Отчет о ремонте АКПП на MDX 2001 года
[em]Надеюсь никому не пригодится, но уверен, что пригодится многим.[/em]
[strong]Исходные данные:[/strong]
Acura MDX, 2001 года выпуска, пробег 80 тыс. миль, рекол по АКПП — пройден
[strong]Симптомы:[/strong]
На большой скорости (около 100 км/ч) при попытке резко ускориться появились рывки (видимо при переключении с 5-ой на 4-ую скорость). Примерно через 200 км рывки стали появляться и при других переключениях, особенно на прогретой машине. На холодной коробке все более нормально. При включении задней передачи машина начинала двигаться, а потом опять происходил рывок. Кончилось тем, что по приезду на диагностику в «Тахо трансмишн» задняя скорость вообще не включилась. Хорошо еще, что через полчаса, подостыв задняя заработала, а то пришлось бы толкать, т.к. я уперся в стену.
[strong]Диагностика:[/strong]
На диагностику приехал в «Тахо трансмишн», т.к. близко находятся и в коробках кое-чего смекают. Покатались с мастером, понасиловали остатки коробки, вердикт — пробуксовывает 3-я и 4-я передачи, рывки и на более низких передачах, до 5-й скорости добраться не удалось. Повторить номер с отключением задней передачи удалось не сразу. Заехали на подъемник, посмотрели масло (оказалось подгоревшим), померили давление, в общем приговорили.
[strong]Приговор:[/strong]
Коробку надо разобрать, определить что менять, а менять много, т.к. чтобы дать гарантию надо поменять не только сломанные детали, но и детали, которые могут сломаться в ближайшие 20000 км (срок гарантии Тахо). Детали, ясное дело, надо заказывать, срок доставки 21 день, но как правило больше. Стоимость зависит от деталей, но случаев меньше чем 100000 руб. никто не припомнил.
[strong]Алексей Морозов:[/strong]
Припомнил я обещание не безизвестного Алексея Морозова о доставке восстановленой на заводе Honda коробке (в которой из б.у. деталей только корпус и датчик температуры, остальное все новое) за неделю и 90000 руб. Со времени обещания коробка правда подорожала до 92000.
[strong]Продажа старой АКПП:[/strong]
При общении с менеджером Тахо спросил, не покупают ли они старую коробку, ответа вразумительного не получил. На следующий день мне позвонил некий сотрудник Тахо и предложил купить коробку за 300$, как оказалось действовал он от своего лица, а не от лица сервиса. Я согласился, т.к. по отзывам в конференции никто свою коробку вообще не продал. В последствии менеджер Тахо предложил зачесть коробкой работы (12500 рублей) уже от лица сервиса и был неприятно удивлен, что коробка уже была продана его коллеге.
[strong]Ремонт:[/strong]
Машину оставил в «Тахо трансмишн», Оплатил в «Волне» коробку. Коробка пришла через неделю. Был несколько удивлен платной, к тому же не дешевой доставкой коробки до Тахо. В Тахо коробку поставили за день, заодно поменяли порванную переднюю опору двигателя и промыли радиатор АКПП.
[strong]Итого затраты в рублях:[/strong]
Входная диагностика 850
Замена коробки 8900
Выходная диагностика 850
Промывка радиатора АКПП 850
Масло на доливку в коробку 450
Коробка 92000
Доставка коробки 1200
Старая коробка -7800
[strong]Итого 97300[/strong]
[strong]Выводы:[/strong]
1. Все владельцы MDX (как минимум 2001-2002 годов) должны быть готовы ремонту АКПП. Ни пройденный рекол ни спокойная езда ничего не гарантируют. Про 2003 год и старше не скажу, но говорят что на них проблемы те же.
2. Удивило хорошее отношение к клиенту в Тахо. Ни в одном сервисе я такого не видел.
3. Менеджер Тахо узнав про стоимсть коробки грозился поговорить с начальством о пересмотре политики ремонта коробок MDX, т.к. он теряет смысл.
Источник
Отчет о ремонте АКПП Acura MDX (Акура МДХ) 2001г.
SeregAcura
Администратор
Сказали от напряга что то прокрутилось, сейчас ошибку снимем и поедем. Сняли чек. Погрозили пальцем.
Отъехав 1км все повторилось. Приговор-надо или менять или ремонтировать АКПП.
Я просто тупо не поверил, ну все же работало нормально неужели из за одной резкой «тапки в пол» все полетело.
Спасибо Николаю ACURA008, прислал спеца по АКПП, он подъехал к дому с компом. катались примерно 40минут с ним, проверили все соленоиды , датчики на предмет работоспособности. Делает диагностику, все ОК. Как только начинаем ехать чек загорается. И заметили, что машина все время работает на 2-й передаче.
Игорь попросил один день на обдумывание, т.к. не месте вообще получается проблем нет, кроме соленоида А и В. Сам через день набрал и сказал, что АКПП надо перебирать, короче делать ремонт.
На данный момент сдлано: Ремонт АКПП, замена заднего сальника коленвала, передняя подушка ДВС, стойка стабилизатора (странно 2 000км назад менял) сход-развал.
Еще надо:
-заменить трубку кондиционера от радиатора которая идет (заказана)
-датчик кислорада передний, лямда зонд (неоригинал поставил, чек опять через 3 часа езды загорелся, заказан уже новый оригинал)
— датчик положения кулисы переключения АКПП (заказан)
ощущения: машина ожила, переключение передач стало практически не заметным, очень мягким и непринужденным. т.к. переднюю подушку ДВС поменял, при резких движениях вперед и торможениях, пропал стук, видимо от того, что подушка вытекла и мотор болтался. Сальник не течет, все сухо. По расходу масла тему делал Ест масло. , пока проехал 200миль не могу сказать по расходу, но я думаю, что по любому уменьшится.
В общем я доволен, машина стала подтянутая и живая какая то.
По деньгам:
Ремонт АКПП + доп радиатор + сход развал + замена заднего сальника коленвала + передняя опора ДВС + стойка стабилизатора + решена проблема по электрике (провода перегнили) все под ключ с запчастями = 96000руб встало.
Если что то пропустил или нужны еще более тонкие подробности, пишите, отвечу с радостью.
Источник
ACURA MDX. АКПП
GEARMATIC — частичный и капитальный ремонт АКПП Акура МДХ в Москве с гарантией по приемлимой цене.
Если вы почувствовали, что коробка ведёт себя не так как обычно, то следует провести диагностику акпп мдх, перечислим типичные симптомы неисправности сигнализирующие о возможной скорой поломки:
- буксует (пробуксовка)
- на панели приборов появился сигнал — аварийный режим акпп
- постоянная или периодическая вибрация (также нужно проверить подушки)
- рывки при переключении вниз/вверх на любой из передач, дёргается на холодную или горячую
- не включаются передачи, пропала передача
- удары в трансмисии, пинается
- тормозит, тупит, шумит
Также не забывайте вовремя делать проводить обслуживание акпп MDX (по крайней мере замена масла (ATF) и фильтра, в запущенных случаях – промывка гидроблока), всё же заезжать на переборку более дорогостоящая затея. Периодически сами проверяйте уровень масла в вашей коробке передач (если есть щуп). Прогревайте коробку зимой обязательно, хотя бы в движении на малом газу (если спешите).
Если у вас случилась неполадка в работе или поломка коробки автомат Акура мдх 1 2 и вы хотите задать вопрос (по обслуживанию, диагностике, решению проблемы), хотите оставить отзыв о трансмиссии на данном автомобиле (поделиться с другими), оставить отзыв о нашей работе – всё это вы можете сделать с помощью формы комментариев расположенной ниже.
Источник
Acura MDX I Ремонт АКПП MDKA своими руками
electricur
Драйвер
electricur
Драйвер
electricur
Драйвер
Завсегдатай
electricur
Драйвер
electricur
Драйвер
Legendарный МИГ
Партнер Acura Clubа
я не хочу и не буду иметь дело с вами. потому что перспектива хватануть говнеца — если чего-то пойдет не так.. весьма и весьма большая.
а то что — что- то пойдет не так — это (я могу сказать опираясь на свой опыт) однозначно.
то есть вероятность что мы все станем или не станем свидетелями очередного эпичного фейла — когда очередной теоретик, на котором пробу ставить некуда, лезет в практику, составляет 100 (сто) процентов.
мне вообще уже мало интересна вся эта смешная суета.
10 лет назад подобные темы воспринимались бы как сборник анекдотов.. а теперь я смотрю люди у которых нет денег на норм машину, но слишком дофига времени на то чтобы разобраться в том — в чем они не понимают — стали весомым маргинальным меньшинством владельцев этих автомобилей.
это печально — но это естественный процесс.. я говорил об этом много раз — и мне незападло это повторить.
за последние полторы страницы после моего очередного поржал — родилось еще пара городских легенд — над которыми мне тоже стоит поржать.
заявление тохи на тему что в рестайле внезапно — управление акпп вынесли в другой блок, и заявление ваджи о том что системе пофиг и она включит блокировку даже если уже сношена блокирующая накладка на поршень..
ну а заявления вновь появившегося персонажа о методах управления электромагнитными клапанами — это уже не ржака.. это повод пригласить специалистов по медикаментам.
electricur
Драйвер
Sonnax Beyond the Pressure Regulator: Keeping Cool While Investigating Mystery Honda Overheat
Most transmission technicians are aware of the notorious loss of proper converter feed that plagues various Honda transaxles. For those who are less familiar, converter charge oil is cut because there is not enough pump output to keep the pressure regulator valve in the regulating position, allowing the TCC to drag and eventually disintegrating the lining. Many technicians have already learned the importance of installing a modified pressure regulator valve during overhaul that ensures converter charge pressure is available at all times, regardless of pressure regulator valve position.
But there is another common issue which remains a mystery to many, and that is overheating. A familiar Honda/Acura scenario begins with a customer describing driving up a long grade on a hot summer day, when they suddenly noticed a cloud of smoke in their rearview mirror. Transmission overheat caused oil to force its way out through the vent, resulting in a smoke bomb as the oil burned off the hot components it contacted. In some cases the fluid gets low enough to cause a neutral-out condition.
This could be a new customer, or it could be someone who was recently in the shop for other transmission repairs. Either way, most technicians begin the hunt for the cause of overheat by focusing on the heat exchanger. Some —thinking there is a restriction — will replace or bypass the existing cooler. Others will “double up,”, adding another cooler in series in an attempt to quench the fire. While this can help if there is an actual restriction, it usually does not improve the situation and can even make it worse.
How can adding a cooler make it worse? When monitoring cooler flow with a flow meter under various driving conditions, it may be a surprise to see the flow rate decrease during partial or full lockup after a cooler has been installed in series with the original one. Obviously the volume of fluid into the converter has not changed, so why is less of it coming back out? Sure, the restriction to flow raises slightly and causes cooler head pressure to increase when adding a second heat exchanger, but not enough to open the bypass and dump fluid volume. Something else has to be going on here.
It can be puzzling and frustrating, especially since it often takes a fair amount of time before the vehicle is driven again under the same hard conditions that caused the original overheat. Quite often you have to wait until the next summer before the vehicle is driven under similar conditions — usually during a family vacation — before finding out that your well-intentioned cooler modification did not prevent the issue from sidelining your customer again. At this point, you have ensured plenty of flow to the converter from the pump and you have increased the heat exchanger capacity, so what gives?
To figure this out, let’s get familiar with the hydraulics related to lockup and cooler function. First we have partial lockup, in which the computer ramps up the duty cycle of linear solenoid “C” to reduce TCC slip to the desired RPM. Pressure is sent to both the apply and release sides of the converter clutch in this mode. As you can see in Figure 1, linear “C” output pressure (green) works against the combined force of the lockup control valve spring and return oil pressure (orange) to regulate release pressure (purple). In turn the release oil works against the apply-side pressure (red) to control the slip rate of the clutch.
Figure 1: Partial Lockup
In full lockup (Figure 2), release pressure is simply vented to sump, leaving apply oil pressure acting unopposed against the lockup piston. Apply pressure is maxed out by ramping up the duty cycle of linear solenoid “C.”. The linear “C” pressure also pushes the lockup timing valve against its spring, cutting off the flow of return oil (orange) going to the lockup control valve. With no return oil at the lockup control valve and maximum linear “C” pressure, the control valve redirects release oil to exhaust. In this phase the slip rate is zero.
Figure 2: Full Lockup
In both partial and full lockup, converter return oil (orange) will all become cooler oil (light blue) as long as the pressure is not high enough to open the cooler check valve. With this in mind, take a closer look at the design of both the timing and control valves (Figure 2). Notice the OEM ran the converter return oil (orange) right next to exhaust ports. If there is too much clearance — aka wear — between the valve spool and the bore, oil that was destined for the cooler ends up leaking right back into the sump instead of going out to the heat exchanger. If you add a second heat exchanger in series, the additional resistance to flow and slightly elevated cooler head pressure pushes even more of the fluid past the valve spools to exhaust. Higher pressure at this unintentional fluid escape route is why volume often suffers with a second cooler.
Now that we know which bores to target, further inspection is necessary. It is not uncommon to run into lockup timing and lockup control bore wear that is severe enough to spot visually. Figure 3 shows a backlit lockup control bore; notice the large gap between valve and bore. It is no wonder so much of the converter return oil never makes it out to the cooler with wear that bad. This does not mean the bore is okay if you can’t see past the valve — not all of them are as worn as the one in Figure 3. For the majority of castings, vacuum testing is necessary to prove or disprove bore sealing ability.
This lockup control bore is so severely worn that a backlight is visible shining through the gap between the bore and valve.
Some Hondas — especially SUVs — are prone to overheating even when new, if driven under extreme heat and load conditions. Since we are talking about a new vehicle, it is logical to assume that the lockup timing and lockup control valve bores would be nice and tight. But as it turns out, the OE tolerance between the bore and valve for these two lineups is quite sloppy.
During vacuum testing of both used and brand-new regulator bodies to assess how much of a problem this was across the board, some interesting results came to light. On average, the lockup timing and control valve bores in random used castings pulled only 10.5 in-Hg of vacuum, a low number that indicates excessive valve-to-bore clearance. But when testing new, unused castings, the average vacuum was only slightly better —13.0 in-Hg — than the used castings! Thirteen is an unacceptably low number, even if we were talking about a used casting. After reconditioning the bores in all samples and installing oversized valves, a robust 21 in-Hg indicates a successful repair.
This helps explain why Honda/Acura transmissions are so prone to overheat, as the accumulated wear aggravates a poor tolerance issue that was already there from day one. Once the excessive clearance has been addressed with oversized valves, the cooler flow difference is like night and day — with no more overheating and fluid blowout under any driving conditions.
Robert Moreau is a Sonnax technical specialist and a member of the Sonnax TASC Force (Technical Automotive Specialties Committee), a group of recognized industry technical specialists, transmission rebuilders and Sonnax Industries Inc. technicians.
Sonnax Overheated Honda Converters/740 Codes
Overheated Honda converters have become a living nightmare for many transmission and torque converter shops, one that has lingered way too long because of the many misconceptions and missteps during the problem-solving process. The blame game has gone back and forth, but the torque converter rebuilders have been receiving most of the criticism.
The overheated converters have been pushing the frustration levels of many transmission rebuilders to an all-time high. Shopping around for a different torque converter rebuilder was common during this period. At one point, ATRA Technical Advisor Mike Souza said that many of his tech calls would start with the question, «Is there anyone out there that can build a good Honda converter?» The reality is that if the proper converter friction material for the clutch apply strategy was being used (such as BorgWarner HTS for models with a modulated TCC), the clutch release clearance was adjusted properly (.035″ is correct for most models) and the TCC circuit seals were doing their job, there was not much more that the torque converter rebuilder could do. The painful truth is that the torque converter rebuilder could supply a great converter and still have an overheating issue. The fact that at least half of the overheated Honda converters in any given core pile are OE converters is further proof that the problem was not being caused by rebuilt converters.
The appearance of the converters after a failure, and the fact that most failures ended with a P0740 code, led to the misconception that the failures were caused by heat. Consequently, a lot of time was wasted focusing on the inside of the converter instead of working to increase the volume of oil flowing through the converter.
Why Was the Converter Overheating?
Many transmission shops helped to find the root cause of the overheating issue, but ATEX Transmissions in Port Richey, Fla., stands out for their effort. The shop manager, Sean St. John, logged hundreds of road test miles with vehicles equipped with flow monitoring devices to record cooler flow and strategically placed pyrometers to record temperatures. Sean was the first person to recognize that after warm up, when the vehicle would come to a stop, the cooler flow would drop to zero. The flow would resume when the idle was raised above 1200 RPM. Most importantly, he noticed that the temperature of the oil exiting the converter would increase dramatically when the cooler flow dropped to a certain level. Sean’s observations lead to the conclusion that the heat in the converter was caused by the clutch dragging on the cover during periods of low TCC charge (release) oil flow and not as a result of slipping during TCC apply, as previously thought. But why was the low flow happening? This became easier to understand when a pressure gauge was added and transmission line pressure was monitored at the same time as cooler flow. If the line pressure dropped at the same time as the cooler flow was decreasing, you would be looking for conditions such as low fluid level, severely worn valve bores or possibly a severely worn pump. But, since the line pressure remained high when the flow rate decreased, an out-of-position PR valve was more likely the cause of poor cooler flow.
Typically, the PR spring and any available boost pressures push the PR valve in one direction and balance pressure opposes or pushes from the opposite direction until the valve reaches its regulating position. When the PR valve approaches its regulating position, charge oil (TCC release oil) begins to flow and continues to flow as long as the valve remains in the regulating position (Figure 2).
In many systems, a modest base line pressure is established by the PR springs, with higher pressures coming as a result of some demand-related boost system. As you can see in Figure 2, Honda does not use a conventional line pressure boost system. In the Honda system, more substantial PR springs and a stator load-related boost system establish a much higher base line pressure from the outset with modest boost increase at max pressure.
Why Was the Cooler Flow Low?
Under low pump output conditions, balance line pressure cannot overcome the stout PR spring and boost force. This causes the PR valve to move out of its regulating position (also referred to as a PR valve being «out of balance»). Under this condition, although line pressure is available (as noted by Sean), the valve has stroked over and shut off flow to the converter charge/cooler circuit. The result: TCC dragging on the cover, little or no cooler flow to control that heat, and all those cooked converters in your core pile (Figure 3).
Why Was the Pump Output Low?
1. Low Pump Capacity:
A key factor is the low capacity of the Honda pump. Because the pump is designed around fuel efficiency concerns and limited space restraints, it has very little reserve capacity. The higher the operational demands on the pump, the more likely it is that you will experience an overheated converter. The vehicles with the larger diameter converters, larger clutch drum capacities and more gears will be more likely to have converter overheating. Low pump capacity also makes wear an important factor. Pump wear, valve bore wear and end plug wear caused by high mileage will increase the likelihood of a converter overheating. Because of the delicate balance of the Honda PR valve, very little wear is necessary to upset this balance.
2. Added Demands on the Vehicle:
The chance of converter overheating also is present when there are added demands on the vehicle. Towing a trailer, overloading the vehicle or climbing over a mountain all will put added force on the stator in the converter and affect the balance of the PR valve.
The viscosity of the oil also can be an issue. Since the viscosity of the oil is related to its temperature, the higher the ambient temperature, the higher the likelihood of an overheated converter. High-quality synthetic oil may be helpful, but since the Honda 1-2 shift feel relies so heavily on OE Honda fluid, it is less of an option.
Why Doesn’t the Engine Stall?
One question that always comes up is, «With the PR valve out of balance, why doesn’t the engine stall when the flow of charge oil is so low and the clutch is dragging?» This is an excellent question and the answer involves the type of hydraulic lockup circuit that the Honda uses. The two-path lockup circuits on the E4OD and rear-wheel drive 3-speed Chrysler transmissions have both had engine stall issues caused by flow issues. If Honda had a two-path lockup circuit, it also would probably have an engine stall issue. The lockup circuit found on Honda transmission is a three-path circuit that uses a bypass valve like some front-wheel drive Ford transmissions. The three-path lockup circuit is not as susceptible to engine stall as the two-path circuits because there are two check valves which can be forced open before full lockup is achieved. One downside to the three-path lockup circuit is that there are more areas for potential leaks. The Honda primary charge oil circuit enters the input/turbine shaft between the second and third sealing ring and exits at the end of the shaft between the cover and TCC clutch(Figure 4).
This circuit is generally fairly tight. The parallel circuit, on the other hand, does not have a positive seal where the stator support passes through the valve body (Figure 5).
This parallel circuit is prone to leak and does have some effect on flow. Not all shops will be able to address this leak, but the overheated converter issue can be resolved without fixing this leak. If you are able to address this leak (Figure 6), you will add about .2 of a gallon to your cooler flow.
Addressing the Low Flow/Out-of-Balance Issue
Since there is little or no flow of converter charge oil to keep the TCC piston from dragging on the cover when the PR valve is out of balance, you will need to create an alternate or secondary path for oil flow. For an effective repair, you should consider an aftermarket PR valve with a built-in, metered, line-to-lube circuit. This allows flow to the converter and cooler when out of balance, but does not affect flow when in the regulating position. In addition, a check valve prevents converter drain-back when the engine is shut off. Remember that the root cause of the converter overheating is low pump capacity and you do not want to make this issue worse by creating a drain-back condition. Starting a Honda and have it starve for oil because of drain-back will only create more pump wear and lead to lower pump output, which only makes the root cause of the problem worse. Figure 7 shows the Sonnax converter charge regulated pressure regulator valve 98892-04K for Honda 4/5-speed units, maintaining flow during the out of position situation.
For further reading, reference the articles «Anatomy of a Transmission»or «Ford Bypass Converter Clutch Circuits» in the Sonnax Transmission Technical Library.
Ed Lee is a Sonnax Technical Specialist who writes on issues of interest to torque converter rebuilders. Sonnax supports the Torque Converter Rebuilders Association.
Источник