Ошибки выборки
Поможем написать любую работу на аналогичную тему
Чтобы оценить степень точности выборочного наблюдения, необходимо оценить величину ошибок, которые могут возникнуть в процессе проведения выборочного наблюдения.
Основное внимание уделяется случайным ошибкам репрезентативности.
Статистическое исследование может осуществляться по данным несплошного наблюдения, основная цель которого состоит в получении характеристик изучаемой совокупности по обследованной ее части. Одним из наиболее распространенных в статистике методов, применяющих несплошное наблюдение, является выборочный метод.
Под выборочным понимается метод статистического исследования, при котором обобщающие показатели изучаемой совокупности устанавливаются по некоторой ее части на основе положений случайного отбора. При выборочном методе обследованию подвергается сравнительно небольшая часть всей изучаемой совокупности (обычно до 5 — 10%, реже до 15 — 25%). При этом подлежащая изучению статистическая совокупность, из которой производится отбор части единиц, называется генеральной совокупностью. Отобранная из генеральной совокупности некоторая часть единиц, подвергающаяся обследованию, называется выборочной совокупностью или просто выборкой.
Значение выборочного метода состоит в том, что при минимальной численности обследуемых единиц проведение исследования осуществляется в более короткие сроки и с минимальными затратами труда и средств. Это повышает оперативность статистической информации, уменьшает ошибки регистрации.
В проведении ряда исследований выборочный метод является единственно возможным, например, при контроле качества продукции (товара), если проверка сопровождается уничтожением или разложением на составные части обследуемых образцов (определение сахаристости фруктов, клейковины печеного хлеба, установление носкости обуви, прочности тканей на разрыв и т.д.).
Проведение исследования социально — экономических явлений выборочным методом складывается из ряда последовательных этапов:
1) обоснование (в соответствии с задачами исследования) целесообразности применения выборочного метода;
2) составление программы проведения статистического исследования выборочным методом;
3) решение организационных вопросов сбора и обработки исходной информации;
4) установление доли выборки, т.е. части подлежащих обследованию единиц генеральной совокупности;
5) обоснование способов формирования выборочной совокупности;
6) осуществление отбора единиц из генеральной совокупности для их обследования;
7) фиксация в отобранных единицах (пробах) изучаемых признаков;
8) статистическая обработка полученной в выборке информации с определением обобщающих характеристик изучаемых признаков;
9) определение количественной оценки ошибки выборки;
10) распространение обобщающих выборочных характеристик на генеральную совокупность.
В генеральной совокупности доля единиц, обладающих изучаемым признаком, называется генеральной долей (обозначается р), а средняя величина изучаемого варьирующего признака — генеральной средней (обозначается ).
В выборочной совокупности долю изучаемого признака называют выборочной долей, или частостью (обозначается ), а среднюю величину в выборке — выборочной средней (обозначается
).
При контрольной проверке качества хлебобулочных изделий проведено 5%-ное выборочное обследование партии нарезных батонов из муки высшего сорта. При этом из 100 отобранных в выборку батонов 90 шт. соответствовали требованиям стандарта. Средний вес одного батона в выборке составлял 500,5 г при среднем квадратическом отклонении г.
На основе полученных в выборке данных нужно установить возможные значения доли стандартных изделий и среднего веса одного изделия во всей партии.
Прежде всего устанавливаются характеристики выборочной совокупности. Выборочная доля, или частость, определяется из отношения единиц, обладающих изучаемым признаком m, к общей численности единиц выборочной совокупности n:
Поскольку из 100 изделий, попавших в выборку n, 90 ед. оказались стандартными m, то показатель частости равен: = 90:100=0,9.
Средний вес изделия в выборке х = 500,5 г определен взвешиванием. Но полученные показатели частости (0,9) и средней величины (500,5 г) характеризуют долю стандартной продукции и средний вес одного изделия лишь в выборке. Дляопределения соответствующих показателей для всей партии товара надо установить возможные при этом значения ошибки выборки.
Ошибка выборки — это объективно возникающее расхождение между характеристиками выборки и генеральной совокупности. Она зависит от ряда факторов: степени вариации изучаемого признака, численности выборки, методом отбора единиц в выборочную совокупность, принятого уровня достоверности результата исследования.
Определение ошибки выборочной средней.
При случайном повторном отборе средняя ошибка выборочной средней рассчитывается по формуле:
,
где
— средняя ошибка выборочной средней;
— дисперсия выборочной совокупности;
n — численность выборки.
При бесповторном отборе она рассчитывается по формуле:
,
где N — численность генеральной совокупности.
Определение ошибки выборочной доли.
При повторном отборе средняя ошибка выборочной доли рассчитывается по формуле:
,
где — выборочная доля единиц, обладающих изучаемым признаком;
— число единиц, обладающих изучаемым признаком;
— численность выборки.
При бесповторном способе отбора средняя ошибка выборочной доли определяется по формулам:
Предельная ошибка выборки связана со средней ошибкой выборки
отношением:
.
При этом t как коэффициент кратности средней ошибки выборки зависит от значения вероятности Р, с которой гарантируется величина предельной ошибки выборки.
Предельная ошибка выборки при бесповторном отборе определяется по следующим формулам:
,
.
Предельная ошибка выборки при повторном отборе определяется по формуле:
,
.
Источник
Ошибки выборки
При правильном формировании выборки величину ее ошибки можно рассчитать заранее. В общем случае под ошибкой выборкипонимают объективно возникающее расхождение между характеристиками выборки и генеральной совокупности.
Ошибки выборкиподразделяются на ошибки регистрации и ошибки репрезентативности.
Ошибки регистрациивозникают из-за неправильных или неточных сведений. Их источником является невнимательность регистратора, неправильное заполнение формуляров, описки или же непонимание существа исследуемого вопроса.
Ошибки репрезентативностивозникают вследствие несоответствия структуры выборки структуре генеральной совокупности. Источником их существования является разная вариация признака у статистических единиц, в результате которой распределение единиц в выборочной совокупности отличается от распределения единиц в генеральной совокупности.
Ошибки репрезентативности делятся на систематические и случайные.
Систематические ошибкирепрезентативности возникают из-за неправильного формирования выборки, при котором нарушается основной принцип научно организованной выборки – принцип случайности.
Случайные ошибкирепрезентативности означают, что даже при соблюдении принципа случайности отбора единиц, расхождения между характеристиками выборки и генеральной совокупности все же имеют место.
Ошибка выборочного наблюдения – это разность между величиной параметра в генеральной совокупности и его величиной, вычисленной по результатам выборочного наблюдения. Для среднего значения ошибка будет определяться так:
, где
(6.1)
хi – вариант (значение варьирующего признака)
N – объем генеральной совокупности ( = сумме fi)
(6.2)
хi – вариант (значение варьирующего признака)
n – объем выборочной совокупности
Рассмотрим пример: Даны две 10-ти процентные выборки успеваемости студентов (табл. 6.1).
Таблица 6.1 – Исходные данные
Оценка | Число студентов | |
Генеральная совокупность | 1-я выборка | 2-я выборка |
Итого: |
Рассчитаем ошибку выборки.
1. Средний балл рассчитываем по средней арифметической взвешенной:
По генеральной совокупности:
а) =
По выборочным совокупностям:
б) =
в) = 3,54
Разность между показателями выборочной и генеральной совокупности и будет случайной ошибкой репрезентативности:
= 3,58 — 3,65 = -0,07
= 3,58 — 3,54 = +0,04
Величина ошибки выборки зависит от следующих факторов:
— Степени колеблемости признака в генеральной совокупности
Чем однороднее исследуемая совокупность, тем меньше величина средней ошибки при той же самой численности выборки.
— Объема (численности) выборки
Увеличивая или уменьшая объем выборки n, можно регулировать величину средней ошибки. Чем больше единиц будет включено в выборку, тем меньше будет величина ошибки, так как тем точнее в выборке будет представлена генеральная совокупность.
— Способа отбора единиц в выборочную совокупность
Для каждого способа формирования выборки величина ее ошибки определяется по разному. В практической деятельности используются различные способы формирования выборочной совокупности, но принципиальное значение имеет их деление на способы случайного (повторного и бесповторного) отбора.
При собственно случайном повторном отбореобщее число единиц генеральной совокупности в процессе выборке не меняется.
Статистическая единица, попавшая в выборку, после регистрации изучаемого признака возвращается в генеральную совокупность и можетвновь попасть в выборку. Таким образом, для всех единиц генеральнойсовокупности обеспечивается равная вероятность отбора.
В математической статистике доказывается, что средняя ошибка выборки определяется по формуле:
(6.3)
где — дисперсия генеральной совокупности;
n – объем выборочной совокупности.
Дисперсия – отклонение признака от средней величины. Генеральная дисперсия, также как и остальные параметры генеральной совокупности, является неизвестной величиной, но известно соотношение между генеральной и выборочной дисперсией:
, тогда при достаточно большом объеме выборки (n>30),
является величиной близкой к 1, и можно считать, что
. В случаях малой выборки при n
Источник