь смятия уменьшается. Загнивание насадки под сваей на изменение площади смятия не влияет; при загнивании верха свай площадь последних уменьшается и, следовательно, уменьшается площадь смятия насадки сваями.
Указанную разницу площадей смятия восполняют путем устройства по бокам свай коротышей, врубленных в сваи двойным зубом с подклинкой.
Чтобы коротыши (клинья) соприкасались с насадкой на большей площади, насадку снизу под коротышами стесывают на d /3 (на глубину около 1 см): Ширина стойки в насадке 10 — 12 см.
Из приведенной выше таблицы видно, что при загнивании сваи вверху по бокам на глубину до 7 см (3,5× ε) достаточно поставить два коротыша сечением 10×10см площадью 100× ε = 200 см 2 . При большем загнивании сваи следует ставить коротыши сечением 15×15 см.
У свай имеется большой запас прочности на сжатие, поэтому усиливать их необходимо только при загнивании по всему периметру у межени на глубину свыше 7 см (7× ε = 14 см) и при условии, достаточной продольной и поперечной жесткости моста.
Усиление отдельных свай при загнивании на глубину 8 — 9 см производят путем постановки деревянных накладок. Пораженные гнилью места сваи с противоположных сторон вырубают; горизонтальные площадки вырубок должны быть сделаны на расстоянии 10 — 15 см от мест, пораженных гнилью, и там устанавливают накладки из пластин, соединенные со сваей двумя болтами. Торцы накладок должны плотно прилегать к горизонтальным площадкам вырубок.
При большем загнивании свай по всему периметру усиление производят путем постановки дополнительных стоек между существующими сваями таким же способом, как и при усилении насадки на изгиб.
Если вся опора находится в плохом состоянии, то усиление производят путем подведения дополнительных рам с обеих сторон существующей опоры, а между их насадками и прогонами забивают парные клинья.
Для обеспечения устойчивости дополнительные рамы соединяют друг с другом и с усиливаемой опорой диагональными и горизонтальными схватками. Такой способ усиления опор увеличивает их грузоподъемность более чем в 2 раза.
Для увеличения продольной и поперечной жесткости моста на опорах устанавливают дополнительные горизонтальные и диагональные схватки, забивают откосные сваи и ставят укосины.
Усиленные мосты требуют особого внимания, т.е. при их эксплуатации должны соблюдаться определенные требования. Перед открытием движения по усиленному мосту следует пропустить пробную нагрузку, после которой не должны появиться трещины в настиле, прогонах, сильные смятия в насадках, перекосы опор, просадки и ослабления расклинки дополнительных стоек, рам и т.п.
Глазман Ф.Б. Защита стальных конструкций мостов от коррозии//Трансп. стр-во. — 2000. — № 3. — С. 23-24.
Наиболее широко используемым способом защиты мостовых металлоконструкций от коррозии является окрашивание лакокрасочными материалами.
Лакокрасочные материалы и покрытия, предназначенные для защиты стальных конструкций мостов от коррозии, должны удовлетворять следующим основным требованиям:
защищать от коррозии металлоконструкции мостов на срок не менее 10 лет;
обеспечивать атмосферостойкость в интервале температур от +55°С до -60°С, в том числе при воздействии солнечной радиации;
обладать стойкостью к химическим реагентам;
иметь достаточную механическую прочность для сопротивления износу и динамическим воздействиям в процессе эксплуатации.
Основным требованием к антикоррозионной защите стальных конструкций мостов является длительное и надежное ее действие.
Это особенно важно для конструкций, проведение ремонта которых осложнено из-за трудного доступа к поврежденным местам. Кроме того, при ремонте требуется исключение объекта из эксплуатации.
Наиболее перспективными лакокрасочными материалами в настоящее время целесообразно рассматривать материалы с высоким сухим остатком и цинкосодержащие лакокрасочные материалы.
Лакокрасочные материалы с высоким сухим остатком из-за малого содержания растворителя более экономичны и благоприятны в экологическом отношении по сравнению с традиционными. Лакокрасочные материалы с высоким сухим остатком имеют во всех отношениях хорошо сбалансированные характеристики. Их можно получать практически на основе всех применяемых в традиционных лакокрасочных материалах пленкообразователях. Они наносятся теми же способами, какими и обычные лакокрасочные материалы. Кроме того, они дают возможность формировать покрытия повышенной толщины с использованием стандартного оборудования. В некоторых случаях толщина достигается при одноразовом нанесении. Это приводит к значительному снижению трудоемкости процесса окрашивания и экономии энергии.
Цинксодержащие лакокрасочные материалы являются весьма перспективными материалами, обеспечивающими высокую противокоррозионную защиту металлоконструкций (вследствие протекторного характера защиты от коррозии).
Характеристики грунтовочного покрытия с содержанием металлического цинка в сухой пленке 92 — 95% такие же, что и у цинкового покрытия, получаемого катодным способом.
При достаточно высоком содержании цинка такие коррозионно-защитные грунтовки имеют свойство залечивать дефектные места покрытия.
При выборе лакокрасочных материалов покрытий должны учитываться следующие свойства материалов: технологичность, физико-механические свойства материалов и покрытий, устойчивость лакокрасочных покрытий к действию открытой атмосферы и ее агрессивности.
Наиболее полно отвечают всем вышеперечисленным свойствам и рекомендуются для защиты мостовых металлоконструкций цинксодержащие, эпоксидные и полиуретановые материалы.
Цинксодержащие грунтовки имеют высокую адгезию к очищенному металлу и обладают стойкостью к абразивному износу.
Эпоксидные лакокрасочные материалы обладают высокой твердостью, химической стойкостью и чаще используются как промежуточный слой между цинковой грунтовкой и уретановым покрывным слоем.
Полиуретановые материалы обладают высокой прочностью, имеют хороший глянец, высокую абразивостойкость, отличаются стойкостью к перепаду температур от -60°С до +130°С, высокой стойкостью к различным агрессивным средам. Применение лакокрасочных материалов на полиуретановой основе является одним из перспективных направлений для защиты металлоконструкций от коррозии.
Расход лакокрасочных материалов в развитых капиталистических странах в 2 — 2,5 раза ниже, чем у нас, благодаря использованию более прогрессивного ассортимента, высокоэффективных методов нанесения и способов подготовки поверхности.
В последнее время в нашей стране наблюдается тенденция к росту использования лакокрасочных материалов более высокого качества, а именно: цинконаполненных композиций на различных связующих и полиуретановых лакокрасочных материалах.
Применение вышеуказанных материалов для защиты металлоконструкций от коррозии в зависимости от условий их эксплуатации, агрессивности окружающей среды и выбранной системы покрытия обеспечит срок службы покрытий не менее 10 — 15 лет.
Гончаров-Андреев Н.В. Методы ремонта и реконструкции автодорожных мостов, разработанные и апробированные на практике специалистами отдела диагностики мостов ГП Росдорнии // Автомоб. дороги: Информ. сб. / Информавтодор. — 1999. — Вып. 9. — С. 29-38.
Произошедшие изменения в области финансирования поставили проектировщиков и ученых в новые условия. В последнее время одними из основных направлений работы проектных организаций стали ремонт мостов и реконструкция существующих на автомобильных дорогах мостовых переходов. Просматриваются два направления.
Первое направление включает обоснованный результатами обследования выбор технического решения. При этом может рассматриваться как ремонт существующего сооружения, так и реконструкция.
При необходимости изменения эксплуатационных и технических характеристик сооружения (в случае реконструкции) существующие конструкции сохраняются максимальным образом.
Второе направление — замена существующего сооружения, независимо от состояния конструкций, на новое. Анализ технического состояния существующего моста при этом, как правило, не проводится, предусматривается его снос. Для нового строительства применяются апробированные на практике типовые проекты и решения.
Безусловно, в каждом конкретном случае критерием выбора решения должна служить экономическая целесообразность. Как бессмысленно пытаться ремонтировать исчерпавшие свой технический ресурс конструкции, также нерационально и сносить «живые мосты». На таких автомобильных дорогах, как Москва — Санкт-Петербург, Москва — Минск, многие сооружения представляют историческую ценность, как памятники инженерной мысли XIX — начала XX века.
В течение длительного времени специалисты-мостовики ГП Росдорнии занимались проблемой разработки новых технических решений по ремонту и реконструкции искусственных сооружений.
Большой опыт был накоплен при ремонте и реконструкции аварийных сооружений. Эти случаи требовали немедленного вмешательства и неординарных решений.
Ниже приведены лишь некоторые примеры предложенных технических решений по ликвидации аварийных ситуаций.
Усиление пролетных строений аварийного моста через р. Кылтым-Ю на автомобильной дороге Сыктывкар — Мураши в Республике Коми.
В январе 1986 г. службой эксплуатации Комиавтодора было обнаружено аварийное состояние данного сооружения. Мост, построенный в 1962 г., имел три пролетных строения с балками полной длиной 16,76 м, выполненных по типовому проекту (вып. 56 СДП). В среднем пролетном строении был обнаружен провис балок величиной 22 см, лопнула вся рабочая арматура, раскрытие трещин в ребрах балок составляло от 2 до 10 см. Причиной этого стали недостатки армирования балок, в частности, соединение стержней рабочей арматуры встык точечной сваркой (что недопустимо) в центральной зоне балки и в третях. От обрушения мост спасли только монолитные диафрагмы и плита, перераспределившие усилия между балками.
Движение транспортных средств по мосту было закрыто и переключено на ледовую переправу.
Требовалось на время проектирования и строительства нового сооружения обеспечить движение по автомобильной дороге (включая аварийное сооружение), при этом работы должны были быть выполнены до ледохода, за два месяца.
Приглашенные в качестве экспертов специалисты-мостовики треста «Росдороргтехстрой» (впоследствии специалисты отдела диагностики мостов ГП Росдорнии) предложили произвести усиление балок наклейкой поверхностной арматуры с восстановлением целостности балок, а также изменение статической схемы сооружения.
Работы по усилению моста производились в зимнее время. При отрицательной температуре -35°С для производства работ потребовалось сооружение тепляков.
В результате было обеспечено восстановление проектной грузоподъемности сооружения до нагрузок Н-30, НК-80. Движение транспортных средств по мосту было вновь открыто к моменту весеннего паводка, что обеспечило бесперебойность движения по автомобильной дороге.
Усиление и уширение пролетных строений аварийного моста через р. Жиздру в г. Козельске.
Мост через р. Жиздру был построен в 1961 г. Схема моста 16,76×5 + 22,16 + 16,76×5 м, пролетные строения моста, за исключением центрального сталежелезобетонного, выполнены по типовому проекту (вып. 56 СДП).
Движение по мосту для транспортных средств и пешеходов было закрыто. Балки пролетных строений имели дефекты, аналогичные дефектам в балках моста через р. Кылтым-Ю: поперечные трещины в ребрах, провисы балок. Причина появления этих дефектов также схожа: разрывы некачественных сварных швов в месте соединения стержней рабочей арматуры. Кроме того, были разрушены консоли крайних балок, в неудовлетворительном состоянии находились оголовки опор.
Было принято решение о проведении реконструкции моста до габарита Г-7 + 2×1,0 м с обеспечением пропуска нагрузок А-11, НК-80.
В разработанном техническом проекте реконструкции моста предусматривалось обеспечить требуемые характеристики посредством уширения пролетного строения единой монолитной железобетонной плитой с одновременным усилением балок наклейкой поверхностной арматуры. Железобетонные пролетные строения объединялись в две температурно-неразрезные группы за счет непрерывности монолитной плиты над деформационными швами, обетонированием пространства между крайними диафрагмами, с установкой дополнительной арматуры.
На период реконструкции в местах разлома балок были установлены временные деревянные страховочные клети. В зоне стыка приваривалась дополнительная арматура. Вертикальные и наклонные тяги, крепящие металлические швеллера усиления балок, выводились на верхнюю плиту, где приваривались к верхней полосовой арматуре усиления.
Полностью подверглось замене мостовое полотно с устройством сплошной гидроизоляции, установкой барьерного ограждения полужесткого типа, нового перильного ограждения.
Работы по реконструкции моста были выполнены кооперативом «Мостовик».
Проведенные после выполнения работ статические и вибродинамические испытания показали, что требуемое усиление пролетных строений достигнуто, подтвердилась неразрезность работы пролетных строений.
Ремонт опор, усиление и уширение моста через р. Узу у г. Порхова Псковской области.
Мост через р. Узу, построенный в середине 50-х годов, был сооружен с использованием каменных фундаментов опор ранее существовавшего моста. Мост имел пять железобетонных пролетов длиной по 10,46 м с габаритом проезда Г-6.
С середины 1980-х годов отмечалось разрушение бутобетона фундаментов речных опор, которое к 1994 г. достигло критической величины и грозило аварией. Глубина полостей под бетонной плитой тела опор равнялась 1,8 м (рис. 1).
При этом всеми предшествующими обследованиями отмечалось удовлетворительное состояние бетонного тела опор и железобетонных балочных пролетных строений.
Разработанный специалистами отдела диагностики мостов ГП Росдорнии проект ремонта моста предусматривал две стадии выполнения работ.
Рис 1. Разрушение кладки в основании опоры М 2:
· — песчаный грунт; — известняк
На первой стадии ликвидировалась аварийная ситуация. Поочередно на каждой из четырех промежуточных опор выполнялись работы по усилению фундамента. При этом слабая кладка разбиралась, полости заполнялись бетонной смесью с установкой анкеров в сохранившейся каменной кладке. Затем устраивалась железобетонная защитная рубашка, объединяемая с бетоном нижней части тела опоры с помощью анкеров.
Вторая стадия предусматривала реконструкцию пролетных строений моста.
Проектное задание требовало обеспечить габарит Г-9 + 2×0,75 м. Нагрузки после реконструкции должны были быть А-11, НК-80.
Для обеспечения заданных технических характеристик были выбраны следующие решения:
• уширение пролетных строений монолитной железобетонной плиты с большим вылетом консоли. При этом все пролеты объединялись в неразрезную плеть с устройством деформационных швов только на крайних опорах.
• усиление балок пролетных строений методом наклейки поверхностной арматуры. При этом за счет вывода тяг и приварки их к металлу усиления и объединения элементов усиления смежных пролетов также достигается эффект неразрезности (рис. 2).
Рис. 2. Поперечное сечение пролетного строения
Перед выполнением работ по бетонированию консолей плиты, имеющих большой вылет, была разработана особая система армирования и бетонирования, позволяющая обойтись без устройства сплошных подмостей.
Для производства работ по усилению балок пролетного строения была разработана оригинальная конструкция подвесных подмостей.
Работы по реконструкции моста выполнял Псковский Мостоотряд № 48. Ремонт опор был закончен в 1995 г., полностью реконструкция завершена к 1996 г.
Реконструкция мостов на автомобильной дороге Москва — Минск.
В течение 1998 г. специалисты отдела диагностики мостов ГП Росдорнии участвовали в разработке рабочей документации на реконструкцию четырех мостов, расположенных на головном участке данной автомобильной дороги (30 — 44-й км). Подрядчиком на выполнение строительных работ выступал Хотьковский филиал ОАО Мостостроительная фирма «Автомост». Рабочее проектирование выполнялось параллельно с ведением строительных работ в период с июня по октябрь 1998 г.
В данном случае реконструкции подвергались мосты, построенные в период 1936 — 1947 гг. и прослужившие в условиях интенсивной эксплуатации более 50 лет.
Мосты на 30-м и 36-м км (рис. 3) — железобетонные балочные с монолитным пролетным строением из шести балок таврового сечения. Мосты на 32-м и 44-м км — плитные из монолитного железобетона. Опоры мостов из каменной и бутобетонной кладки, покрытые штукатуркой или облицовкой из гранита.
Далее предусматривалось произвести уширение установкой дополнительных балок (изготовленных применительно к типовому проекту 3.-503.1-73 СДП) на мостах с ребристыми пролетными строениями.
Опоры уширялись забивкой свай под балками пролетного строения и устройством монолитной железобетонной подпорной стенки, установленной в створе свай.
Рис. 3. Поперечное сечение моста на 36-м км
На мосту (32-м км) существующее пролетное строение предполагалось полностью заменить. Для обеспечения односкатного поперечного профиля проезжей части новое пролетное строение устраивалось из сборных плит. На мосту (44-й км) существующее пролетное строение сохранялось с уширением из сборных плит. Конструкция уширения опор предполагалась в целом аналогичной применяемой на мостах 30-го и 36-го км.
Однако при выполнении рабочего проектирования данные технические решения претерпели существенные изменения.
На мосту (30-й км) Дирекцией автомобильной дороги Москва — Минск было принято решение о замене пролетного строения. Работы должны были выполняться в три стадии без перерыва в движении транспортных средств с обеспечением габарита проезда Г-12 или 2×6,0 м. Вследствие этого пролетное строение компоновалось из отдельных секций, объединяемых в единое целое при выполнении работ заключительного третьего этапа.
Для моста (32-й км) было предложено сохранить существующее пролетное строение, уширив его, и при этом обеспечить поперечный профиль за счет монолитной железобетонной плиты.
Проект моста через ручей на 36-м км автомобильной дороги Москва — граница Республики Беларусь при рабочем проектировании также претерпел значительные изменения. Крайние балки пролетного строения, имеющие значительные дефекты, было решено демонтировать.
Вследствие однотипности проектируемых сооружений было принято общее инженерное решение по уширению опор, учитывающее сохранение существующих конструкций.
Опоры существующих мостов массивные из каменной и бутобетонной кладки.
При уширении опор предложено устройство подпорной стенки на свайном фундаменте с забивкой свай под уширенной частью пролетного строения, а также дополнительных свай под подпорную стенку, устраиваемую в их створе.
При рабочем проектирование данная конструкция была усовершенствована. Так, вместо заранее устраиваемых закладных деталей в сваях было применено заанкеривание арматуры в пробуриваемые в сваях отверстия. Взамен предлагавшейся сборной насадки опоры была применена монолитная, объединенная с подпорной стенкой насадка, что значительно уменьшило расход арматуры и упростило арматурные каркасы. Также монолитной выполнялась и шкафная стенка.
Состояние кладки существующей части опор потребовало на мостах, расположенных на 30-м и 32-м км, их усиления с устройством защитной железобетонной рубашки. Объединение рубашки с существующей кладкой осуществлялось посредством анкеров, вклеиваемых в пробуриваемые отверстия.
На мостах (36-й и 44-й км) при удовлетворительном состоянии каменной облицовки опор осуществлялся ремонт поверхности каменной кладки.
В зависимости от конструкции дорожной одежды на подходах в каждом случае принималось индивидуальное решение о конструкции сопряжения моста с подходами. На новой части устраивалось сопряжение из переходных плит полузаглубленного типа. На старой части было решено сохранить имеющееся сопряжение, учитывая удовлетворительное состояние конструкции. При этом известно, что грунты в течение многолетней эксплуатации значительно упрочняются и конструкция сопряжения становится более надежной. В этом случае особые требования предъявлялись к тщательности выполнения работ по устройству переходных плит на новой части, максимальному уплотнению грунта и щебеночной подушки под плитами с целью предотвращения просадок и деформаций.
На всех сооружениях полностью переустраивались элементы мостового полотна: перильное и барьерное ограждения, тротуары, система водоотвода. Особенностью данных сооружений стал отказ от конструкций деформационных швов с перекрытием зазоров усиленной конструкцией мостового полотна и последующим выводом ее на переходные плиты.
Все работы на мостах проводились без перерыва в движении транспортных средств с выделением трех очередей производства работ. Такая организация работ ставила задачу ускоренной передачи нагрузок на вновь возведенные конструкции.
Гуряева И.М. Обоснование очередности уширения малых и средних мостов на сети автомобильных дорог общего пользования: Автореф. дис. канд. техн. наук. — М., 2000. — 16 с.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. Повышение потребительских качеств существующей дорожной сети приводит к необходимости решения ряда организационных задач, связанных с распределением инвестиций во времени и по реконструируемым объектам.
Важная роль состояния мостов в организации движения по сети автомобильных дорог определяет повышенное внимание дорожно-мостовых организаций к технико-эксплуатационным показателям сооружений. Ситуация, сложившаяся в данный момент с эксплуатируемыми мостами, говорит о том, что условия движения на значительной их части не соответствуют потребительским свойствам автомобильных дорог, на которых они находятся. Условия движения по автомобильным дорогам, а, следовательно, и мостам постоянно изменяются в связи с улучшением технических характеристик автомобилей, повышением их динамических качеств, увеличением габаритов и массы транспортных средств. Нормативные требования и рекомендации, основанные на экспериментальных данных, можно считать справедливыми лишь на некоторый ограниченный период. При изменившихся характеристиках транспортных потоков и дорожных условий требуется постоянный контроль за соответствием потребительских свойств мостовых сооружений условиям движения по ним.
Пропускная способность автомобильных дорог зависит от пропускной способности расположенных на них мостов. Поэтому ликвидация диспропорций между габаритами мостов и шириной проезжей части дорог имеет большое значение для повышения эффективности работы автомобильного транспорта. Габарит моста должен не только удовлетворять главному требованию — обеспечению безопасности движения, но и должен создавать запас безопасности для снятия напряженного психоэмоционального состояния водителей при проезде по мосту. Такие напряженные моменты могут создаваться как при встрече на мосту автопоездов, так и при встрече высокоскоростных автомобилей, число которых в стране растет.
Повышение интенсивности движения и скоростей транспортных потоков приводит к необходимости проведения реконструкции мостовых сооружений наиболее эффективным образом: чтобы после уширения потребительские свойства моста максимально обеспечивали безопасность и комфортность движения и, в то же время, инвестиции на проведение реконструктивных работ были минимальны.
Рациональный вариант проектного решения может быть определен по показателям эффективности инвестиционных проектов с учетом специфики работы мосторемонтных организаций и эффектов в нетранспортных отраслях народного хозяйства от проведения реконструктивных работ на мостах.
Цель исследования. Целью работы является разработка на базе данных о технико-эксплуатационном состоянии мостов и режимах движения транспортных потоков по мостам научно-обоснованных рекомендаций по очередности их уширения.
Научная новизна диссертационной работы заключается в:
— установлении в результате экспериментальных исследований зависимостей средней скорости движения транспортного потока от габарита моста и характера распределения транспортных средств по ширине ездового полотна;
— разработанной математической модели, связывающей среднюю скорость транспортного потока, интенсивность движения и состав транспортного потока с габаритом моста;
— предложенном методическом подходе к рассмотрению стадийного уширения моста в зависимости от изменений средней скорости транспортного потока и часовой интенсивности движения в условиях ограниченных ресурсов.
Практическая ценность работы состоит в возможности использования в условиях недостаточного финансирования дорожного хозяйства и накопления сверхнормативного износа мостов России методики выбора очередности проведения работ по реконструкции в виде уширения мостовых сооружений, обеспечивающей повышение эффективности их службы. Рассматриваемая методика позволяет определять: скорость транспортного потока на мостах при изменениях интенсивности движения, состава транспортного потока и габарита моста, что повышает эффективность принимаемых решений по уширению мостов. Можно также отметить, что основными исходными параметрами при назначении очередности работ по уширению мостов является интенсивность движения и состав транспортного потока, измерение которых для организаций-владельцев мостов в настоящее время не вызывает затруднений.
Еремеев В.П. Из опыта ремонта мостов ЛИРМ Казанской архитектурно-строительной академии / Автомоб. дороги: Информ. сб. / Информавтодор. — 2000. — Вып. 3. — С. 25-31.
За 20-летие своей научно-производственной деятельности Лаборатория испытаний и реконструкции мостов (ЛИРМ) при содействии Волжской автомобильной дороги (ныне Упрдор «Волга») разработаны и реализованы несколько новых конструкций и технологий ремонта мостов. С течением времени полученный опыт освобождается от первоначальных впечатлений, а результативность технических решений и технологий оценивается более достоверно. Вот несколько примеров.
В 70 — 80-е годы были разработаны способы усиления балочных железобетонных пролетных строений методами крепления на балках дополнительной арматуры. Наибольшее распространение получил так называемый «метод усиления наклейкой поверхностной арматуры». Эффективность данного метода оценивается специалистами неоднозначно. Силами МСУ Волжской автомобильной дороги в свое время были усилены балки трех мостов — через pp . Рыкшу, Гнилушку и Аттиковский овраг. В настоящее время (спустя около 20 лет эксплуатации) балки демонтированы, а мосты реконструированы по программе ремонта мостов в счет займа Всемирного банка. Балки стали доступны для проведения любых исследований и испытаний, в том числе — с разрушением.
Эффективность и надежность ремонта и усиления балок определяет прежде всего качество работ, строгое соблюдение технологии. Несмотря на тяжелейший режим эксплуатации мостов с усиленными наклейкой внешней арматуры балками при габаритах Г-6 и Г-7, при разборке расслоений по шву бетон — клей — сталь не отмечено, следовательно, совместная работа старых балок и элементов усиления обеспечена, а цель усиления достигнута. Это убедительно подтверждает эффективность усиления конструкции внешним армированием. В последние годы освоено усиление внешним армированием с использованием напрягаемой арматуры. На рис. 1* показан фасад крайней балки путепровода, поврежденной ударами транспортного средства. На рис. 2* показан фрагмент шпренгельной конструкции усиления той же балки. Усиление по проекту ЛИРМ выполнил консорциум ЛИРМ + Гидромонтаж.
* Рис. 1, 2 не публикуются.
Среди особенностей конструкции следует отметить применение в напрягаемых элементах стержневой арматуры кл. А- VI из стали марки 25Х2Р2ФТЮ с временным сопротивлением разрыву 118 кгс/мм 2 и пределом текучести 96 кгс/мм 2 . Все детали крепления элементов усиления выполнены из высокопрочной стали.
Важной особенностью данной конструкции усиления является механический метод натяжения, резьбовые анкерные крепления, обеспечивающие возможность контроля и регулирования натяжения элементов усиления. Если на монтаже натяжение затяжек контролируется по величине относительно удлинения, то при эксплуатации контроль натяжения удобно выполнять бесконтактным частотным методом с помощью прибора ИНА-7, разработанного в 1990 г. КазИСИ.
Восстановление эксплуатационных качеств мостов с недостаточной грузоподъемностью может быть достигнуто различными путями (рис. 3). Один из них — перестройка с одновременным выправлением положения оси трассы в плане или в профиле (см. рис. 3, вариант 1). Однако возможен и противоположный вариант — уменьшение длины сооружения в направлении вдоль оси трассы с укреплением русла от размывов. Опытные сооружения данного вида уже эксплуатируются более 10 лет.
Рис. 3. Варианты реконструкции моста:
1 — балочный мост (схема 3×15,0 м);
2 — балочно-засыпной мост (схема 2×4,0 м)
В конце 80-х годов МСУ Волжской автомобильной дороги был построен по проекту ЛИРМ (рис. 4*, см. рис. 3, вариант 2) двухпролетный балочно-засыпной мост (схема 2×4,0 м) из сборных унифицированных блоков. Водопропускная способность — около 70 м/с — делает данное решение весьма конкурентоспособным по отношению к обычным малым и средним мостам. Отличительной особенностью данного сооружения является выключение его лотковой части из работы под все виды нагрузок. Опыт 10-летней эксплуатации сооружения показал его несомненные преимущества перед традиционными решениями: оно ничем не выделяется на проезжей части и обочинах, не требует ручных работ по очистке от снега.
* Рис. 4 не публикуется.
Тем не менее, конструкция балочно-засыпных мостов может и должна совершенствоваться. Интересную перспективу представляет возможность комбинации балочно-засыпных мостов и сооружений типа запруд и плотин с созданием водохранилищ для сельскохозяйственного назначения, а также регулирования эрозийных процессов на прилегающих к мосту территориях. Особую значимость это обстоятельство представляет при коммерческом освоении прилегающих к дороге территорий, создавая более комфортные условия для размещения пунктов дорожного сервиса.
Долговечность как железобетонных, так и металлических мостов в значительной мере определяется качеством их защиты от коррозии. В настоящее время основными документами, регламентирующими эти виды работ, являются СНиП 2.03.11-85 «Защита строительных конструкций от коррозии», 1996 г. и «Инструкция по защите от коррозии металлических конструкций, эксплуатируемых на автомобильных дорогах РСФСР мостов, ограждений и дорожных знаков», утвержденная Минавтодором РСФСР 19.12.88 г.
Современный рынок услуг, материалов и технологий в области антикоррозионной защиты сооружений содержит большой выбор постоянно обновляющихся предложений. Это относится, прежде всего, к оборудованию для очистки поверхностей. Гидроочистка и очистители высокого давления уверенно вытесняют традиционную пескоструйную обработку как по экономическим, экологическим характеристикам, так и по условиям безопасности движения в условиях ремонта эксплуатирующихся мостов. Они прочно заняли свое место в технологической цепочке ремонтных работ. Однако опыт показывает, что из всего спектра аппаратов высокого давления, широко рекламируемых в РФ, по своим производственным показателям для ремонта мостов пригодна лишь ограниченная часть. Часть из них не создает достаточного давления для снятия эмалевых покрытий или их остатков, другая — имеет повышенную чувствительность к перепадам напряжения в сети. Встречаются аппараты низкого качества. Много проблем с ремонтом насадок и самих очистителей, некоторые из насадок излишне быстро изнашиваются, теряют свою эффективность. Диллерская сеть и предлагаемые ею сервисные услуги пока еще оставляют желать лучшего.
Велико разнообразие предложений и в отношении лакокрасочных материалов как отечественного, так и зарубежного производства. Если учесть, что стоимость антикоррозионных покрытий новых металлоконструкций доходит до 20% их заводской отпускной цены, то значимость проблемы очевидна.
Но единых критериев выбора материалов для антикоррозионной защиты не существует, так как многие из них имеют весьма отличающиеся друг от друга химический состав и свойства. Опыт же показывает, что традиционные материалы, например, эмали ХВ-124, 125 не сдали своих позиций и вполне конкурентоспособны. Хотелось бы отметить и неплохую коррозионную устойчивость стали 16Д по ГОСТ 6713-97.
Подводя итог сказанному, следует отметить, что:
• В современных реалиях экономической жизни необходим отраслевой механизм аккумуляции и обобщения научно-технических знаний как основы всей нормотворческой деятельности, типового и серийного проектирования. Как одна из возможных форм — формирование отраслевого каталога направлений научно-технического развития отрасли. Смысл его создания состоит в том, что конкретные разработки, проектная или технологическая документация, содержащие новизну и соответствующие тому или иному направлению отраслевого каталога, должны иметь научное сопровождение и завершаться защитой отчета по параметрам требований к НИР.
• Назрела необходимость отраслевой сертификации машин, механизмов, оборудования и материалов (для ремонта и содержания мостов, дорог в целом) с тем, чтобы соответствующие производители могли получить сертификат и рекомендации к применению своих товаров.
Кущ Н.Н. Опыт организации работ по отбору кернов бетона из конструкций мостов // Трансп. c т p -во. — 2000. — № 2. — С. 17-19.
При составлении проектов ремонта и реконструкции железобетонных мостов и путепроводов часто возникает необходимость определения фактической прочности бетона различных конструктивных элементов. Известен ряд методов определения прочности бетона, основанных на различных физических принципах. Общим их недостатком является высокая погрешность измерений, доходящая в отдельных случаях до 25%. Так, для приборов, основанных на ударном методе, большое значение имеет состояние внешней поверхности бетона (отслоение фрагментов бетона защитного слоя, шелушение его поверхности и т.д.); на точность определения прочности бетона ультразвуковым методом существенное влияние оказывает неравномерное распределение щебня в объеме конструкции. По этой причине в настоящее время наиболее достоверным способом определения фактической прочности бетона является отбор кернов непосредственно из исследуемой конструкции с последующими их испытаниями в лабораторных условиях. Керны представляют собой выбуренные из бетона образцы различного диаметра и определенной высоты.
В научно-исследовательской лаборатории мостов Белорусской государственной политехнической академии выполнены работы по отбору кернов из конструкций мостов через реку Западную Двину в Витебске и реку Березину в Бобруйске.
В Витебске предполагался отбор кернов бетона из замковой части крайних арок моста, построенного в 1950-х годах (рис. 1*). Данные о фактической прочности бетона были необходимы для составления проекта его капитального ремонта.
Первоначально намечалось выбурить керны непосредственно с проезжей части, без остановки движения по мосту. Для бурения и во избежание загрязнения («засаливания») режущих кромок керноотборников разогретым асфальтобетоном, в заранее намеченных местах в каждом пролете были проделаны «окна» в асфальтобетонном покрытии (рис. 2*), после чего над местом отбора устанавливался сверлильный станок (рис. 3*, 4*). Воду к месту бурения подавали от поливомоечной машины. Электроэнергия для работы сверлильного станка поступала от генератора, установленного на передвижной ремонтной мастерской армейского типа (рис. 5*). Сверлильный станок обслуживали два человека, а в режиме бурения контроль за станком осуществлял один человек.
* Рис. 1, 2, 3,4, 5 не публикуются.
В ходе работ у замковой части арок было принято решение дополнительно провести с помощью ручной электрической сверлильной машины «Кобра-1 А» отбор кернов из пяты арки берегового левобережного пролета. На бурении и отборе кернов, включая подачу воды к месту работы, было занято два человека. Сверлильная машина находилась в горизонтальном положении. Воду к рабочему органу подавали из переносной емкости с помощью резинового шланга, рабочее напряжение 220 В — от переносной бензиновой электростанции армейского типа.
При строительстве моста через реку Березину в Бобруйске возникла необходимость проверки прочности бетона коробчатых блоков пролетного строения. Кроме того, из-за замораживания бетона одной из опор потребовалось определить прочность дефектного участка и глубину распространения трещин в теле опоры. Для отбора кернов использовалась ручная электрическая сверлильная машина «Кобра-1А». Электроснабжение ее производилось от сети напряжением 380 в/220 в, имеющейся на строительной площадке, а подача воды к месту бурения в начале осуществлялась из инвентарного переносного бачка, а затем для исключения замерзания воды в нем (работы велись при низкой температуре зимой) — из открытой емкости.
Отбор кернов бетона в Бобруйске был выполнен из следующих конструктивных элементов;
коробчатых блоков пролетного строения, складированных на стройплощадке;
коробчатых блоков, смонтированных в пролеты моста;
верховой части промежуточной опоры № 3.
Отбор кернов бетона из складированных блоков вели в произвольно выбранных местах. На блоках, смонтированных в пролет, керны отбирали вблизи продольной оси блока и в крайней части консолей плит, чтобы избежать повреждения преднапряженной арматуры (рис. 6*).
* Рис. 6 не публикуется.
Керны бетона на опоре выбуривали непосредственно из дефектного, трещиноватого участка. Эти керны позволили установить глубину распространения трещин в теле опоры в пределах от 3 — 5 до 20 мм.
Всего при обследовании моста через Березину в Бобруйске было отобрано, а затем испытано 15 кернов бетона. На отбор одного керна установкой «Кобра-1А» уходило не более 3 — 5 минут при скорости бурения 25 — 80 мм/мин. Необходимо отметить, что все применявшееся при отборе кернов оборудование отечественного производства.
Некоторые характеристики сверлильного оборудования приведены в таблице.
Характеристики сверлильного оборудования
Источник