- Что такое инвертор, он же преобразователь напряжения с 12 на 220 Вольт?
- Ремонт преобразователя напряжения (инверторов)
- Преобразователи напряжения – ремонт
- Ремонт преобразователя в сервисном центре
- Признаки необходимости ремонта преобразователей напряжения
- Распространенные схемы
- Простой импульсный преобразователь
- Цены на ремонтные работы преобразователей напряжения
- Часто задаваемые вопросы по ремонту преобразователей напряжения (инверторов)
- Назначение и принцип работы инверторов
- Основные неисправности инвертора
Что такое инвертор, он же преобразователь напряжения с 12 на 220 Вольт?
Простые схемы преобразователей, принципы работы, виды инверторов по
формам выходного напряжения.
Инвертор (в узком электротехническом понимании этого слова) – это устройство для преобразования постоянного тока в переменное с изменением величины действующего значения напряжения. В ещё более узком – преобразователь постоянного напряжения (12, 24 или 48 В) в переменное 220 В.
И наконец, в радикально узком понимании – штуковина, позволяющая запитать от автомобильного аккумулятора различные бытовые приборы, рассчитанные на сетевое питание, а короче – весьма полезный и удобный в хозяйстве прибамбас!
По форме выходного напряжения инверторы подразделяются на следующие виды:
Из сказанного выше вытекает, что предпочтительными и более универсальными являются инверторы с выходным напряжением 220 В и частотой 50 Гц. Причём, для их реализации подходят готовые низкочастотные силовые трансформаторы необходимой номинальной мощности, включённые «задом на перёд». То есть — его вторичная низковольтная обмотка служит первичной, а высоковольтная первичная — вторичной. Именно такие схемы мы и рассмотрим в рамках данной статьи.
Схема, изображённая на Рис.1, а также комментарии к ней заимствованы из книги М. А. Шустова «Практическая схемотехника», раздел — «Преобразователи напряжения».
Рис.1 Схема простого преобразователя напряжения 220 В, 50 Гц
«Максимальная выходная мощность преобразователя — 100 Вт, КПД — до 50%.
Задающий генератор выполнен по схеме традиционного симметричного мультивибратора, выполненного на транзисторах ѴТ1 и ѴТ2 (КТ815). Выходные каскады преобразователя собраны на составных транзисторах ѴТ3 и ѴТ4 (КТ825). Эти транзисторы устанавливают без изолирующих прокладок на общий радиатор.
Устройство потребляет от аккумулятора ток до 20 А. В качестве силового использован готовый сетевой трансформатор на 100 Вт (сечение центральной части железного сердечника — около 10 см2). У него должны быть две вторичные обмотки, рассчитанные на 8В/10А каждая. Для того, чтобы частота работы задающего генератора была равна 50 Гц, подбирают номиналы резисторов R1 и R2″.
Так как мультивибратор генерирует меандр с заваленными фронтами, а мощные эмиттерные повторители повторяют эту форму, то и в нагрузке будет протекать переменный ток, напоминающий по форме синусоиду и дополнительных мер по сглаживанию не требуется.
Значительно повысить КПД инвертора можно, если применить в качестве силовых каскадов не повторители напряжения, а транзисторы, работающие в ключевом режиме.
Такая модификация преобразователя приведена на Рис.2.
Рис.2 Схема простого преобразователя напряжения с повышенным КПД
Принцип работы преобразователя такой же, как и у предыдущего устройства. Задающий генератор (Т1, Т2) формирует два пара-фазных напряжения с частотой 50 Гц. Напряжения с выходов задающего генератора подаются на два однотипных ключевых каскада (Т3, Т4), которые коммутируют напряжение на первичной обмотке трансформатора. Поскольку мультивибратор генерирует меандр с заваленными фронтами, ключевые транзисторы срабатывают с некоторой задержкой, обуславливая формирование на выходе инвертора подобие модифицированного синусоидального напряжения.
С указанными на схеме элементами выходная мощность преобразователя составляет около 200 Вт. Дальнейшего повышения КПД и увеличения мощности инвертора можно добиться простой заменой биполярных ключевых элементов на мощные MOSFET транзисторы, как это показано на Рис.2.
Многочисленные и довольно популярные схемы инверторов, построенные на специализированных микросхемах для импульсных источников питания (типа TL494, TL594 и др.) обладают следующими преимуществами: высоким КПД и не менее высокой стабильность частоты, мало зависящей от напряжения питания и внешних условий.
Приведём для примера подобную схему импульсного преобразователя напряжения +12V в
220V мощностью 100W, опубликованную в журнале «Радиоконструктор» — 07 — 17.
Рис.3 Принципиальная схема импульсного преобразователя напряжения +12V в
«Эквивалентная частота генерации составляет 50 Гц и задаётся величиной сопротивления резистора R5 и ёмкостью конденсатора С5. Резистором R4 регулируется скважность выходных импульсов. Им можно регулировать выходное напряжение.
На выходах микросхемы (выводы 9 и 10) выделяются противофазные импульсы, немного задержанные относительно друг друга, чтобы не вызывать сквозного тока в схеме выходного каскада в моменты переключения. Импульсы поступают на мощные ключевые полевые транзисторы VT1 и VT2. Диоды VD2 и VD3 защищают эти транзисторы от выбросов отрицательной ЭДС на первичной обмотке импульсного трансформатора Т1.
Трансформатор Т1 — готовый низкочастотный силовой трансформатор номинальной мощностью 100W с одной первичной обмоткой на 220V и вторичной обмоткой на 18V с отводом от середины. Можно попробовать и трансформатор с вторичной обмоткой на 12V с отводом от середины или на 24V с отводом от середины. Но во втором случае, боюсь, что выходное напряжение окажется несколько ниже 220V.
Трансформатор включён «задом на перёд», то есть, его вторичная низковольтная обмотка теперь служит первичной, а высоковольтная первичная — вторичной.
Подключив нагрузку и мультиметр, резистором R4 выставить напряжение на нагрузке 220V».
Многие схемы, построенные на TL494, TL594 и т. д., при всех своих достоинствах, часто обладают одним, но существенным недостатком. Если не позаботиться о корректной установке «мёртвого времени» ИМС (в приведённой схеме — резистором R4), то напряжения на выходе преобразователей будет иметь форму, близкую к форме меандра со всеми вытекающими отсюда последствиями. Причём, никакие дополнительные дроссели, а также конденсаторы во вторичной обмотке трансформатора — к существенному результату не приведут!
А вот уважаемый товарищ А.П. Семьян в своей книжке «500 схем для радиолюбителей» порадовал нас оригинальным схемотехническим решением с формированием модифицированного синуса посредством цифровой микросхемы 561ИЕ8 (Рис.4).
Рис.4 Схема простого импульсного преобразователя напряжения на микросхеме 561ИЕ8
На элементах DD1.1, DD1.2 собран задающий генератор с частотой 500 Гц. Делитель на DD2 формирует две импульсные последовательности частотой 50 Гц со сдвинутыми на 180° фазами для управления силовыми ключами VT1 и VT2 двухтактного преобразователя.
Чтобы избежать сквозных токов переключения между выключением одного ключа и включением другого существует «мёртвая зона», равная 10% длительности периода. При подаче высокого уровня (логической «1») на вход «Блокировка» оба выходных ключа запираются.
Выходная мощность преобразователя ограничена мощностью силового трансформатора Т1 и максимальным допустимым током выходных транзисторов.
Коэффициент трансформации силового трансформатора Кт = 20.
В качестве выходных транзисторов подойдут IRFZ034 (15А), IRFZ044 и RG723A (30A), IRFZ046 (50A), IRFP064 (100А). Для надёжности устройства рекомендуется иметь двойной запас по току и тройной — по напряжению. Силовые цепи должны быть по возможности короче и выполнены проводами соответствующего сечения.
Создание преобразователей с чистым 50-герцовым синусом обычно сопряжено с использованием микроконтроллерных прибамбасов, что делает рассмотрение этого вопроса (для нас доблестных электронщиков) не таким уж и простым и в рамках данной статьи — нецелесообразным.
Источник
Ремонт преобразователя напряжения (инверторов)
Преобразователи напряжения – ремонт
Один из основных критериев преобразователей напряжения – это их ремонтопригодность. Чаще всего найти сведения о том, как именно выполняется ремонт, узнать про его основные этапы, можно в прилагающемся паспорте или в принципиальной схеме. Однако никаких дополнительных знаний и навыков в этой области нет, ремонт преобразователя напряжения лучше доверить профессионалам.
Чаще всего преобразователь напряжения 24В 220В
требует ремонт в случае, когда из строя выходят выходные силовые транзисторы, микросхемы, или выходные каскады. Одни из основных элементов, их сразу же стоит починить. Сделать это может только тот, кто знаком с основами радиомонтажных работ. Имеет определенные навыки работы с пайкой и может работать с тестером, осциллографом и паяльником. В противном случае, лучше не рисковать и довериться профессионалам.
Ремонт преобразователя в сервисном центре
Сервисный центр починит преобразователь 12В 220В
с соблюдением всех правил. Устройство быстро вернется в работу, и это без удара по кошельку пользователя. Эффективность работы сервиса подтверждают многочисленные сертификаты и положительные отзывы клиентов. Все отремонтированные преобразователи напряжения марок
СОЮЗ, СИБКОНТАК, ЭНЕРГИЯ
и другие проверяются в присутствие заказчика. Дополнительно мы проверяем все оборудование работа под нагрузкой.
- Бесплатные консультации специалистов;
- Помощь с подбором оборудования;
- Выезд специалиста на объект;
- Гарантийное обслуживание и после гарантийное;
- Ремонт в течение 1 часа;
- Гарантия 3 месяца.
Признаки необходимости ремонта преобразователей напряжения
Есть несколько признаков того, что требуется ремонт инверторов 12В 220В
. Если заметить эти сигналы на ранней стадии и обратиться к специалистам, можно существенно быстрее справиться с проблемой и сэкономить на сложном восстановлении техники.
- На выходе пропадает выходное напряжение. Если на входе при этом есть напряжение, значит проблема может заключаться в разрушении от перегрева транзисторов на определенном участке. Потенциально, может потребоваться ремонт предохранителя.
- Падают показатели выходного тока. Неисправность в такой ситуации может скрываться в поломке силового блока.
- Преобразователь напряжения начинает отключаться без вашего участия. Это может наблюдаться при сильном нагреве компонентов, когда вся система начинает страдать.
Распространенные схемы
Простой импульсный преобразователь
Схема этого устройства очень проста, а большинство деталей могут быть извлечены из ненужного блока питания компьютера. Конечно, у нее есть и ощутимый недостаток – получаемое на выходе трансформатора напряжение 220 вольт далеко по форме от синусоидального и имеет частоту значительно больше, чем принятые 50 Гц. Напрямую подключать к нему электродвигатели или чувствительную электронику нельзя.
Для того, чтобы иметь возможность подключать к этому инвертору содержащую импульсные блоки питания технику (например, блок питания ноутбука), применено интересное решение – на выходе трансформатора установлен выпрямитель со сглаживающими конденсаторами. Правда, работать подключенный адаптер сможет только в одном положении розетки, когда полярность выходного напряжения совпадет с направлением встроенного в адаптер выпрямителя. Простые потребители типа ламп накаливания или паяльника можно подключать непосредственно к выходу трансформатора TR1.
Основа приведенной схемы – это ШИМ-контроллер TL494, наиболее распространенный в таких устройствах. Частоту работы преобразователя задают резистор R1 и конденсатор C2, их номиналы можно брать несколько отличающимися от указанных без заметного изменения в работе схемы.
Для большей эффективности схема преобразователя включает в себя два плеча на силовых полевых транзисторах Q1 и Q2. Эти транзисторы нужно разместить на алюминиевых радиаторах, если предполагается использовать общий радиатор – устанавливайте транзисторы через изоляционные прокладки. Вместо указанных на схеме IRFZ44 можно использовать близкие по параметрам IRFZ46 или IRFZ48.
Выходной дроссель наматывается на ферритовом кольце от дросселя, также извлекаемого из компьютерного блока питания. Первичная обмотка мотается проводом диаметром 0,6 мм и имеет 10 витков с отводом от середины. Поверх нее наматывается вторичная обмотка, содержащая 80 витков. Также можно взять выходной трансформатор из сломанного источника бесперебойного питания.
Цены на ремонтные работы преобразователей напряжения
Наименование работы | Цена (руб.) |
Снятие/замена силовых транзисторов IGBT | от 2300 |
Замена вентиляторов охлаждения | от 1200 |
Ремонт платы управления | от 1600 |
Снятие/замена микросхем | от 800 |
Снятие/замена конденсаторов | от 600 |
Снятие/замена силового трансформатора | от 1400 |
Восстановление корпуса устройства | от 2104 |
Замена дисплея | от 1408 |
Замена кнопок управления | от 607 |
Чистка оборудования | 600 |
Срочный ремонт | коэффициент +30% |
Консультация сервис инженера | 500 |
Восстановление корпуса преобразователя напряжения | от 1600 |
Замена резисторов | от 200 |
Все цены без НДС, без стоимости электронных компонентов.
Часто задаваемые вопросы по ремонту преобразователей напряжения (инверторов)
Сколько стоит диагностика преобразователя напряжения?
Диагностика преобразователя напряжения стоит 1500 рублей, эта сумма входит в стоимость ремонта.
Возможно ли, сделать в моем присутствии диагностику преобразователя напряжения?
Да, можем сделать диагностику в Вашем присутствии.
Можете приехать на место и забрать преобразователь напряжения в сервисный центр?
Есть такая услуга по Москве, стоимость 1400 рублей, по Московской области до 30 км — 2400 рублей.
Работаете с юридическими лицами и по безналичному расчету?
Да, работаем с организациями и по безналичному расчету с НДС.
За сколько по времени будет выполнен ремонт?
Ремонт может быть выполнен от 3-х до 30 дней в зависимости от сложности и наличия электронных компонентов на складе сервисного центра.
Производите ли ремонт преобразователей напряжения, если покупали в другой фирме?
Да, производим ремонт преобразователей напряжения любых моделей и не важно, где куплен.
Если наш преобразователь напряжения не пригоден к ремонту по заключению диагностики сервисного центра?
Можем предложить новой преобразователь напряжения — один год гарантия нашего сервисного центра и 3% скидкой.
Есть ли скидки для постоянных клиентов?
Для постоянных клиентов строительных организаций всегда выгодные условия работы с нашей организацией.
Назначение и принцип работы инверторов
Преобразователи напряжения DC/AC предназначены для преобразования постоянного напряжения в переменное — например 12 вольт DC в 220 вольт АС. Они используются в системах бесперебойного питания, на транспорте, в системах кондиционирования воздуха, сварочном оборудовании, АСУ ТП, телекоммуникационных и информационных технологиях.
Инвертор работает по следующему принципу:
- Постоянное напряжения от аккумулятора или другого источника подается на вход устройства.
- С помощью силовых ключей (транзисторов или тиристоров) производится периодическое подключение источника электропитания к цепи нагрузки. При этом происходит чередование полярности для формирования переменного напряжения.
- Управление частотой переключения силовых ключей, а также их синхронизация выполняется контроллером. Регулировка выходного напряжения в зависимости от изменения нагрузки осуществляется с помощью широтно-импульсной модуляции.
- Фильтры обеспечивают сглаживание ступенчатой формы выходного сигнала и формирование чистой синусоиды, необходимой для питания чувствительного электрооборудования.
Основные неисправности инвертора
Ремонт инвертора 24В 220В и других моделей может потребоваться в следующих случаях:
- неправильно установленный рабочий режим;
- неправильная работа электронных компонентов инвертора;
- несоответствующая мощность;
- проникновение внутрь аппарата влаги (капель дождя, снега);
- собравшаяся внутри инвертора пыль;
- несоблюдение рекомендаций, прописанных заводом-изготовителем;
- отказ вентиляторов и перегрев устройства;
- неправильное подключение преобразователя к аккумуляторной батареи.
И еще одна частая причина поломки – это небрежное обращение. Один или совокупность нескольких этих факторов оказывают негативное влияние на инвертор напряжения, в результате чего его работа прекращается. И если это произошло – то стоит обратиться в сервисный . Наш сервисный центр поможет решить возникшую проблему. Работа будет выполнена качественно, в срок, по доступной цене. Инвертор напряжения снова обеспечит надежную и продолжительную работу всей энергосистемы.
Источник