Ремонт импульсного блока питания после грозы (52).
Всем здравствуйте! Сегодня у нас на ремонте блок питания телевизора Sharp LC-22LE510RU с неисправностью не включается после грозы.
Со слов клиента громыхнуло прямо над домом, всё остальное осталось «живо», а телевизор погас. Честно говоря шансы были не велики, но всё-же нам повезло!
Приступим к ремонту. Модель 17PW80 ремонт будет описан ниже.
Фото блока питания.
И фото с обратной стороны.
При беглом осмотре ничего сгоревшего не было,предохранители целые, на входных электролитах 300 вольт. А вот под лупой кое-чего обнаружено! Были оборваны 2 smd резистора номиналом 1,5 Ом. Стоящие в цепи питания шим. И были ещё неисправны несколько компонентов. Схема на этот блок есть, но очень неудобная.
Сгоревшие резисторы заменены.
Шим в блоке применяется ice3br0665j, на схеме аналог ice3br1765j. Схема подключения шим ниже.
На схеме установлено 4 резистора по 2,2 Ом они идут от 3 ноги (CS) на землю, а по факту стояло 2 по 1,5 Ом. Ну дело даже не в этом.
Шим у нас оказалась тоже неисправной, проверил простым способом. Припаял новые резисторы и замерил сопротивление на входном конденсаторе. Там появилось почти короткое , около 0,8 Ом. Прозвонил остальные ножки , результаты почти все одинаковые. Шим пробило наглухо. Однозначно под замену.
Оригинальной шимки ice3br0665j у нас в магазинах не нашлось и мы поставили аналог ice3br1765j которая и есть у нас на схеме.
Дальнейшими замерами был выявлен пробитый стабилитрон (12 вольт) на в цепи оптрона (оптопары). Звонился во все стороны.
Вместо него я установил стеклянный, на такое-же напряжение.
Ну вроде-бы пора включать! В разрыв цепи 220 вольт подключил лампочку и включаем. Лампочка кратковременно моргнула и на выходе нет ничего! Никаких напряжений. Что-то ещё не уследил. На всякий случай «пробежался» тестером по вторичке — ничего подозрительного нет. Смотрим дальше первичку.
Замеряем напряжения питания шим!
ВНИМАНИЕ! ВСЕ ЗАМЕРЫ ПИТАНИЯ ШИМ ПРОИЗВОДЯТСЯ ИСКЛЮЧИТЕЛЬНО ОТНОСИТЕЛЬНО ГОРЯЧЕГО МИНУСА!
И начав замерять и на VCC (7-я нога) тестер как-то странно показывает. Небольшое, плавающее напряжение в пределах 4,5-6 Вольт. Смотрим что там у нас с питанием.
Так-же проверил и этот участок схемы.
Оказался неисправным smd транзистор Q708 2n7002 обрыв завтора.Транзистор заменил.
Не долго думая решил проверить конденсатор С715. Поставил на RLC-шку и увидел 6 мкф и esr 4 кОм! Не хило временем его «убило» . Заменив конденсатор, напряжение на шим стало порядка 15-ти вольт. И на выходе появились напряжения 5, 12 вольт.
Дальше «подкинул» блок к телевизору. Результат на фото.
Вот такой , можно назвать «счастливый» ремонт у нас состоялся.
Всем спасибо за внимание!
Если статья поможет вам в решении некоторых проблем, буду очень рад.
Остались вопросы или пожелания? Не стесняйтесь, пишите в комментариях, с удовольствием пообщаемся.
Ставьте лайки и подписывайтесь на канал и вы всегда будете в курсе новых публикаций.
Приходите почаще будет много интересного, а также читайте и другие статьи нашей странички и смотрите видео.
Источник
Ремонт импульсного блока питания, для новичков(20)!
Ремонт импульсного блока питания для новичков!
Всем здравствуйте! Сегодня мы будем ремонтировать блок питания телевизора LG32LM580 Типовая невключайка еще один НЕ ТАК ЧАСТО ВСТРЕЧАЮЩИЙСЯ ДЕФЕКТ!
Модель блока питания EAX64310001 (1.7)
Вот фото блока с двух сторон. Постарался сфотать так, чтобы были видны номиналы деталей.
Ну что-же приступим! Внешний осмотр показал сгоревшие резисторы , а «прозвонка» тестером указала пробитый полевой транзистор во вторичной части , на этих фото их нет, но ниже я покажу и расскажу что было сделано с неисправным блоком , для его оживления!
Прибор ставим на проверку диодов, разряжаем входной электролитический конденсатор и проверяем короткое или обрывы на полупроводниках и резисторах в первичной-(высоковольтной) сетевой части и на вторичке- выходной низковольтной части!
Замеры показали — ИСПРАВНЫЙ предохранитель, никаких подозрительно прозванивающихся элементов! Самый действенный способ проверить на короткое сетевой электролит! Если показывает разряд в обе стороны, то можно попробовать включить в сеть ТОЛЬКО ЧЕРЕЗ ЛАМПОЧКУ 220вольт 50-60 ватт! Так я и сделал, как впрочем и всегда делаю )))
Лампочка вспыхнула и погасла, на конденсаторе 290 вольт, но на выходе блока питания нет никаких напряжений, даже дежурки.
Далее меряем напряжение питания на ШИМ-ке дежурного режима! Здесь установлен ШИМ марки ICE3BR4765 дежурка.
Согласно datasheet-ту и примерной схеме напряжение питания у неё должно быть 15-20 вольт -ПРИСУТСТВУЮТ 18 вольт ! НО МИКРОСХЕМА НЕ СТАРТУЕТ!
Видимо телик после грозы, мне так показалось. Последнее время несут прошлогодние аппараты, видать люди к весне готовятся, к дачному сезону. )))
Ну что-же, проверив всю обвязку ШИМ я не нашёл ничего подозрительного. МЕНЯЕМ ШИМ.
После замены у меня на выходе появилось напряжение дежурного режима — 3,5 вольта.
А теперь о сгоревших элементах. На фото ниже я показываю низкоомные резисторы которые были сгоревшие на ремонтируемом блоке.
Источник
Ремонт блока питания компьютера.
Неисправный блок питания при ремонте компьютера зачастую просто заменяют новым. Это быстрое решение проблемы, но цена такого ремонта высока, да и хорошо заработать мастеру при этом не получится – просто замена блока больших денег не стоит. В любом сервисном центре, как правило, гора неисправных блоков питания, которые могут быть отремонтированы или послужить «неиссякаемым» источником запасных элементов. Сам ремонт блока задача, вполне решаемая и по плечу даже среднему ремонтнику.
Основные узлы блока питания
Состоит блок питания компьютера из двух основных половин. Первая часть гальванически связана с питающей сетью и содержит фильтр, выпрямитель, схему источника питания дежурного режима, транзисторные ключи преобразователя. При ремонте этой половины нужно соблюдать необходимые меры безопасности!
Также, здесь подключается схема коррекции фактора мощности (PFC), если предусмотрено ее использование.
Вторая часть включает в себя выпрямители и фильтры выходных напряжений, схему управления и стабилизации на микросхеме ШИМ-контроллера, выпрямитель и стабилизатор напряжения дежурного режима. Эта часть схемы развязана от питающей сети, поэтому работа с ее элементами безопасна.
Отделяют части три импульсных трансформатора. Силовые элементы схемы размещены на двух радиаторах охлаждения.
Общее представление о компьютерном блоке питания получили, переходим к практике.
Поиск неисправности в блоке питания компьютера лучше производить в определенном порядке. Поэтому разделим действия на шаги, которые в результате приведут к определению и устранению поломки. Даже если на одном из этапов будет найдена неисправная деталь, нужно пройти все шаги до последнего, на котором и включим блок для проверки.
Разберите блок, снимите плату и разрядите конденсаторы сетевого выпрямителя лампой накаливания.
Начинаем с внешнего осмотра. На этом этапе выявляются вздутые конденсаторы, сгоревшие элементы схемы – варисторы, резисторы. Также нужно внимательно осмотреть плату с обратной стороны для выявления плохой пайки или подгоревших участков. Обнаруженные детали заменяются, плата очищается и пропаивается. Соблюдайте полярность при установке элементов.
Проверьте, насколько легко вращается вентилятор охлаждения, зачастую именно он является причиной перегрева блока.
Проверяем сетевой предохранитель, диоды моста выпрямителя. Если предохранитель сгоревший, в цепи есть короткое замыкание, которое нужно найти и устранить. Для этого проверяем отдельно каждый диод моста выпрямителя. Помните, диод может быть не только пробит, но и иметь незначительную утечку в обратном направлении – при проверке отпаивайте один контакт элемта.
Исправный мост должен иметь бесконечное сопротивление на входе. На выходе моста, при подключении тестера, сопротивление должно измениться от низкого до высокого. Это происходит из-за заряда подключенных параллельно конденсаторов.
Шаг 3, если есть схема активного PFC
Транзисторы ключей схемы PFC (см. схему в первой части) подключены через дроссель параллельно выпрямителю напряжения сети. При пробое транзисторов вход оказывается закороченным и сгорает предохранитель. Как правило, вместе с ключами выходят из строя резисторы, подключенные к затворам и микросхема PWM-контроллера. Как проверить работу схемы PFC, рассмотрим ниже.
Проверяем транзисторы ключей преобразователя. Транзисторы подключены таким образом, что пробой одного из них может не вызвать замыкания питания и сгорания предохранителя, при этом блок питания просто не запускается.
Причиной неисправности в этом узле часто служат электролитические конденсаторы, подключенные к базе. При их утечке или потере емкости, транзистор переходит из ключевого режима работы в усилительный, что вызывает перегрев элемента.
Эти элементы и конденсатор, обозначенный синим кругом на схеме выше, также являются причиной потери выходной мощности блока питания компьютера. При этом подключенный к системной плате блок не запускается, а без нагрузки работает. Из-за неисправности этих конденсаторов повышаются пульсации на выходе блока питания, что приводит к перезагрузкам и сбоям в работе системы. Эти элементы нужно обязательно выпаивать и проверять.
Если пробиваются транзисторы ключей, резисторы и диоды, подключенные к базе, часто также сгорают.
Неисправность, рассмотренная в предыдущем шаге, зачастую вызвана завышенным напряжением питающей сети. Источник питания +5в дежурного режима работает постоянно и из-за скачков напряжения страдает первым. Наступила очередь его проверки.
При пробое силового транзистора нужно проверить, а лучше вообще заменить на заведомо исправные все полупроводниковые элементы схемы – транзисторы, диоды, оптопару. Затем проверяем все резисторы и конденсаторы, выпаивая их по очереди. Почему все?
Это очень капризная и важная часть блока питания, от нее запитана микросхема ШИМ-контроллера и схема включения материнской платы. При выходе источника из режима стабилизации, на эти узлы подается завышенное напряжение, что в лучшем случае приводит к сгоранию ШИМ-контроллера блока, а в худшем – потере материнской платы.
Второй случай, когда источник не запускается, +5 дежурного на выходе просто нет. Начальное напряжение для запуска схема получает через резисторы, подключенные к +310в. Зачастую они подгорают, изменяя значение своего сопротивления на гораздо большее, хотя внешне выглядят исправными. Учитывая высокие значения сопротивления резисторов при проверке детали нужно обязательно выпаивать.
Схема также может не запускаться из-за замыкания или перегрузки выходных цепей. Виновником этого может быть пробитый диод выпрямителя, сгоревший ШИМ-контроллер или устанавливаемый в качественных блоках питания защитный стабилитрон.
Всегда проверяйте конденсатор, обозначенный на схеме выше восклицательными знаками. От его исправности зависит значение выходного напряжения блока питания, а расположен он в зоне с повышенной рабочей температурой. Если в схеме блока не установлен защитный стабилитрон, именно из-за этого конденсатора выходит из строя материнская плата.
Переходим к выпрямителям выходных напряжений. Выпрямители собраны на спаренных диодах, проверяем от центрального вывода оба крайних на наличие пробоя. Нужно обязательно проверить все элементы схемы стабилизатора 3.3в, потому что блоки с микросхемой ШИМ-контроллера TL494 не имеют обратной связи для контроля этого выхода. Блок питания будет запускаться вхолостую, но не работать под нагрузкой.
Также проверьте диоды выпрямителей для напряжений -5в, -12в. Учитывайте, что каждый выход блока нагружен низкоомным резистором, если появились сомнения в исправности одного из диодов, элемент лучше выпаять.
Добрались до микросхемы ШИМ-контроллера. Возможности проверки исправности микросхемы без включения блока питания ограничены. Но, если в шаге 5, были обнаружены какие либо неисправности, а тем более, если при внешнем осмотре найден сгоревший резистор в цепи питания ШИМ-контроллера, микросхему нужно заменить заведомо исправной.
Выходы микросхемы подключены к двум транзисторам (C945 или 2N2222), если меняете микросхему, проверьте их также.
После устранения всех неисправностей обнаруженных в предыдущих шагах, блок можно подключить к питающей сети, конечно при соблюдении всех мер предосторожности.
Если при подключении сгорел сетевой предохранитель – возвращаемся к шагу 1 и следующим, чтобы найти пропущенную неисправность.
Измеряем значение напряжения дежурного режима +5в на 9 (фиолетовый) контакте разъема. Подключаем нагрузку, подойдет резистор сопротивлением 3-4Ом мощностью около 7Ватт. Снова измеряем напряжение.
Если блок питания выдает заниженное значение (4.3в — 4.8в) нужно заменить оптопару, TL431 и электролитические конденсаторы схемы стабилизатора. Напряжения нет вообще, повторяем шаг 5.
При нормальной работе источника дежурного питания, напряжение на входе PS ON (14,зеленый) в пределах 2.3-5в, на остальных– 0в. Замыкаем 14 и 15 контакты перемычкой, блок должен запуститься.
Если старта не произошло, возвращаемся к шагу 4. Возможна ситуация, когда блок питания запустился на короткий промежуток времени, при этом дернулся вентилятор. Это происходит при неисправности выходных выпрямителей или микросхемы ШИМ-контроллера, снова проходим шаги 6 и 7.
Для блоков с системой активной PFC на этом этапе нужно проверить работоспособность схемы. Измеряем напряжение на конденсаторе сетевого выпрямителя, схема PFC поддерживает его значение в пределах 380-400в, если прибор показывает 310в – схема не работает и нужно повторить шаг 3.
У запущенного блока измеряем напряжение на выходе PG (8, серый), правильное значение +5в. Затем проверяем все выходные напряжения — +12в, -12в, +5в, -5в, +3.3в. Нагружать при тестировании все выходы блока было бы правильно, но часто проблематично. Поэтому можно ограничиться нагрузкой каждого выхода по-отдельности. Для нагрузки можно использовать автомобильные лампы накаливания подходящей мощности.
Компьютер после ремонта блока питания обязательно нужно тестировать в течение 3-6 часов.
В заключение дадю несколько советов по доработке БП, что позволит сделать его работу более стабильной:
во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.
Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.
ЗАПОМНИТЕ. Измерять непосредственно на контактах БП с нагрузкой и не доверять программам мониторинга! (у прибора должны быть надлежащего качества и напряжения элементы питания (не аккумы!))
ЗЫ: Взял где взял, обобщил и добавил немного.
ЗЫ2: Кому не нужно — проходим мимо.
ЗЫ3: LF! ,kzl rjgbgfcnf!
Простите за качество некоторых картинок (чем богаты).
Берегите себя и своих близких!
Дубликаты не найдены
Смысл этого поста? Без наглядных изображений БП те, кто не шарит в электронике, все равно ничего не поймут, а те, кто шарит — в нем не нуждаются от слова вообще.
хотелось бы попросить света, у меня блок есть huntkey lw-6550hg на нем перестал работать вентилятор, и он сгорел видимо от перегрева, (то что у него не хватило мощности что бы тянуть установленное железо исключено, тк железо не особо сильное а сам блок 550 Вт)
пыхнул с шумом и дымом, на плате почернение в области детали на радиаторе по виду похожа на транзистор, но это может быть и диодная пара (или как такое назвается)
вопрос таков, если что то такое сгорело — есть ли смысл возиться с БП в принципе?
ЗЫ конденсаотры прозвонил все рабочие и не вздутые.
«когда блок питания запустился на короткий промежуток времени, при этом дернулся вентилятор. Это происходит при неисправности выходных выпрямителей или микросхемы ШИМ-контроллера, снова проходим шаги 6 и 7.»
У меня такое было когда вспухли конденсаторы, после замены всё заработало. При этом они сверху выглядели абсолютно нормально, чисто случайно заметил что у них днище выдавило.
«во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер)»
В какой цепи? На какое напряжение?
«диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;»
Просто помощнее? На сколько мощнее? Какие?
По замене конденсаторов:
Там много где стоят конденсаторы low ESR, так что нужно не тупо менять их на б0льшую емкость, а подбирать по параметрам. И ставить нормальные, типа panasonic FR, но они и стоят нормально.
Там много где стоят конденсаторы low ESR, так что нужно не тупо менять их на б0льшую емкость, а подбирать по параметрам. И ставить нормальные, типа panasonic FR, но они и стоят нормально.
А нужно ли? На материнке тоже стоят стабилизаторы с конденсаторами для питания процессора и оперативной памяти.
Спасибо КЭП — только вопрос был зачем менять конденсаторы в БП — они там и так будут low esr, плюс на материнской плате стоят тоже low esr конденсаторы.
подделок нет. Но по поиску capxon bad capacitors на них полно жалоб. И у меня они все умерли лет через 5, причем вздулись не сверху, а выдавило дно. Ремонтники телевизоров с форума badcaps говорят что все телики в которых они меняют конденсаторы идут с установленными capxon.
следует добавить нужны 105 градусные, а не простые 85гр
Лютый минус по следующим причинам:
1. Ничего своего, тупая копипаста
2. Ничего нового — всё сотни раз разжевано на соответствующих форумах
3. Схемы древнегавённые, упоминать TL494 в 2017 году — оскорбление пользователей, тут впору звать @moclerator.
говорю же проходи мимо
ЗАПОМНИТЕ. Измерять непосредственно на контактах БП с нагрузкой и не доверять программам мониторинга! (у прибора должны быть надлежащего качества и напряжения элементы питания (не аккумы!))
Спасибо, лишним не будет.
как правильно написано овчинка выделки не стоит. это актуально только если блок какой то очень дорогой или редкий/нестандртный
дык в мелочёвке запутаешься.
Напиши. Про мой Корсар AX1200. Он уже далеко не новый, но работает. Лет через 5 может потребоваться ремонт, мне будут нужны схемы.
Это абсолютно другая модель, уже с микроконтроллером, мониторингом по USB.
Когда я его покупал, две «топовые» видюхи жрали до 300 Вт каждая. Покупать к ним 850 Вт «впритык» было бы глупо.
Ремонт и диагностика техники с помощью ножа, воды и соли
Во время учёбы в институте, у меня вышел из строя ноут. Интересная поломка оказалась. А ещё интереснее то, что диагностику и починку пришлось делать с помощью «каках и палок», ну ладно, с помощью «соли, воды, огня и ножа».
Ситуация такая: блок питания подключён к ноуту, лампа питания горит, но ноут не включается. Аккумулятор ноута умер 100 лет назад, так что на аккумуляторе его не запустить для проверки. Схожего БП не нашёл, хотя это обычный HP с самым обычным разьемом.
Ну что делать, нести в мастерскую? Наверняка возьмут не меньше 500-1000 только для разборки-диагностики. А я сам с усам, только у меня в общаге кроме столовых приборов и учебников ничего нет. В общем решил сам попробовать восстановить ноут с помощью подручных инструментов и смекалки.
Для восстановления у меня имелась отвёртка и нож, для случая, если отвёртка не подойдёт. Это все. Паяльник мог одолжить у кого-то, мультиметра не было.
Для начала нужно определить что не работает, что разбирать. Визуально поломку скорее всего не опрелелить, я и так знаю. Но попытка не пытка. Так разбирать ноут? Может БП накрылся?
Взял соль, воду, смешал и бросил конец (провода) БП в этот раствор. БП на 19В, 4.75А на выходе. Вижу пузырьки водорода. Но вот выделение его идёт не интенсивно. В той пропорции и при параметрах тока вода должна сильнее бурлить, а там выделение шло как от БП 1В / 50мА. В общем понятно, БП как-то накрылся.
Смотрю на БП, не могу понять как разобрать. Вертел его в руках с час. У меня есть такое хобби — догадаться как разобрать устройство. Это достаточно интересное занятие, лучше любого пазла. Но тут я сдался, полез в интернет за подсказкой. Ну и что бы вы думали? Специалисты-ремонтеры-то наверняка знают, что БП заварены и их не разобрать без «расколачивания».
Теперь нож пригодился в качестве ножа. Ножами открывать БП не советую, можно травмировать себя. Лучше использовать лобзик. Но я от безисходности как-то открыл все ножом.
Смотрю внутрь. Мало того, что провода БП стали со временем «деревянными», так ещё и пайка отошла. Но отошла так, что небольшое напряжение он как-то выдавал. Провод отошёл совсем, но вот как-то одним из атомом в одном из узлов решётки все же немного касался нужной дорожки и создавал впечатление, что все работает. Пропаял, проверил, комп включается.
Да, с паяльником была ещё та история. Парень сказал, что есть паяльник. Прихожу, а он мне даёт доисторический музейный экспонат — молот с куском меди на конце, который на костре только разогревать можно. Ну. Ну. Не знаю, иметь хоть что-то, чем ничего все же лучше. Запаял как-то, удалось не все залить там оловом XD
А что теперь, корпус разбит. Можно клеить моментом, эпоксидкой, но прочность конструкции будет сильно нарушена. Можно было бы заклеить жидким клеем под температурой и было бы самое то, но клея не было. Материал корпуса — не полиэтилен, пластик. Причём пластик обычный, бытовой, не какой-то особый, типа высокого класса термостойкости как в чайниках. Такой пластик можно расплавить по периметру раствором дихлорэтана, причём можно и не раствором, а просто. Все это склеится так, как жидкий термоклей бы не склеил.
Ну что, замутил дихлорэтан, вышел на 70 руб, промазываю все по периметру и клею. Результат — внешне, конечно, не как новый, но намного лучше того, что показывают в некоторых видосах на ютубе. Прочность корпуса восстановлена.
Результат: ноут работает уже лет 10 в сумме 🙂
Источник