- Колтюбинг: перспективные методы добычи тяжелой нефти
- Область применения колтюбинга
- Оборудование для колтюбинга
- Оптическое волокно для технологии колтюбинга
- Перспективы применения гибких насосно-компрессорных труб в России
- Prospects for coiled tubing development in Russia
- Введение
- Применение ГНКТ для решения актуальных задач
- Заключение
- Список литературы
- Reference
- Geolib.net
- Справочник по геологии
- Колтюбинг (ГНКТ)
- Установка ГНКТ
- Барабан для намотки ГНКТ
- Приводная и тормозная системы барабана
- Вертлюг барабана и манифольд
- Трубоукладчик
- Оборудование для смазки труб
- Противоударная рама
- Инжектор
- Направляющий сектор — гузнек
- Индикатор веса
- Приборы для измерения глубины
- Операции с ГНКТ
- Растепление скважины с АДПМ
- Растепление скважины горячим раствором СаСl2
- Освоение после МГРП
Колтюбинг: перспективные методы добычи тяжелой нефти
Колтюбинг (от англ. «coiled tubing» — колонна гибких труб) — это установка с гибкой непрерывной насосно-компрессорной трубой (ГНКТ) для проведения работ по освоению и капитальному ремонту нефтяных и газовых скважин. Технология колтюбинга была разработана в 1950 годах, но широкое применение получила только ближе к концу 1980-х.
Преимущества технологии ГНКТ заключается в том, что гибкая труба способна проникать в горизонтальные и боковые отводы скважины, при этом не приходится тратить время на монтаж/демонтаж колонны. Именно это делает технологию колтюбинга дешевле и экологичней классических методов.
Область применения колтюбинга
Прежде всего, колтюбинг используют при исследовании месторождений, бурении и ремонтно-восстановительных работах. Однако, сейчас колтюбинг применяют для добычи высоковязкой, «тяжелой» нефти.
Наибольшее распространение технология получила в северных регионах Канады и США (на Аляске), но в последнее время активно применяется и на месторождениях в России.
Оборудование для колтюбинга
Колтюбинговая установка используется для транспортировки и подачи ГНКТ необходимого диаметра в скважину.
Как правило, оборудование для колтюбинга устанавливается на самоходное шасси или полуприцеп. На рисунке 1 показаны основные компоненты установки:
- силовая установка,
- кабина управления,
- рабочая катушка,
- инжекторная головка,
- противовыбросное оборудование.
Рис. 1. Установка ГНКТ
Размер трубы подбирается в зависимости от проводимых работ. Обычно диаметр труб варьируется в пределах 19–114 мм. ГНКТ сматывается с рабочей катушки, установленной на раме тягача. Далее труба проходит через инжекторную (устьевую) головку, которая создаёт необходимое усилие для продвижения насосно-компрессорной трубы внутри скважины с учётом преодоления силы трения и давления в стволе.
Оптическое волокно для технологии колтюбинга
В процессе бурения, а также при проведении ремонтно-восстановительных работ с применением колтюбинга необходимо доставлять оборудование в нужную точку скважины и обеспечивать непрерывную связь со спускаемым оборудованием. Для решения этой задачи широко применяются грузонесущие геофизические кабели производства Инкаб.
В процессе исследования месторождений, а также при проведении работ по повышению эффективности добычи необходимо контролировать текущие процессы в добывающей скважине, в частности — температуру по всему стволу добывающей скважины.
Для непрерывного мониторинга температуры (DTS) используют кабели-датчики с оптическим волокном в качестве распределенного датчика. Инкаб производит линейку кабелей-датчиков, оптимально подходящих для решения этой задачи. Наибольшее применение получила конструкция SensoWire.
Рис. 2. Кабель для колтюбинга — конструкция SensoWire
Для мониторинга температуры в конструкции используется высокотемпературное волокно. Кабель располагается внутри гибкой, насосно-компрессорной трубы в добывающей скважине и защищен от агрессивной среды — для изготовления стального оптического модуля применяемся сталь марки 304, а армирующая броня изготавливается из оцинкованной проволоки.
Подробнее о материалах, вариантах исполнения и технических характеристиках смотрите на странице конструкции.
Кабели-датчики для распределенного мониторинга
Источник
Перспективы применения гибких насосно-компрессорных труб в России
PROНЕФТЬ. Профессионально о нефти. – 2018 — № 3(9). – С. 63-67
С.М. Симаков
Научно-Технический Центр «Газпром нефти» (ООО «Газпромнефть НТЦ»)
Ключевые слова: нестандартное оборудование, гибкие насосно-компрессорные трубы (ГНКТ), колтюбинговые установки, актуальные задачи сегодняшнего дня, решение задач на перспективу
Колтюбинговые установки в настоящее время позволяют выполнять практически все виды операций по капитальному ремонту скважин, при этом они полностью автоматизированы и являются прототипами буровых установок и станков будущего. Структура запасов, их глубина залегания, доступность с каждым годом становятся все сложнее, и рядовые операции уже не отвечают тем задачам, с которыми мы сегодня сталкиваемся. Строительство более сложных скважин требует разработки и применения нестандартного оборудования. Это касается систем заканчивания скважин с многостадийным гидроразрывом пласта и гибких труб как основного инструмента, отвечающего современным требованиям. Наблюдается тенденция к наращиванию длины горизонтального участка трубы, увеличению ее диаметра. Изменилась и толщина стенки применяемых труб, используются разностенные, оптимизированные под конкретные скважинные условия (темпированные) трубы. Рассмотренное в статье оборудование на месторождениях П еще не применялось, поэтому важно заблаговременно подойти к решению задачи корректного подбора всех ключевых аспектов как с технической, так и с технологической точки зрения.
Prospects for coiled tubing development in Russia
PRONEFT». Professional’no o nefti, 2018, no. 3(9), pp. 63-67
S.M. Simakov
Gazpromneft NTC LLC, RF, Saint-Petersburg
Keywords: non standard coil equipment, coiled tubing unit, today’s challenges, perspectives of the challenges solution
At present time, coiled tubing units perform almost all types of intervention operations. These units are fully automated, and in fact are pilot models of future drilling and workover rigs. Unfortunately, reserves structure, depth and accessibility are becoming more complex each year so that standard operations no longer address challenges we face today. Drilling of more complex wells require development and application of non-standard equipment. This includes multistage fracturing completion systems and CT as the main tool that meets modern requirements. Nowdays, there is a clear tendency for the increase in CT length and diameter. CT wall thickness has also been changed. Service companies start to apply tapered CT strings optimized for certain well conditions. Equipment, which is discussed in the article has not yet been used in the fields of Gazprom Neft. Therefore, it is very important to approach the problem of the correct selection of all key aspects both from a technical and technological point of view in advance.
Введение
Применение ГНКТ для решения актуальных задач
Рис. 1. Общий вид центра управления установкой ГНКТ повышенной грузоподъемности (NOV) 2 3/8″
Установка ГНКТ с емкостью узла намотки 6500 м и диаметром гибкой трубы 2 3/8″ (60,3 мм) может использоваться:
Очевидно, что работа с трубами диаметром 60 мм на глубине более 6000 м невозможна без силовой установки с гарантированным запасом прочности по грузоподъемности инжекторной головки. Существуют западные компании, выпускающие инжекторные головки с электроприводом, что позволяет:
- повысить грузоподъемность установки;
- исключить зависимость от температурных условий;
- кратно увеличить скорость спускоподъемных операций (СПО);
- повысить управляемость.
Установка ГНКТ с длиной барабана 6500 м и диаметром 2 7/8″ (73,0 мм) (рис. 2) может использоваться для выполнения МГРП через гибкую трубу, что обеспечивает явное преимущество в скорости перехода между стадиями, в объеме прокачиваемой жидкости из-за отсутствия необходимости заполнения объема НКТ до начала ГРП и на стадии «продавки», т.е. в режиме Flush. Следует также отметить уникальную возможность проведения повторных МГРП через гибкую трубу в скважине с открытыми портами, когда жидкость ГРП точечно, так же как и в случае с выборочным открытием/закрытием портов, закачивается в определенный порт.
Рис. 2. Установка ГНКТ повышенной грузоподъемности (NOV) 2 7/8″: а – вид сбоку; б – вид сверху
Ограничением в данном случае может быть расстояние между портами МГРП, но для условий Западной Сибири, где расстояние варьируется от 50 до 100 м, это не критично. Можно предположить, что в случае с незацементированными портами при проведении каждой последующей стадии МГРП, возможны утечки жидкости гидроразрыва в ранее сформированные трещины. Следует отметить, что при подборе скважины-кандидата для проведения МГРП через гибкую трубу 2 7/8″ должны учитываться расход жидкости гидроразрыва и давление закачки.
Транспортировка узла намотки с длиной ГНКТ 6500 м в перечисленных случаях возможна на отдельно стоящем трале, однако существуют установки с нестандартным расположением барабана относительно оси трала. На рис. 3 показан барабан с гибкой трубой диаметром 2 3/8″ (60,3 мм) длиной 9000 м.
При перечисленных преимуществах, рассмотренные установки ГНКТ имеют два недостатка – высокую стоимость и большую массу. Первый приводит к удорожанию проекта, второй требует получения разрешительной документации на провоз негабаритного груза. И здесь появляется возможность для сервисных компаний продумать поэтапное введение большеразмерных ГНКТ с тенденцией на уменьшение стоимости сервиса за счет предложения охвата большего числа скважин и сокращения транспортных расходов на доставку труб.
Рис. 3. Установка с нестандартно расположенным барабаном с гибкой трубой диаметром 2 3/8″ длиной 9000 м
Часто задают вопрос, существует ли нормированное время на проведение той или иной технологической операции. Такого времени нет и быть не может, но есть скоростной режим спускоподъема гибкой трубы. В настоящее время скорость СПО с гибкой трубой независимо от ее диаметра на вертикальном участке составляет 15-20 м/мин, на горизонтальном – 5–10 м/мин. Поскольку с глубиной увеличивается время СПО, равное в среднем примерно 40 % общего производительного времени, увеличение глубины скважин должно быть нивелировано повышением скорости СПО как минимум в 2 раза. В Северной Америке скорости СПО уже давно превышают 50 м/мин. На рис. 4 приведен монитор записи рабочих параметров СПО, когда скорость первичного спуска составляет более 160 фут/мин (48,7 м/мин).
Рис. 4. Пример записи параметров СПО
Следует также обратить внимание на качество дорожного покрытия на отечественных месторождениях. Не секрет, что промысловые дороги в РФ по качеству покрытия уступают западным, что отражается в вездеходном исполнении техники, поступающей с заводов. На проходимость в условиях Западной Сибири, где используется вездеходная колесная база 6×6, влияет и сама длина несущей конструкции. Практика применения оборудования не только в рыхлых песках Западной Сибири, но и в условиях распутицы Оренбуржья показывает, что короткие установки имеют определенное преимущество перед их аналогами с прицепами.
Различие в выполнении технологических операций с ГНКТ и проведении ГРП обусловливает конструктивные особенности применяемых технических средств, но есть и схожие моменты, например, длительное пребывание персонала в компьютерном центре управления ГРП (Data Van) и установкой ГНКТ (Coil Unit). Здесь следует уделить внимание наличию потенциала для увеличения рабочего пространства в кабине оператора, поскольку при современных высокотехнологических операциях контроль их выполнения осуществляется не только непосредственно буровым оператором, но и другими специалистами на скважине. При этом необходимо сократить время оперативного совместного реагирования на ситуацию.
Задачи ставятся не только перед сервисными компаниями, обслуживающими ГНКТ, но и перед производителями оборудования. Решения необходимо находить на основании запросов от нефтедобывающих компаний, которые, в свою очередь, руководствуются поиском оптимальных технологий добычи углеводородного сырья при ухудшающейся структуре запасов.
Установка ГНКТ в перспективе видится многофункциональным комплексом, обеспечивающим выполнение технологических задач и корректировку процесса проведения работ в режиме реального времени. Решения могут быть разными, от рядовых до высокотехнологичных, так же как и система предупреждения отказов оборудования вследствие низкого давления в системе, изменения толщины стенки гибкой трубы или ее формы.
Заключение
Список литературы
- SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exibition 27–28 Mar 2018. The Woodlands Waterway Marriot Hotel & Convention Center. The Woodlands, Texas, USA
- Hydraulic Fracture Placement Assessment in a Fiber Optic Compatible Coiled Tubing Activated Cemented Single Point Entry System / A. Gustavo [и др.] // . — 2018.
- Колтюбинг повышает эффективность мультистадийных гидроразрывов на Новопортовском месторождении / [и др.] // — 2017.
Reference
- Proceedings of SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition, The Woodlands, Texas, USA, 27–28 March of 2018.
- Gustavo A. et al., Hydraulic fracture placement assessment in a fiber optic compatible coiled tubing activated cemented single point entry system, SPE 189842- MS, 2018.
- Belov A. Coiled tubing boosts efficiency of multistage hydraulic fracturing technique in Novoportovskoe field (In Russ.), SPE , 2017.
Ссылка на статью в русскоязычных источниках:
The reference to this article in English is:
Источник
Geolib.net
Справочник по геологии
Колтюбинг (ГНКТ)
Колтюбинг (от англ. «coiled tubing» – гибкая труба) — это установка с гибкой непрерывной насосно-компрессорной трубой (ГНКТ) для проведения работ по освоению и капитальному ремонту нефтяных и газовых скважин. Является перспективным и очень развивающимся направлением в нефтегазодобывающей промышленности.
Установка ГНКТ
Барабан для намотки ГНКТ
Флот ГНКТ на скважине
Основным назначением барабана для намотки гибких труб является безопасное, компактное хранение и защита колонны ГНКТ. Эта цель должна достигаться таким образом, чтобы не допускать нанесения механических повреждений при намотке на барабан. Кроме того, обычно барабан обладает несколькими особенностями, которые также важны для успешной работы установки ГНКТ, хотя и не столь очевидны. Наиболее значительной из них является наличие вертлюга, что позволяет прокачивать жидкости и газы через колонну ГНКТ и одновременно вращать барабан.
Почти все барабаны имеют гидравлические приводы, тормоза и трубоукладчик (направляющее устройство для намотки гибкой трубы). В первых конструкциях для управления некоторыми из тормозных систем и трубоукладчиков использовалась либо только пневматика, либо совместно пневматика и гидравлика. Трубоукладчик часто используется как место монтажа контрольных, измерительных приборов и устройства для нанесения защитного покрытия (ингибитора) на поверхность гибкой трубы.
В зависимости от необходимости барабан может комплектоваться контейнерной рамой.
Основные компоненты барабана для намотки ГНКТ
Приводная и тормозная системы барабана
Все барабаны имеют гидравлический привод, хотя системы управления и типы двигателей зависят от производителя и модели барабана. Большинство барабанов могут вращаться в направлениях «в скважину» и «из скважины». Однако, при нормальном режиме работы следует пользоваться только вариантом «из скважины», так как движение приводного двигателя барабана именно в этом направлении создает обратное натяжение, которым воздействуют на колонну ГНКТ при проведении СПО. Гидравлическое давление в приводной системе можно изменять, чтобы регулировать величину выходного крутящего момента двигателя, который позволяет менять силу натяжения трубы (на участке между инжектором и барабаном). Следует прикладывать только такое растягивающее усилие, которое достаточно для того, чтобы труба на участке между барабаном и инжектором не провисала. В тоже время, чрезмерное усилие может вызвать преждевременную поломку гидравлической и приводной систем или повредить трубу. Это вкупе с неправильной намоткой на барабан почти наверняка нанесет трубе повреждения.
Гидравлическое давление, необходимое для создания достаточного натяжения, зависит от количества трубы, находящейся на барабане и расстояния до инжектора. Расстояние от оси барабана до верхнего витка трубы можно считать рычагом, с помощью которого крутящий момент приводной системы должен быть преобразован в усилие, растягивающее трубу. Чем больше это расстояние, тем больший крутящий момент требуется для натяжения. Чтобы увеличить крутящий момент на выходе приводной системы, нужно увеличить гидравлическое давление. Следовательно, при извлечении колонны из скважины, расстояние от оси барабана до верхнего витка растет, поэтому для поддержания постоянного натяжения трубы, гидравлическое давление в приводной системе нужно увеличивать.
При спуске колонны в скважину, требуемое давление гидросистемы будет уменьшаться с уменьшением числа витков на барабане. В процессе спуско-подъемных операций количество трубы на барабане изменяется, соответственно вес будет также влиять на давление, требующееся для вращения барабана.
Приводной двигатель устанавливается либо на основании шасси барабана, либо прямо на его оси. Если он установлен на шасси, то соединяется с осью барабана посредством цепи и звездочки. Тормозные системы барабана могут быть пневматическими или гидравлическими. У большинства современных моделей тормоза барабана гидравлические и размещены в блоке двигателя. Тормоз включается и отключается с помощью специального гидравлического контура, управляемого из кабины управления. Обычно каждый раз, когда колонна труб находится в неподвижном состоянии, включается тормоз барабана. Однако, следует учитывать последствия, которые могут привести к проскальзыванию колонны в плашках инжектора при закачивании жидкости высокой плотности через гибкую трубу и при этом рост веса — возникшая сила или натяжение будет воздействовать на тормоз барабана.
Вертлюг барабана и манифольд
Конструкция и компоновка вертлюгов и манифольдов зависит от изготовителя и модели барабана. Первые модели имели простую конструкцию и часто в них применялись резьбовые соединения. Многие компании требуют, чтобы все оборудование высокого давления имело цельную конструкцию, либо не содержало быстро разъемных соединений (БРС). Данное ограничение не разрешает также пользоваться фитингами при подсоединения ГНКТ к сердечнику барабана. Поэтому обычно на концах колонн ГНКТ устанавливаются БРС, которые привариваются на месте изготовления и проходят требуемые процедуры контроля качества.
Все барабаны должны быть оборудованы основной задвижкой, располагающейся как можно ближе к концу колонны ГНКТ. Эту задвижку необходимо закрывать в случае возникновения проблем с сальниковым уплотнением вертлюга и таким образом перекрывать трубное пространство. У барабанов, имеющих ГНКТ с установленным в ней кабелем, должен быть отдельный манифольды с сальниковым уплотнением, обеспечивающий герметичный ввод кабеля и находящийся до основной задвижки.
Манифольд для закачки жидкостей обычно состоит из двух частей: наружного манифольда, состоящего из компонентов линий высокого давления за пределами вертлюга, и внутреннего манифольда, монтированного внутри сердечника барабана.
Трубоукладчик
Точная и равномерная намотка гибкой трубы на барабан важна по нескольким причинам:
- Плохо намотанные трубы могут повреждаться в местах контакта. Даже кажущиеся небольшими повреждения поверхности труб, могут привести к уменьшению срока службы или к ухудшению эксплуатационных характеристик.
- Для того, чтобы использовать емкость барабана по максимуму, гибкая труба должна быть правильно уложена.
- Плохо намотанная труба может смещаться и провисать на барабане, соприкасаясь с полом установки, препятствовать свободному вращению барабана. Это может привести к возникновению проблем или даже невозможности подъема ГТ из скважины.
- Защита наружной поверхности труб от коррозии становится более эффективной, когда труба намотана плотно и равномерно. Чтобы достичь удовлетворительного качества при намотке, трубоукладчик направляет трубу на барабан, автоматически передвигаясь по мере ее намотки. Узел ручного отключения позволяет, когда это требуется, производить небольшую корректировку положения трубоукладчика. Кроме того, необходимо производить регулировку положения трубоукладчика по высоте, чтобы угол входа НКТ соответствовал смонтированному оборудованию.
Движущаяся головка трубоукладчика является идеальным местом для установки механического и электронного счетчиков глубины, использующих вращающиеся и соприкасающиеся с ГТ колесики. Из кабины управления оператора можно видеть показания механического счетчика глубины (одометра), имеющего циферблат с крупными цифрами. Движущаяся головка трубоукладчика также является местом установки аппаратуры контроля состояния трубы: овальность, толщинометрия, ультразвуковой контроль и т.д.
Оборудование для смазки труб
В оборудование современных барабанов входит система смазки трубы ингибитором коррозии, которая находится на трубоукладчике барабана. Система управления системой смазки трубы находится на пульте управления оператора.
Противоударная рама
Степень требуемой защиты зависит от предполагаемой области применения установки ГНКТ, например, смонтированная на салазках барабан для морских работ или барабан, установленная на грузовике. Кроме соображений эффективности рамы при ее практическом использовании, следует также учитывать требования, предъявляемые службами надзора и аттестации. Например, сертифицированная для морских работ установка должна иметь крышу, покрытую нескользким материалом, чтобы предотвратить травмирование стропальщиков.
Инжектор
Тенденция использования труб большего диаметра, позволяющих осуществлять восходящий поток с большой скоростью, требует, чтобы конкретный инжектор мог работать с трубами более широкого диапазона. Так как гибкие трубы стали широко применяться в скважинах с большим отходом от вертикали и в горизонтальных скважинах, за последние годы увеличилась и средняя длина колонн ГНКТ. Указанные выше факторы, особенно когда они действуют совместно, свидетельствуют о выросшем спросе на инжекторные головки и на другие ключевые узлы оборудования ГНКТ. Для всего парка колтюбингов характерно наличие нескольких моделей инжекторных головок.
Все используемые в настоящее время инжекторы имеют гидравлический привод с двумя или четырьмя двигателями. Двигатели обычно синхронизированы с помощью редуктора, расположенного в верхней части головки. Привод направляется на цепные ведущие звездочки (по одной на каждый набор цепей инжектора) через приводные валы, расположенные в верхней части инжекторной головки.Направление вращения и скорость двигателей регулируется и изменяется с помощью четырехходового гидравлического контрольного клапана, расположенного на силовом агрегате установки ГНКТ. Действием гидравлического клапана, а также давлением и производительностью гидравлической системы управляют дистанционно с пульта управления колтюбинга оператор. Приборы защиты наподобие регуляторов давления и трехходовых перепускных клапанов установлены в системе для защиты труб и гидравлических узлов от повреждений, вызываемых ошибками операторов или поломкой каких-либо деталей.
Тормоз инжекторной головки является единым целым с блоком двигателей и управляется гидравлически. Для того чтобы отпустить тормоз, требуется гидравлическое давление, поэтому данная система считается безопасной в работе. Обычно тормоз включается автоматически и управляется гидравлическим давлением системы. Это означает, что тормоз включается в тот момент, когда гидравлическое давление приводной системы падает ниже заранее установленного значения. Некоторые из ранних типов инжекторных головок оборудованы гидравлическими тормозами, управляемыми вручную с пульта управления. На первых типах инжекторных головок компании Uniflex были установлены наружные дисковые пневматические тормоза. Несколько гидравлических двигателей инжекторных головок оборудованы внутренним устройством для изменения скорости, которое позволяет устанавливать высокую или низкую скорость дистанционно с пульта управления установкой ГНКТ. Возможность выбора из двух скоростей позволяет инжекторной головке демонстрировать более эффективную работу при имеющейся гидравлической мощности, т.е. при существующем давлении и производительности. При работе в низкоскоростном режиме, приводные двигатели инжектора могут развивать максимальные крутящие моменты или подъемные усилия. При работе в высокоскоростном режиме, подъемное усилие обычно уменьшается в два раза, а скорость спуска удваивается.
Приводная система инжекторной головки включает в себя несколько деталей, необходимых для обеспечения контроля и безопасной работы. Почти все инжекторные головки имеют по два уравновешивающих клапана, расположенных между двигателями привода и напорными фильтрами и которые действуют от управляющих клапанов. Эти клапаны действуют как клапаны удержания нагрузки, закрывая выходную линию двигателя до тех пор, пока давление, полученное с входной линии двигателя, не достигнет величины, достаточной для открытия клапана. Такой порядок работы делает переход от режима остановки в рабочее состояние плавным. Кроме того, он позволяет удерживать вес колонны ГНКТ гидравлической системой, обеспечивая тем самым наличие блокирующего эффекта в случае поломки тормозов. Гидравлические линии, выполнены из высоконапорных стальных трубок. Это сделано в целях безопасности, так как в линии гидравлическая жидкость находится под большим давлением.
Высоконапорные фильтры на инжекторных головках служат для очистки гидравлического масла и защиты двигателя от посторонних мелких механических примесей (песок, металлическая стружка, части резиновых элементов и т.д.), которые могут оказаться внутри гидравлической системы при монтаже шланговых соединений привода.
Направляющий сектор — гузнек
Направляющий сектор (если он установлен) служит в качестве направляющей, поворачивая трубу на угол, образованный устьем скважины и барабаном. Колонна ГНКТ удерживается роликами, расположенными с интервалом в 25 см по окружности гузнека. Гузнек располагается над инжектором. Он направляет трубу точно в цепи инжектора и таким образом уменьшает повреждения, связанные со смещением осей.
Верхние ролики, удерживающие колонну, съемные, и облегчают внедрение и удаление трубы из инжектора. Ролики направляющей дуги обычно расположены в виде буквы V под углом 120 градусов и могут изготавливаться из стали, алюминия или полиуретана.
Сравнение размеров направляющих дуг с рекомендованными значениями их радиусов кривизны
Индикатор веса
Датчик индикатора веса (или тензометр) обычно располагается в нижней части инжектора. Информация о весе или нагрузке передается от датчика веса на циферблат или дисплей индикатора веса электронным или гидравлическим способом.
Рама инжектора обычно состоит из двух отдельных узлов, образующих внутреннюю и внешнюю рамы. Оси вращения между рамами позволяют датчику нагрузки индикатора веса точно измерять силу, действующую между этими узлами. Сила может быть направлена либо вверх, либо вниз, обусловленная либо весом колонны ГНКТ (натяжение), либо воздействием высокого давления на устье скважины (сжатие).
Приборы для измерения глубины
Информацию о глубинах обычно получают двумя способами с помощью:
- механического счетчика (одометра) колесного типа с упором колеса на гибкую трубу;
- электронного датчика, считывающего показания частоты вращения с колеса механического счетчика или с приводного вала инжектора.
Механическое оборудование для измерения глубины может устанавливаться в двух местах: на инжекторе либо на трубоукладчике барабана.
Операции с ГНКТ
Растепление скважины с АДПМ
Растепление — это процесс растапливания горячей нефтью или специальным раствором гидратной или парафинистой пробки, как в трубном так и в затрубном пространстве нефтяных и газовых скважин. Пробки образуются в скважинах оборудованных как УЭЦН, так и просто лифтом НКТ.
- АДПМ устанавливается на расстояние не менее 25 метров от устья скважины. АЦ с нефтью не менее 15 метров от АДПМ с наветренной стороны. Подача нефти из АЦ на АДПМ производится через гофрированный шланг. Жесткая нагнетательная линия крепится к одному (из двух) кранов высокого давления на входе в ГНКТ.
- Оператор ДНГ снимает штуцер из штуцерной камеры ФА. После опрессовки всего оборудования, произвести прокачку ГНКТ нефтью с одновременной проверкой прохода жидкости в коллектор к АГЗУ. Спуск ГНКТ в скважину производится со скоростью не более 15 м/мин, с одновременной циркуляцией нефтью. Температура нагрева нефти не должна превышать 90ºС. Для корректировки веса ГНКТ, через каждые 300 метров производится подъем ГНКТ на 15 метров с занесением результата в отчет.
- После определения глубины гидратно-парафиновой пробки, растепление скважины производить со скоростью не более 1м/мин для наибольшего прогрева затрубного пространства. Растепление производить с подъемом ГНКТ на 2-3 метра через каждые 10 метров промывки.
- При получении положительного результата по растеплению НКТ, необходимо проверить циркуляцию по «большому» затрубному пространству путем прокачки скважины прямой промывкой нефтью. При отрицательном результате, допустить ГНКТ на 100 метров ниже последней пробки в НКТ и произвести отогрев затрубного пространства путем циркуляции горячей нефтью по «малому» затрубу. При достижении положительного результата – дальнейшие работы производить согласно плана работ.
Растепление скважины горячим раствором СаСl2
- Технологическая емкость устанавливают на расстояние не менее 20 м от устья скважины. Цементировочный агрегат устанавливается на расстояние не менее 15 метров от технологической емкости, с наветренной стороны. ППУ устанавливается на расстояние не менее 25 метров от технологической емкости, с наветренной стороны.
- Технологическая емкость должна иметь объем 6-8 м 3 в обогреваемом исполнении. Емкость оборудуется: заземляющим устройством; «змеевиком», для циркуляции пара и нагрева раствора СаСl2; задвижкой, для подачи жидкости на ЦА-320; БРС, для соединения жесткой линией ППУ со «змеевиком»; жестко закрепленным уголком, для соединения с линией возврата жидкости из скважины.
- От тройника (под превентором), обратная жесткая линия соединяется с БРС на технологической емкости и якорится не менее чем 2-мя якорями на одно НКТ 73мм, длиной 1,5м.На обратной линии устанавливается дополнительный кран высокого давления и блок дросселирования, для уменьшения или увеличения объема возврата жидкости из скважины.
- Скорость спуска, температура раствора и дальнейшие действия аналогичны действиям, производимым при растеплении скважин с помощью АДПМ.
Освоение после МГРП
После проведенного многостадийного ГРП в скважине все порты (интервалы перфорации), кроме последнего, самого верхнего, перекрыты шарами металлического или керамического исполнения. Поэтому для освоения такой скважины необходимо отфрезеровать все фрак-порты, чтобы появилась связь между скважиной и продуктивным пластом. Главной задачей для ГНКТ в данном случае становится разбуривание шаров и седел для посадки шаров, активирующих порты на необходимой глубине, а также разбуривание обратных клапанов. Забой нормализовывают до башмака хвостовика.
Зачастую оставшиеся шары или их неразрушенные фрезом части мешают произвести полноценную нормализацию скважины. Поэтому когда пластовое давление достаточно для фонтанирования скважины, её сначала запускают на факельный амбар для выноса максимального количества шаров и только затем монтируют колтюбинговую установку для разбуривания фрак-портов. Порты необходимо разбуривать, так как они сужают внутренний диаметр хвостовика, т.е. штуцируют скважину под землей.
Источник