Ремонт блока питания at 200w

Импульсный источник питания ATX

Принципиальная схема источника — щелкните мышью

С его ремонтом я столкнулся пару лет назад, а в инете про блоки питания – сплошная помойка – одна и та же схема под разными соусами ( PDF , ZIP , JPG и т.д.). Короче пришлось всё опять самому – по проводникам печатной платы в формате ACCEL EDA .

  • Схему в формате ACCEL EDA вы можете скачать здесь .

Увеличенное и подробное изображение схемы вы увидите, если кликните на схему сверху. Далее же приводится описание.

Схему условно можно разделить на две части: силовую и контрольную. Силовая часть делится на входную высоковольтную часть и выходную низковольную. Контрольную же можно разделить на систему регулирования и систему защиты.

Входное напряжение через предохранитель FU1поступает на фильтр помех. Ничего особого в элементах C1, T1, C2 нет, но вот С3 и С4 требуют отдельного упоминания ввиду того, что получающийся из них делитель создаёт на корпусе компьютера переменное напряжение 110V. Это напряжение можно во всех прелестях ощутить, если взяться одной рукой за корпус незаземлённого компьютера (просто за корпус), другой за батарею. В-общем, обязательно заземляйте компьютер! Кстати, их иногда выпаивают (ну неужели лень заземлить?). Отсутствие этих конденсаторов приводит к попаданию высокочастотных наводок в сеть 220 вольт и соответствующим эффектам на соседних телевизорах.

Далее напряжение сети поступает на выпрямитель RT1VDM1C5C8R3R4 . Поскольку диоды выпрямителя заряжают силовые высоковольтные конденсаторы C5C8 , они работают преимущественно в импульсном режиме и должны пропускать большой ток (10A). Более того, в момент запуска блока питания по диодам проходит ударный ток – всё напряжение сети попадает на незаряженные конденсаторы, т.е. 220V в течение нескольких полупериодов попросту шунтируется на землю. Некоторой защитой от этого служит терморезистор RT1 , который в холодном состоянии имеет повышенное сопротивление (десятки ом); при включении блока питания он ограничивает ток и вместе с тем мгновенно раскаляется, и его сопротивление падает. Слишком частые включения блока питания этому терморезистору идут не на пользу, и он иногда выходит из строя. Кстати, кто не в курсе, попытка заменить эту термушку простой проволочкой приводит к настоящим фейерверкам – взрывается предохранитель (да так, что стёкла летят на несколько метров), или же искры из розетки летят, или же автомат на квартирном щитке вырубает.

Выпрямленное напряжение (примерно 300V) поступает на полумостовой инвертор VT1VT2C7T3 . Инвертор собран по схеме с самовозбуждением, для чего здесь имеется ПОС от «средней точки» через T2 – там есть специальный отвод. Хитроумные цепи в базах силовых транзисторов VD2R10C2R11R12R13 накапливают положительные +0.7V для открытия этих самих транзисторов. Однако параметры этих цепей подобраны таким образом, что инвертор без внешнего управления способен вырабатывать нестабильные и укороченные импульсы, которые при выпрямлении всегда дают половинные напряжения (2-3V вместо 5V, 6-8V вместо 12V). Это сделано специально, чтобы неуправляемый блок питания не смог спалить электронные схемы компьютера. Работающий в неуправляемом режиме инвертор может запитать только контрольную часть блока питания, а схемы компьютера сигналом PowerGood выведены в состояние глубокого сброса.

Трансформированные с помощью T3 импульсы из высоковольтных в высокоамперные поступают на выходной выпрямитель. В цепях +5V/+12V применены высокоамперные переключающие диоды VDM2VDM3 с пониженным напряжением включения, например диоды Шоттки. Для улучшения характеристик у каждого выпрямителя выравнен коэффициент мощности с помощью цепочек R51C19 , R14C13 , R15C14 .

На выходе выпрямителя получаются импульсные напряжения амплитудой примерно в 2 раза выше номинальной, т.е., например на выходе диода в цепи +12V мы можем увидеть +24V. Но ничего страшного здесь нет, ведь импульсы прямоугольные, а впереди – сглаживающий фильтр. Поскольку частота работы инвертора составляет десятки килогерц, то и сглаживающий фильтр получается простым, маленьким и вместе с этим очень эффективным. Резисторы R52R53R39R40 на первый взгляд совершенно не нужные – будучи параллельно включенными, они только рассеивают мощность. Они нужны только тогда, когда блок питания включается без нагрузки. Как известно, у всех импульсников общая болезнь – недопустимое и неуправляемое повышение выходного напряжения при отсутствии нагрузки вследствие полной зарядки конденсаторов фильтра (например 7V вместо 5V). Вот здесь на помощь и приходят резисторы, создающие ту самую минимальную нагрузку.

От выхода +12V через R38 получает питание вентилятор. Необходимость в R38 вызвана тем, что иногда вентилятор может выйти из строя и закоротить свои питающие выводы. Теперь спускаемся по схеме вниз от силовой к контрольной части. Спуск произведём по цепи питания контрольной части. Здесь имеется отвод от выпрямителя +12V, расположенный до сглаживающего фильтра. Как уже выше указывалось, в этой точке действует удвоенное импульсное напряжение +24V. С помощью диодного выпрямителя VD17C23 импульсное напряжение превращается в почти такое же по амплитуде, но постоянное. Цепочкой R21C22 оно ещё и сглаживается. А теперь посмотрим на процесс запуска блока питания. Неуправляемый инвертор создаёт на выходе блока питания половинные напряжения. В частности, на цепи +12V с выхода сглаживащего фильтра будет 6-8V. На выходе же выпрямителя ДО фильтра – 12-14V! Вот это напряжение и питает управляющие схемы. Вообще всё питание контрольной части можно поделить на два вида: обычное и стабилизированное. Обычное может варьироваться от +12V до +24V. Стабилизация производится встроенным в микросхему TL494 стабилизатором, на выходе которого получается +5V.

Прежде всего, стабильное напряжение запитывает саму микросхему TL494 . Запускается встроенный генератор, частота которого определяется цепочкой R31C28 , пилообразный сигнал которого поступает на компараторы внутри TL494 . Однако в момент пуска компараторы «заглушены» сигналом мёртвого времени, подаваемого на вывод DT . Так сделано для того, чтобы «устаканить» все переходные процессы в схеме, имеющиеся в момент включения устройства. Цепочка R25R30C26 постепенно заряжается и постепенно задействует всю большую и большую часть пилы для регулирования напряжения.

Принцип действия системы регулирования выходного напряжения основан на сравнении выходного напряжения +5V с опорным. Система регулирования не ограничивает работу инвертора, а наоборот, усиливает, как бы «подгоняет» его. Сравнение организовано с помощью двух делителей R34R27 , R24R28 и компаратора, имеющегося у TL494 . Если выходное напряжение мало, с выходов TL494 начинают поступать импульсы дополнительной раскачки инвертора. Эти импульсы подаются на транзисторные ключи R20R32VT4VD8R18VT9VD9 . Цепочка VD11VD12C21 создаёт на эмиттерах этих транзисторов напряжение порядка 1.5V, что приводит к их более надёжному закрытию отрицательным (относительно эмиттеров) напряжением с TL494 . Транзисторные ключи образуют собой ещё один инвертор VT4VT9T2 , который и раскачивает основной инвертор VT1VT2C7T3 .

Система защиты собирается на другой микросхеме, счетверённом компараторе LM339 . Назначение этой схемы – предотвратить подачу рабочих напряжений, если какое-то одно из них отсутствует или находится в недопустимых пределах. Фактически схема может только вывести инвертор в неуправляемый режим. Например, нету +5V – нечего блоку выдавать +12V/-12V, или же нет -5V – не должно выходить +5V, а то как бы чего не вышло (вспомним убожеский советский процессор КР580ВМ80). Задача сама себе противоречивая, ведь тогда как включить такой блок питания, когда нет ни одного рабочего напряжения? Это решается небольшой задержкой, в ходе которой допускается отсутствие какого-либо напряжения. Больше – ни-ни, моментальный уход в неуправляемый режим.

Читайте также:  Когда по времени можно шуметь с ремонтом

Итак, «глазами» или «ушами» системы защиты является хитрое нагромождение резисторов с диодами. Контроль организован по наличию напряжений -5V, -12V, по отсутствию перенапряжения на линии +5V и по чрезмерной раскачке управляющего трансформатора T2 – явному признаку неисправности силового инвертора (ведь он должен самовозбуждаться на половинной мощности). Напряжение +12V не контролируется, поскольку если его не будет, не будет работать вся контрольная часть блока питания. Уровень раскачки трансформатора T2 измеряется по индуцируемому им напряжению на резисторах R17R50 . Здесь обычно ставят разные резисторы либо лепят спайку, видимо регулируют на заводе-изготовителе. Оно и понятно: трансформатор, тем более импульсный – самый трудно контролируемый элемент.

В-общем, напряжение с цепочки R17R50VD7 сглаживается фильтром R16C25 и подаётся на делитель R41R45R46 . Тут же на этот же делитель через VD15R47 подаётся +5V с выхода блока питания. Давайте рассчитаем напряжения. Опорное напряжение на компараторах, судя по цепочке R56R43 , равно 1.7V. Компаратор DA2.2 будет срабатывать, если в точке R45R46 также будет 1.7V. Значит, в точке R47R45 должно быть 5.1V. Далее у нас диод VD15 с его 0.7V и окончательно получаем 5.8V – порог срабатывания от перенапряжения. Поскольку R47 значительно меньше R41 , защита от перенапряжения срабатывает всегда вне зависимости от уровня раскачки трансформатора. И с другой стороны, если нет перенапряжения, можно контролировать раскачку трансформатора. Получается как бы резистивное «И» – независимый контроль двух параметров минимальным числом элементов.

Контроль наличия напряжений -5V и -12V реализован на цепочке R36R49VD16R48 и компараторе DA2.1 . В рабочем режиме диод VD16 всегда открыт и через него всегда протекает ток на линию -12V. То есть на R48 присутствует напряжение -5.7V. С помощью делителя R36R49 это напряжение смещается вверх, но всё равно его будет недостаточно для срабатывания компаратора. Теперь представим, что -5V пропало. Это равносильно тому, что на линии -5V будет присутствовать нулевой потенциал (благодаря резистору холостого хода R53 ). На входе компаратора в точке R36R49 напряжение повысится и компаратор сработает. Ну а если пропадает -12V? Тогда диод VD16 запирается, и на всём делителе устанавливается напряжение примерно +5V, соответвенно компаратор опять срабатывает.

Сигнал с обоих компараторов объединяется и поступает на линию задержки, реализованную на цепочке R44C24R22VT5 . Формируемая здесь задержка на срабатывание крайне важна при запуске блока питания. Однако если всё-таки срабатывание защиты произошло, происходит два события. Во-первых, система «защёлкивается» через VD14 . На делителе R36R49 навсегда заводится +5V, и вернуть в прежнее состояние схему можно будет только после выключения блока питания и выдержки его в течении нескольких секунд. Во-вторых, через VD13 положительный сигнал разряжает конденсатор C26 в цепи формирования мёртвого времени у TL494 . То есть генератор перестаёт формировать управляющие импульсы, и инвертор уводится в неуправляемый режим.

Цепь формирования сигнала PowerGood начинается с цепочки R22C25 . Поскольку постоянная времени такой цепочки – примерно полсекунды, за такое время блок питания должен будет гарантированно запуститься и сообразить что все выходные напряжения в норме. В противном случае будет производиться срыв колебаний и включение разрядного транзистора VT6 . Транзистор этот включен по токовой схеме, благодаря чему удаётся избежать слишком больших токов разрядки C25 . На конденсаторе C25 формируется плавно меняющеся напряжение, непригодное для управления цифровыми схемами. Поэтому в блоке питания имеется триггер Шмидта, реализованный на цепочке DA2.3R33R42 . Выход PowerGood привязывается к выходному напряжению +5V и в таком виде подаётся в системную плату компьютера.

Источник

Ремонт блока АТХ/АТ (методика) (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4

Ремонт блока АТХ/АТ (методика).

Типовую схему можно взять тут: AT и ATX

Все работы с импульсным блоком питания проводить отключив его от сети

Проверку блока начинают со схемы управления. (ШИМ-контроллер TL494CN)

Описание микросхемы можно взять тут

Для этого понадобится стабилизированный блок питания 12В.

Подключаем к схеме испытуемого ИБП как показано на схеме рис.1 и смотрим

наличае осциллограмм на соответсвующих выводах.

Показания осциллографа снимать относительно общего провода.

Рис.1 Проверка работоспособности TL494CN

После проверки не забудь вывод 4 вернуть в схему.

Для этого последовательно проверяем: предохранитель, защитный терморезистор,

катушки, диодный мост, электролиты высокого напряжения, силовые транзисторы (2SC4242),

первичную обмотку трансформатора, элементы управления в базовой цепи

силовых транзисторов. (смотри рис.2 и рис.3)

Первыми обычно сгорают силовые транзисторы.

Лучше заменить на аналогичные: 2SC4242, 2SC3039, КТ8127(А1-В1), КТ8108(А1-В1) и т. п.

Элементы в базовой цепи силовых транзисторов.(проверить резисторы на обрыв)

Как правило, если сгорает диодный мост (диоды звонятся накоротко), то соответственно

от поступившего в схему переменного тока вылетают электролиты высокого напряжения.

Обычно мост — это RS205 (2А 500В) или хуже. Рекомендуемый — RS507 (5А 700В) или аналог.

Ну и последним всегда горит предохранитель. 🙂

И так: все нерабочие элементы заменены. Можно приступить к безопасным

испытаниям силовой части блока. Для этого понадобится трансформатор с вторичной

обмоткой на 36В. Подключаем как показано на Рис.2

На выходе диодного моста должно быть напряжение 50..52В

Соответственно на каждом электролите высокого напряжения будет половина от 50..52В.

Между эмиттером и коллектером каждого силового транзистора также

должна быть половина от 50..52В.

Рис.2 Проверка входной цепи.

Если всё в порядке, то можно переходить к следующему пункту.

Проверка работы силовых транзисторов.

Проверку режимов работы в принципе можно и не делать.

Если первые два пункта пройдены, то на 99% можно считать БП исправным.

Однако, если силовые транзисторы были заменены на другие аналоги или если вы решили

заменить биполярные транзисторы на полевые (напрмер КП948А, цоколёвка совпадает),

то необходимо проверить как транзистор держит переходные процессы.

Для этого необходимо подключить испытуемый блок как показано на рис.1 и рис.2.

Осциллограф отключить от общего провода!

Осциллограммы на коллекторе силового транзистора измерять относительно его эмиттера.

(как показано на рис.3, напряжение будет меняться от 0 до 51В)

При этом процесс перехода от низкого уровня к высокому должен быть мгновенным.

(ну или почти мгновенным). Это во многом зависит от частотных харрактеристик

транзистора и демпферных диодов (на рис.3 FR155. аналог 2Д253, 2Д254).

Если переходной процесс происходит плавно (присутствует небольшой наклон),

то скорее всего уже через несколько минут радиатор силовых транзисторов

очень сильно нагреется. (при нормальной работе — радиатор длжен быть холодный)

Рис.3 Проверка работы силовых транзисторов.

Проверка выходных параметров блока питания.

После всех вышеперечисленных работ необходимо проверить

выходные напряжения блока.

Нестабильность напряжения при динамической нагрузке,

собственные пульсации и т. п.

Можно на свой страх и риск воткнуть испытуемый блок

в рабочую системную плату или собрать схему рис. 4

Рис.4 Упрощенная схема нагрузки БП.

Данная схема собирается из резисторов ПЭВ-10.

Читайте также:  Ремонт дорог коллективная жалоба

Резисторы монтировать на алюминиевый радиатор.

(для этих целей очень хорошо подходит швеллер 20х25х20)

Блок питания без вентилятора не включать!

Также желательно обдувать резисторы.

Пульсации смотреть осциллографом непосредственно на нагрузке.

(от пика до пика должно быть не более 100 мВ, в худшем случае 300 мВ)

Вообще не рекомендуется нагружать БП более 1/2 заявленной мощности.

(например: если указано, что БП 200 Ватт, то нагружать не более 100 Ватт)

При желании схему нагрузки можно усложнить:

Рис.4.1 Экстремальная нагрузка блока питания.

Источник дежурного напряжения чаще всего выполняется в виде однотактного импульсного преобразователя по известной схеме блокинг-генератора. Основой данного способа реализации источника является усилитель с положительной обратной связью.

На рис. 1, в качестве примера, представлена схема источника дежурного напряжения БП MaxUs PM-230W. Питается данный источник через токоограничительный резистор R45 от 310 вольт, прямо с диодного моста. Имеет свой, импульсный трансформатор Т3 с четырьмя обмотками:

· две первичные: основная и вспомогательная обмотка (для обратной связи).

· две вторичные: с первой снимается напряжение от 15 до 20 вольт для питания начинки БП, а со второй – напряжение для выхода +5VSB.

Напряжением первой вторичной обмотки запитывается ШИМ-контроллер TL494 (через резистор небольшого номинала – около 22Ω). Со второй запитана материнская плата, мышь, USB. После подачи на базу транзистора Q5 начального смещения при помощи резистора R48, благодаря цепочке положительной обратной связи на элементах R51 и C28, схема переходит в автоколебательный режим. В данной схеме частота работы преобразователя определяется, в основном, параметрами трансформатора T3, конденсатора C28 и резистора начального смещения R48. Для контроля уровня выходного напряжения есть цепь отрицательной обратной связи. Если отрицательное напряжение со вспомогательной обмотки Т3 после выпрямителя на элементах D29 и С27 превышает напряжение стабилизации стабилитрона ZD1(16V), оно подается на базу транзистора Q5, тем самым запрещая работу преобразователя. Резистор R56 номиналом 0.5Ω в эмиттерной цепи Q5 является датчиком тока. Если ток, протекающий через транзистор Q5, превышает допустимый, то напряжение, поступающее через резистор R54 на базу Q9, открывает его, тем самым закрывая Q5. Цепь R47, С29 служит для защиты Q5 от выбросов напряжения.

Рис. 1 – схема источника дежурного напряжения БП MaxUs PM-230W.

Выходное напряжение источника +5VSB формируется интегральным стабилизатором U2(PJ7805, LM7805). С одной из вторичных обмоток Т3 напряжение в 10V после выпрямителя на D31 и фильтра на С31 поступает на вход интегрального стабилизатора U2. Напряжение с другой вторичной обмотки Т3 после выпрямления D32 и фильтрации C13 питает ШИМ-контроллер (TL494).

Существует еще один вариант реализации данного источника, но уже на одном транзисторе. В качестве примера на рис. 2 представлена схема источника дежурного напряжения БП Codegen (шасси: CG-07А, CG-11).

В данной схеме отсутствует второй транзистор и резистор датчика тока. Другие номиналы элементов: резистора начального смещения (R81), цепи обратной связи (R82, C15). Цепь отрицательной обратной связи работает так же, как в предыдущей схеме. Если отрицательное напряжение со вспомогательной обмотки Т3 после выпрямителя на элементах D6, С12 превышает напряжение стабилизации стабилитрона ZD27(6V), оно подается на базу транзистора Q16, тем самым запрещая работу преобразователя. Выходные цепи реализованны так же, как и в предыдущей схеме. Рис. 2 – схема источника дежурного напряжения БП Codegen (шасси: CG-07А, CG-11).


Пример 3

На рисунке 3 представлена схема источника дежурного напряжения БП IW-ISP300A3-1. Отметим, что данная схема имеет весьма сильное сходство со схемой дежурного режима БП IW-P300A2-0, за исключением некоторых мелочей. Таким образом, все сказанное ниже будет в большенстве своем справедливо для обоих схем. Итак, мы имеем силовой ключ Q10 и каскад обратной связи собранный на Q9, U4, а так же использующий ресурсы ШИМ SG6105D (встоенный управляемый прецизионный шунт TL431).

Рис. 3 – схема источника дежурного напряжения БП IW-ISP300A3-1.

Принцип работы:

Резисторы R47 и R48 подают начальное смещение на Q10, запуская схему в автоколебательный режим работы. При этом, во избежании пробоя Q10, фиксируется максимальное напряжение на его затворе, при помощи стабилитрона D23(18В). Данная схема имеет отрицательную обратную связь по току. Максимальный ток через силовой транзистор Q10 ограничивают токовые резисторы R62 и R62A. Напряжение с этих резисторов через R60 подается на базу Q9 и по достижению максимального тока Q9 открывается, тем самым закрывая Q10 и останавливая дальнейший рост тока. Отрицательная обратная связь по напряжению реализована следующим образом: Во время работы напряжение, формируемое дополнительной обмоткой Т3, выпрямляется D22 и фильтруется С34. При увеличении выходного напряжения свыше 5В на 13 ножке U3 достигается напряжение срабатывания встроенной TL431(2,5В), формируемое делителем на элементах R58 и R59. Происходит шунтирование катода диода оптопары U4 на землю и через него начинает протикать ток по цепи +5VSB, диод U4, R56, TL431. Транзистор оптопары открывается, шунтируя напряжение обратной связи (сформированное на С34) на базу транзистора Q9. Транзистор открывается, закрывая Q10 и запрещая генерацию.

Следует отметить, что с целью максимально понизить себестоимость БП (это относится ко всем схемам БП, но в большей степени ко второй), фирмы-производители часто устанавливают в источнике дежурного напряжения малогабаритные компоненты, работающие на пределе, а зачастую – и с превышением своих электрических характеристик. В связи с этим, после непродолжительного времени работы эти элементы выходят из строя.

Автогенераторный вспомогательный источник.

Используется для питания TL494CN и стабилизатора +5Vsb

(смотри схему АТХ блока)

Варианты вспомогательных источников в недорогих блоках:

В более дорогих БП дополнительные источники реализуют на микросхемах серии TOPSwitch.

. или второй вариант:

.

Описание на русском языке смотрите на сайте *****

http://spblan. *****/bp/regbp/regbp. htm

Регулятор скорости вентилятора в БП.

Rt — любой терморезистор с отрицательным ТКЕ

например ММТ1 номиналом 10..30кОм.

R1 — любой подстроечник. R1=Rt/5

Q1 — любой кремниевый n-p-n транзисторcтор средней мощности.

Лучший результат был получен с составным транзистором КТ829

Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку

(лучше слюдяную) к радиатору высоковольтных транзисторов. (или к одному из них)

Настройка производится до закрепления термодатчика на радиаторе.

Вращая R1, добиваемся чтобы вентилятор остановился и затем, вращая

в обратную сторону, заставляем его гарантированно запускаться при

зажимании терморезистора между пальцами. (термостат, однако, 36 градусов =:)

Если ваш вентилятор иногда не запускается даже при сильном нагреве,

(паяльник поднести) то можно добавить цепочку R1, C2.

Тогда R1 выставляется так, чтобы вентилятор гарантированно запускался

при подаче напряжения на холодный блок питания, а потом, через пару секунд

после заряда емкости, обороты падали, но полностью вентилятор не останавливался.

С1 – электролить 220…470мкФ 16В

R2 — резистор 3…5кОм

Теперь закрепляем датчик и проверяем как всё это добро будет крутится

при реальной работе.

В блоке питания присутствуют неприятные напряжения

(иногда доходящие до

220V, а при хорошей погоде до =300V :)))

Так что не суйте свои пальчики куда не надо и не ленитесь –

при наладке выключайте не только кнопочку Power, но и выдёргивайте шнурочек из розетки.

Q1 — 2N3904, 2N5551 или аналогичный, на ток коллектора 200мА.

Читайте также:  Ремонт бензокосы макита rbc 2500

R6 =Ом (если нужно, чтоб вентилятор вращался на минимальных оборотах

при температуре ниже срабатывания датчика)

R2 — любой терморезистор с отрицательным ТКЕ

например ММТ1 номиналом 10..30кОм.

Еще вариант. (с фильтром питания)

C1 = C2 = 47мкФ х 25В

На Рис.4 окончательный вариант со ступенчатой регулировкой.

(ступеней всего две 🙂

Хотя, если сделать как на рисунке 2 (добавить R6), то будет 3 ступени.

В схеме Рис.4 при температуре примерно 36Град. цельсия включается

транзистор Q2 и на вентилятор поступает напряжение порядка 6..7В

При температуре более 40 включается транзистор Q1 и на вентилятор поступает

напряжение 10..11В. Порог срабатывания можно регулировать резистором R5.

Использовался вентилятор Jamicon 92×92 шарикоподшипниковый

Если не удалось достать терморезистор, можно попробовать

резистор R1 ( Рис.2) примерно 3 кОм

Рис.6. Схема регулятора. БП PowerMan.

N-P-N транзистор в качестве термодатчика

И компаратор в линейном режиме.

Можно построить самую простую схему, которая содержит минимальное количество деталей (рис. 1).

Рис. 1. Принципиальная схема первого варианта терморегулятора

Ещё со времен «четверок» использовался регулятор, собранный по такой схеме. Построен он на основе микросхемы компаратора LM311 (отечественный аналог — КР554СА3). Несмотря на то, что применен компаратор, регулятор обеспечивает линейное, а не ключевое регулирование. Может возникнуть резонный вопрос: «Как так получилось, что для линейного регулирования применяется компаратор, а не операционный усилитель?». Ну, причин этому есть несколько. Во-первых, данный компаратор имеет относительно мощный выход с открытым коллектором, что позволяет подключать к нему вентилятор без дополнительных транзисторов. Во-вторых, благодаря тому, что входной каскад построен на p-n-p транзисторах, которые включены по схеме с общим коллектором, даже при однополярном питании можно работать с низкими входными напряжениями, находящимися практически на потенциале земли. Так, при использовании диода в качестве термодатчика нужно работать при потенциалах входов всего 0.7 В, что не позволяют большинство операционных усилителей. В-третьих, любой компаратор можно охватить отрицательной обратной связью, тогда он будет работать так, как работают операционные усилители (кстати, именно такое включение и использовано).

В качестве датчика температуры очень часто применяют диоды. У кремниевого диода p-n переход имеет температурный коэффициент напряжения примерно -2.3 мВ/°C, а прямое падение напряжения — порядка 0.7 В. Большинство диодов имеют корпус, совсем неподходящий для их закрепления на радиаторе. В то же время некоторые транзисторы специально приспособлены для этого. Одними из таких являются отечественные транзисторы КТ814 и КТ815. Если подобный транзистор привинтить к радиатору, коллектор транзистора окажется с ним электрически соединенным. Чтобы избежать неприятностей, в схеме, где этот транзистор используется, коллектор должен быть заземлен. Исходя из этого, для нашего термодатчика нужен p-n-p транзистор, например, КТ814.

Можно, конечно, просто использовать один из переходов транзистора как диод. Но здесь мы можем проявить смекалку и поступить более хитро Дело в том, что температурный коэффициент у диода относительно низкий, а измерять маленькие изменения напряжения достаточно тяжело. Тут вмешиваются и шумы, и помехи, и нестабильность питающего напряжения. Поэтому часто, для того чтобы повысить температурный коэффициент датчика температуры, используют цепочку последовательно включенных диодов. У такой цепочки температурный коэффициент и прямое падение напряжения увеличиваются пропорционально количеству включенных диодов. Но ведь у нас не диод, а целый транзистор! Действительно, добавив всего два резистора, можно соорудить на транзисторе двухполюсник, поведение которого будет эквивалентно поведению цепочки диодов. Что и сделано в описываемом терморегуляторе.

Температурный коэффициент такого датчика определяется отношением резисторов R2 и R3 и равен Tcvd*(R3/R2+1), где Tcvd — температурный коэффициент одного p-n перехода. Повышать отношение резисторов до бесконечности нельзя, так как вместе с температурным коэффициентом растет и прямое падение напряжения, которое запросто может достигнуть напряжения питания, и тогда схема работать уже не будет. В описываемом регуляторе температурный коэффициент выбран равным примерно -20 мВ/°C, при этом прямое падение напряжения составляет около 6 В.

Датчик температуры VT1R2R3 включен в измерительный мост, который образован резисторами R1, R4, R5, R6. Питается мост от параметрического стабилизатора напряжения VD1R7. Напряжение разбаланса измерительного моста прикладывается к входам компаратора, который используется в линейном режиме благодаря действию отрицательной обратной связи. Подстроечный резистор R5 позволяет смещать регулировочную характеристику, а изменение номинала резистора обратной связи R8 позволяет менять ее наклон. Емкости C1 и C2 обеспечивают устойчивость регулятора.
Смонтирован регулятор на макетной плате, которая представляет собой кусочек одностороннего фольгированного стеклотекстолита (рис.2).

Рис. 2. Монтажная схема варианта терморегулятора
Для уменьшения габаритов платы желательно использовать SMD-элементы. Хотя, в принципе, можно обойтись и обычными элементами. Плата закрепляется на радиаторе кулера с помощью винта крепления транзистора VT1. Для этого в радиаторе следует проделать отверстие, в котором желательно нарезать резьбу М3. При выборе места на радиаторе для закрепления платы нужно позаботиться о доступности подстроечного резистора, когда радиатор будет находиться внутри. . Хороший тепловой контакт с радиатором должен иметь только транзистор термодатчика. Еще одним способом крепления является применение клея с хорошей теплопроводностью.
При установке транзистора термодатчика на радиатор, последний оказывается соединенным с землей. Но на практике обычно это не вызывает особых затруднений.
Электрически плата включается в разрыв проводов вентилятора. Правильно собранная схема практически не требует настройки: нужно лишь подстроечным резистором R5 установить требуемую частоту вращения крыльчатки вентилятора, соответствующую текущей температуре. На практике у каждого конкретного вентилятора существует минимальное напряжение питания, при котором начинает вращаться крыльчатка. Настраивая регулятор, можно добиться вращения вентилятора на минимально возможных оборотах при температуре радиатора, скажем, близкой к окружающей. Тем не менее, учитывая то, что тепловое сопротивление разных радиаторов сильно отличается, может потребоваться корректировка наклона характеристики регулирования. Наклон характеристики задается номиналом резистора R8. Номинал резистора может лежать в пределах от 100 К до 1 М. Чем больше этот номинал, тем при более низкой температуре радиатора вентилятор будет достигать максимальных оборотов. На практике очень часто нагрузка составляет считанные проценты. В такие моменты вентилятор может работать на значительно сниженных оборотах. Именно это и должен обеспечивать регулятор. Однако при увеличении нагрузки температура поднимается, и регулятор должен постепенно поднять напряжение питания вентилятора до максимального, не допустив перегрева. Температура радиатора, когда достигаются полные обороты вентилятора, не должна быть очень высокой. Конкретные рекомендации дать сложно, но, по крайней мере, эта температура должна «отставать» на градусов от критической.
Результат моделирования показан на рис. 3.

Рис. 3. Результат моделирования схемы в пакете PSpice
Как видно из рисунка, напряжение питания вентилятора линейно повышается от 4 В при 25°C до 12 В при 58°C. Такое поведение регулятора, в общем, соответствует нашим требованиям, и на этом этап моделирования был завершен.

На основе статьи Леонида Ридико (*****@***com)

Плата термоконтроля от блока питания PowerMan

Схема на рисунке обеспечивает простую регулировку оборотов вентилятора блока питания без контроля оборотов. Напряжения на схеме даны примерные, для общего прикида. Замерялись при комнатной температуре около 20 градусов и открытом, естественно :), блоке питания.


Рис. 1

Источник

Оцените статью