Ремонт блока питания atx 450 pnr
Если Ваш блок питания содержит микросхему с маркировкой R8CB05B0 или CM6805, то возможно материал представленный ниже поможет вам в ремонте.
Кратенько пред история: подарили мне блок питания FSP ATX-460PNR, который помер после того, когда в розетке кончилось электричество).
После разборки выявлены и заменены следующие элементы:
Заменил Q60 и Q61, стояли FQPF 9N50C заменил на FQPF 10N60C.
После снятия родных FQPF 9N50C вместе с радиатором, выяснил, что пробит только Q61, Q62 не пробит, вроде живой.
Также пробитым оказался D61 HER 207, стоит под радиатором, вместо него впаял HER 308.
Также заменил R66 10 oм.
Заметил потемнение резистора с маркировкой RF, на резисторе номинал вроде 102 то есть 1 кОм, последняя цифра не разборчива вроде 2.
Второй резистор R72 чёрный, похоже «сгорел» циферок на нём не было, потом выяснил циферки — 4701.
Оба резистора расположены рядом с элементами М2 маркировка L1007 817В и М5 маркировка L1006 817C.
Далее выяснил, что ШИМ R8CB05B0 пробит, заказал на Алиэкспресс шимки CM6805BG, вроде как аналог.
Впаял CM6805BG, блок работает, но это было потом ));
а сразу после припайки CM6805BG было следующее:
При первом включении напряжение на накопительном С10 набежало больше 500 вольт.
Разбор выявил следующее: родная микруха R8CB05B0 останавливает генерацию шим APFC при напряжении на 5пин +2,5 вольта, а CM6805BG останавливает генерацию шим APFC при напряжении на 5пин при +2,7 вольта.
Решение: R 86 1М заменил на 820 кОм, проверки показали такую картину: сразу после запуска напряжение на С10 растёт до +380 +390 вольт, затем постепенно снижается до +350 вольт.
Сложным вопросом оказалась замена R69, это шунт с которого шимка на 6pin снимает падение напряжения и определяет нагрузку на блок питания.
Родной R69 розоватого цвета имеет цветовую маркировку: красный — фиолетовый — серебро — золото — зелёный. (на фото R69 стоит «солдатиком» ближе к силовым ключам)
Зелёная полоса после золотой вероятно означает, что это проволочный резистор.
Если не учитывать зелёную полосу, то калькулятор маркировки выдаёт значение 0,27 Ом 5%.
Родной R69 был расковырян, под слоем обмазки найдена проволока диаметром 0,1 мм. (замер соточным штангелем).
В городской радиолавке по телефону сказали, что проволочных в наличии нет, пришёл ножками)) купил десяток разных двух ватных резисторов.
При внимательном рассматривании заметил, что некоторые резисторы имеют зеленоватый цвет и «шершавый» корпус, покрытие похожее по фактуре на оригинальный, и на некоторых явно просматривается проволочная намотка.
Через несколько дней опять пришёл в радиолавку, попросил отсыпать по паре всех 2х ватных с «шершавым» корпусом от 3 Ом и ниже, при мне стали перебирать коробку, и в ней оказались 2х ватные зелёные резисторы с сопротивлением 0,27 Ом, на радостях купил 4 штуки )). Также купил «шершавые» с серым корпусом, они не проволочные, один был поцарапан, и на сколе явно видно, что там не проволока а равномерное блестящее покрытие.
После припайки R69 блок стартанул, но напряжения на выходе никакие не выдал, при этом слышны щелчки и шуршание, радиатор ключа APFC, силовые ключи и трансформатор стали тёплыми.
Внимательный осмотр силового транса выявил следующее: «коса» вторички транса как то странно впаяна в массу на плате, и выводы вторички как то слабо пролужены, а в месте припайки вторички к ножкам каркаса транса маловато припоя.
Снял трансформатор, и мягко говоря удивлён качеством FSP ))
Зачистил и пропаял все выводы обмоток к ножкам каркаса транса, потом впаял трансформатор на место.
Блок запустился и выдал все напряжения.
При запуске китайским тестером и работе без нагрузки слышны периодические щелчки, звук исходит от силовой части APFC, критичного нагрева элементов не обнаружил.
Выпаял силовой дроссель APFC, осмотрел, ничего критичного не нашёл, правда качество намотки напоминает дешёвый китай, второй слой намотан тяп-ляп, да и первый слой не сильно ровно положен ).
При подключении к линии +12 вольт нагрузки около 7 ампер появляется громкое шипение/шуршание силового трансформатора Т1, при добавлении нагрузки на 6 ампер громкость шипения/шуршания не увеличилась.
Можно предположить, что силовой трансформатор Т1 неисправен, но тогда почему щёлкает силовая часть APFC?
Поразмыслив, склоняюсь к мысли, что частота генератора ШИМ сигналов в микросхеме CM6805BG отличается от частот оригинальной микросхемы R8CB05B0, и получается, что силовой блок APFC и силовой трансформатор Т1 работают за пределами рассчитанной для них частоты.
Немного выше, на крайней картинке, таблица частот для микросхем серии СМ68хх.
Дальнейшие работы пока прекращаю, менять ШИМку желания нет, возможно когда нибудь руки дойдут ))
Ниже находятся эскизы, при клике на которые большие картинки подгрузятся и их можно рассмотреть и при желании сохранить у себя на диске.
| | | | | |
| | | | | |
| | | | | |
Все материалы по ATX-460PNR лежат в папке яндекс диска, можно посмотреть и скачать нужное.
Видео о ремонте бп с СМ6805, осциллограммы. «Ремонт блока питания ATX Chieftec CTG 500-80p , ШИМ и APFC»
Источник
Ремонт АТХ БП (и FSP в особенности)
В данной заметке расскажу о том, как я ремонтировал ATX БП, ибо столкнулся с этой проблемой за последнее время несколько раз. Печальные признаки помершего БП — переход в защиту ИБП, в который он включён, или полное отсутствие признаков жизни в случае отсутствия ИБП.
Данная заметка в особенности относится к БП FSP и построеных на них — например, Zalman. В схемотехнике данных БП используется один, но к несчастью плохой, конденсатор в силовой части, в то время как в бОльшей части АТХ БП используются два с немного другим включением. Но проблема встречается и в БП с «парными» кондёрами.
Первая ласточка — мне отдали PowerMan HPC-520-302 DF. Блок с мощностью 500 Ватт, APFC, двумя вентиляторами и сильной +5 линией (ATX v1.3). Подключаем — тишина, нету даже дежурки. Вскрытие п.
В данной заметке расскажу о том, как я ремонтировал ATX БП, ибо столкнулся с этой проблемой за последнее время несколько раз. Печальные признаки помершего БП — переход в защиту ИБП, в который он включён, или полное отсутствие признаков жизни в случае отсутствия ИБП.
Данная заметка в особенности относится к БП FSP и построеных на них — например, Zalman. В схемотехнике данных БП используется один, но к несчастью плохой, конденсатор в силовой части, в то время как в бОльшей части АТХ БП используются два с немного другим включением. Но проблема встречается и в БП с «парными» кондёрами.
Первая ласточка — мне отдали PowerMan HPC-520-302 DF. Блок с мощностью 500 Ватт, APFC, двумя вентиляторами и сильной +5 линией (ATX v1.3). Подключаем — тишина, нету даже дежурки. Вскрытие показало вспухший кондёр в силовой части фирмы CapXon ёмкостью около 350 мкФ и на напряжение 420 В. Также в БП был найден кусок микросхемы TOP222Y — на ней собран источник дежурных +5В.
(кликните по картинке для увеличения)
Zalman ZM600. Пайка радиатора с силовыми элементами.
Zalman ZM600. Замена — конденсатор Nichicon 400v 330uF.
Проверяю на разъёме материнки фиолетовый провод — есть +5 стандбая. Отлично. Включаю мамкой БП — тот завёлся, засветился светодиодами, зашуршал кулером. Проверяю напруги — все в пределах 1% от нормы. Цепляю на ходу пару старых сказёвых хардов по 4 Гб — все завелись, напруги в норме. Оставил БП на 5 минут, выключил, проверил температуру радиаторов и трансформатора — еле тёплые. Замечательно, ставлю в комп — работает.
Спустя некоторое время видеокарта (тогда была GeForce 6600 128Mb) была заменена на GeForce 8800GT 512 Mb. БП без вопросов это пережил и продолжает по сей день работать круглосуточно.
Вывод: производители применяют некачественные конденсаторы от фирм хз-какого-там-эшелона, которые не выдерживают проверку временем, теряют ёмкость, а значит перестают выполнять свою задачу — сглаживать пульсации. Далее последствия очевидны — если потрерял ёмкость кондёр в силовой части, то силовые ключи (IGBT или MOSFET’ы — зависит от схемотехники) работают в режимах, которые не гарантируются производителем — неизбежен выход из строя. Получаем куски микросхем и другие пробитые полупроводники в силовой части.
Источник
Ремонт блока питания компьютера своими руками
Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами. Прежде чем перейти непосредственно к методике, рассмотрим структурную схему БП и приведем перечень возможных неисправностей, это существенно упростит задачу.
Структурная схема
На рисунке показано изображение структурной схемы типичной для импульсных БП системных блоков.
Устройство импульсного БП ATX
Указанные обозначения:
- А – блок сетевого фильтра;
- В – выпрямитель низкочастотного типа со сглаживающим фильтром;
- С – каскад вспомогательного преобразователя;
- D – выпрямитель;
- E – блок управления;
- F – ШИМ-контроллер;
- G – каскад основного преобразователя;
- H – выпрямитель высокочастотного типа, снабженный сглаживающим фильтром;
- J – система охлаждения БП (вентилятор);
- L – блок контроля выходных напряжений;
- К – защита от перегрузки.
- +5_SB – дежурный режим питания;
- P.G. – информационный сигнал, иногда обозначается как PWR_OK (необходим для старта материнской платы);
- PS_On – сигнал управляющий запуском БП.
Распиновка основного коннектора БП
Для проведения ремонта нам также понадобится знать распиновку главного штекера БП (main power connector), она показана ниже.
Штекеры БП: А – старого образца (20pin), В – нового (24pin)
Для запуска блока питания необходимо провод зеленого цвета (PS_ON#) соединить с любым нулевым черного цвета. Сделать это можно при помощи обычной перемычки. Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной.
Нагрузка на БП
Необходимо предупредить, что включение импульсных БП без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.
Схема блока нагрузки
Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.
Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.
Перечень возможных неисправностей
Перечислим наиболее распространенные неисправности, характерные для импульсных БП системных блоков:
- перегорает сетевой предохранитель;
- +5_SB (дежурное напряжение) отсутствует, а также больше или меньше допустимого;
- напряжения на выходе блока питания (+12 В, +5 В, 3,3 В) не соответствуют норме или отсутствуют;
- нет сигнала P.G. (PW_OK);
- БП не включается дистанционно;
- не вращается вентилятор охлаждения.
Методика проверки (инструкция)
После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.
Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы
Если таковы не обнаружены, переходим к следующему алгоритму действий:
- проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;
Установленный на плате предохранитель
- проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;
Дисковый термистор (обозначен красным)
- тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение , с большой вероятностью, вывело эти радиодетали из строя;
Выпрямительные диоды (обведены красным)
- проверка входных конденсаторов электролитического типа начинается с осмотра. Геометрия корпуса этих деталей не должна быть нарушена. После этого измеряется емкость. Нормальным считается, если она не меньше заявленной, а расхождение между двумя конденсаторами в пределах 5%. Также проверке должны быть подвергнуты запаянные параллельно входным электролитам варисторы и выравнивающие сопротивления;
Входные электролиты (обозначены красным)
- тестирование ключевых (силовых) транзисторов. При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор (методика такая же, как при проверке диодов).
Показано размещение силовых транзисторов
Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;
- Проверка выходных диодных сборок (диоды шоттки) при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность – КЗ;
Отмеченные на плате диодные сборки
- проверка выходных конденсаторов электролитического типа. Как правило, их неисправность может быть обнаружена путем визуального осмотра. Она проявляется в виде изменения геометрии корпуса радиодетали, а также следов от протекания электролита.
Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.
Видео: правильный ремонт блока питания ATX.
https://www.youtube.com/watch?v=AAMU8R36qyE
Заметим, что нерабочие выходные конденсаторы – самая распространенная неисправность в компьютерных блоках питания. В 80% случаев после их замены работоспособность БП восстанавливается;
Конденсаторы с нарушенной геометрией корпуса
- проводится измерение сопротивления между выходами и нулем, для +5, +12, -5 и -12 вольт этот показатель должен быть в пределах, от 100 до 250 Ом, а для +3,3 В в диапазоне 5-15 Ом.
Доработка БП
В заключение дадим несколько советов по доработке БП, что позволит сделать его работу более стабильной:
- во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
- диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
- выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
- бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
- если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.
Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.
Очень интересно прочитать:
Источник