Ремонт блока питания руководство

Инструкция по ремонту БП

Решили отремонтировать сломанный блок — не включайте его сразу в сеть!

Содержание

Начало. Внешний осмотр.

Вскрываем крышку – внимательно делаем внешний осмотр на предмет взорванных:

1. Предохранителя. Иногда предохранители в термоусадочном кембрике. Выход – звонить прибором.

2. Диодов входного выпрямителя (МОСТА).

3. Почерневшие резисторы. Меряем прибором, если нельзя определить номинал визуально. Если нет сомнений по поводу номинала (не звонятся вообще или в ноль), заменяем другими с отклонением + — 5%.

4. Конденсаторов: а.) Вздутие – заметное изменение верхней плоскости конденсатора от ровной поверхности к выпуклой. Приговор – проверка, а лучше сразу замена. б.) Коричневый пух или выделения – вздутие с выделением электролита. Приговор – урна и замена.

5. Ключевых и дежурного транзисторов: Тут посерьезнее. Если транзистор дежурного режима, проверять придется весь узел. Ключевые – меняем и проверяем вокруг обвеску.

6. Появления шоколадного цвета платы, под резисторами, возле ШИМа означает то, что греется резистор питания ШИМ — 22 Ома, от превышения дежурного напряжения и как правило умирает первым именно он. Иногда это означает, что ШИМ тоже мертв. Проверяем, меняем микросхему (читай ниже). Это следствие работы дежурки плюс качество самой ШИМ. После, обязательно проверить детали и работу дежурного режима.

7. Выходных диодных сборок. При сгорании диодной сборки внешние признаки есть не всегда. ОБЯЗАТЕЛЬНО проверяем их прибором. Если ваш прибор меряет прямое падение на диоде, можно проверять не выпаивая. Падение должно быть от 0,020 до 0,150 (В). Ноль или около того(до 0,005) – выпаиваем и проверяем. Если то же падение – пробит, замена. Если же прибор не имеет такой функции, установите прибор на измерение сопротивления (обычно предел в 20кОм). Тогда в прямом направлении, диод сборки (исправный) будет иметь сопротивление порядка одного — двух килоом, а у обычных диодов порядка трех — шести. В обратном направлении — бесконечность.

Берём тестер и меряем выходное сопротивление по +5В и +12В вольтам — обычно в районе 100-250 ом (то же для -5В и -12В) , +3.3В — около 15-ти Ом.

8. Внимательно (желательно с увеличительным стеклом) осматриваем печатную плату со стороны дорожек. Ищем непропаи, подозрительные потемнения, сопли, отслоения дорожек.

TL494 и ей подобные, КА7500. Про остальные ШИМ будет написано дополнительно. Подаём питание от внешнего источника (от 12В до 20В) на 12-ую ногу ШИМ через резистор 22ома. Не всегда ШИМ питается на прямую от дежурного режима. Может стоять транзистор, который при замыкании PS-ON на землю, подает питание на ШИМ. Проверяйте его. Устанавливаем перемычки: 4-я нога ШИМ(блокировка ШИМ) — на землю, 16-я нога ШИМ (токовая защита) – на землю (если не используется — сидит на земле). Наблюдаем импульсы на 8 и 11 ногах ШИМ и далее на базах ключевых транзисторов. Если нет импульсов на 8 или 11 ногах ШИМ или ШИМ греется – меняем. Если нет импульсов на ключевых — проверяем промежуточный каскад (раскачку) – обычно два С945, два 1N4148 и емкости 1-10 мкф на 50В. Если картинка красивая и на 14-ой ноге +5В (в разумных пределах) – ШИМ и каскад раскачки можно считать живым. Желательно, вместо всяких АНАЛОГОВ ставить TL494 от Texas Instruments, особенно если это KA7500 (сколько добра от них погорело. ).

Проверяем дежурный режим.

Смотрим, что с транзистором и окружающими деталями. Проверяем транзистор. Звоним все диоды. Если надо меняем. Проверяем прибором стабилитрон, стоящий в базовой цепи (цепи затвора) транзистора(выпаиваем), в схемах на биполярных транзисторах номинал от 6В до 6.8В, а на полевых, как правило 18В. Если всё в норме, обращаем внимание на резистор 4,7 Ом — питание трансформатора дежурного режима от +310В (используется как предохранитель, но бывает, что и трансформатор дежурки сгорает) и 150k

450k (оттуда же в базу ключевого транзистора дежурного режима) — смещение на запуск. Высокоомники часто уходят в обрыв, поэтому дежурный режим не пашет и, как следствие, блок не стартует. Меряем сопротивление первичных обмоток дежурного трансформатора — от нуля до трех-семи Ом (ни разу нуля не встречал, только разрыв!). Если сетевая обмотка трансформатора в обрыве (бесконечность) — меняем транс или перематываем. Бывают случаи, когда при нормальном сопротивлении первичной обмотки, трансформатор, оказывается нерабочим — замена. В данном случае такой вывод можно сделать, если вы уверены в исправности всех остальных элементов узла дежурного режима. Проверяется подставлением точно такого транса. Один выход с дежурного транса – на питание ШИМ. Проверяем диод и конденсатор (около 100 мкф на 50В). Второй выход и есть +5В дежурного режима. Меняем электролит в дежурном режиме на НОВЫЙ . Припаиваем параллельно ему неэлектролитический конденсатор

Читайте также:  У соседей ремонт длится уже год

150нф-680нф (важная доработка для предотвращения быстрого высыхания электролита в дежурке). Отпаиваем резистор ведущий на питание ШИМ.

ВАЖНО! Перед включением в сеть.

Далее, для уверенности, берём лампочку от 40 до 100 Ватт впаиваем вместо предохранителя. Если плата вынута из блока, проверьте, нет ли под ней металлических предметов любого рода. Ни в коем случае НЕ ЛЕЗЬТЕ РУКАМИ в плату и НЕ ДОТРАГИВАЙТЕСЬ до радиаторов во время работы блока, а после выключения подождите около минуты, пока конденсаторы разрядятся. Далее, на выход +5VSB (фиолетовый) вешаем нагрузку — лампочку на 6.3 Вольта (0.3 Ампера), и включаем в сеть. Если дежурка в порядке (+5В) и на питание ШИМ напряжение не более 27 Вольт, запаиваем обратно резистор, для замера напряжения подключаем прибор на выход сигнала PG (серый) и снова включаем блок в сеть. Замыкаем PS-ON (зеленый) на землю, и вешаем вольтметр на PG (серый). Есть напряжение от +3.5 до +5 Вольт – хорошо. Начинаем проверять блок под нагрузкой.

Проверка под нагрузкой.

Измеряем напряжение дежурного источника, вначале на лампочку, а потом на ток до 2-х ампер. Если напряжение дежурки не просаживается, включаем БП, замыкая PS-ON (зеленый) на землю, измеряем напряжения на всех выходах БП и на силовых конденсаторах при 30-50% нагрузке, кратковременно. Если все напряжения в допуске, собираем блок в корпус и проверяем БП при, практически, полной нагрузке. Смотрим пульсации.

После ремонта, особенно при жалобах на нестабильную работу, минут 10

15 мерять разделение напряжений на «половинных» конденсаторах (лучше с 40%-ой нагрузкой) — часто один «высыхает» или резисторы (параллельные им, роль которых разряжать и выравнивать) «увеличиваются» — вот и глючим. Разброс в сопротивлении выравнивающих резисторов должен быть не более 5-7%. Емкость конденсаторов должна составлять минимум 90% от номинала. Так же желательно проверить выходные емкости по каналам +3.3В, +5В, +12В на предмет высыхания (см. выше), а при возможности и желании усовершенствовать блок питания, заменяйте их на 2200 мкф или лучше на 3300 мкф от проверенных производителей. Выходные диодные сборки по каналам +3.3В, +5В смело меняйте на более мощные(типа STPS4045). Если по каналу +12В вы заметили два спаянных диода, то ЖЕЛАТЕЛЬНО поменять их на диодную сборку типа MBR20100 (20А 100В). Если не найдете на сто вольт — не страшно, но ставить необходимо минимум 80В (MBR2080). Заменить электролиты 1.0 мкф х 50В в цепях базы мощных транзисторов на 4.7-10.0 мкф х 50В. Можете отрегулировать выходные напряжения на нагрузке. При отсутствии подстроечного резистора это делается резисторными делителями, которые установлены от 1-й ноги ШИМа к выходам +5В, +12В и +3.3В (после замены трансформатора или диодных сборок ОБЯЗАТЕЛЬНО проверить и выставить выходные напряжения).

Источник

Поговорим про ремонт блока питания компьютера своими руками

В современном мире развитие и устаревание комплектующих персональных компьютеров происходит очень быстро. Вместе с тем один из основных компонентов ПК – блок питания форм-фактора ATX – практически не изменял свою конструкцию последние 15 лет.

Следовательно, блок питания и суперсовременного игрового компьютера, и старого офисного ПК работают по одному и тому же принципу, имеют общие методики диагностики неисправностей.

Материал, изложенный в этой статье, может применяться к любому блоку питания персональных компьютеров с минимумом нюансов.

Устройство блока питания

Типовая схема блока питания ATX приведена на рисунке. Конструктивно он представляет собой классический импульсный блок на ШИМ-контроллере TL494, запускающемся по сигналу PS-ON (Power Switch On) с материнской платы. Все остальное время, пока вывод PS-ON не подтянут к массе, активен только источник дежурного питания (Standby Supply) с напряжением +5 В на выходе.

Рассмотрим структуру блока питания ATX подробнее. Первым ее элементом является
сетевой выпрямитель:

Его задача – это преобразование переменного тока из электросети в постоянный для питания ШИМ-контроллера и дежурного источника питания. Структурно он состоит из следующих элементов:

  • Предохранитель F1 защищает проводку и сам блок питания от перегрузки при отказе БП, приводящем к резкому увеличению потребляемого тока и как следствие – к критическому возрастанию температуры, способному привести к пожару.
  • В цепи «нейтрали» установлен защитный терморезистор, уменьшающий скачок тока при включении БП в сеть.
  • Далее установлен фильтр помех, состоящий из нескольких дросселей (L1, L2), конденсаторов (С1, С2, С3, С4) и дросселя со встречной намоткой Tr1. Необходимость в наличии такого фильтра обусловлена значительным уровнем помех, которые передает в сеть питания импульсный блок – эти помехи не только улавливаются теле- и радиоприемниками, но и в ряде случаев способны приводить к неправильной работе чувствительной аппаратуры.
  • За фильтром установлен диодный мост, осуществляющий преобразование переменного тока в пульсирующий постоянный. Пульсации сглаживаются емкостно-индуктивным фильтром.

Далее постоянное напряжение, присутствующее все время, пока блок питания ATX подключен к розетке, поступает на схемы управлением ШИМ-контроллера и источник дежурного питания.

Источник дежурного питания – это маломощный самостоятельный импульсный преобразователь на основе транзистора T11, который генерирует импульсы, через разделительный трансформатор и однополупериодный выпрямитель на диоде D24 запитывающие маломощный интегральный стабилизатор напряжения на микросхеме 7805. Эта схема хотя и является, что называется, проверенной временем, но ее существенным недостатком является высокое падение напряжения на стабилизаторе 7805, при большой нагрузке приводящее к ее перегреву. По этой причине повреждение в цепях, запитанных от дежурного источника, способно привести к выходу его из строя и последующей невозможности включения компьютера.

Читайте также:  Garmin ремонт по гарантии

Основой импульсного преобразователя является ШИМ-контроллер. Эта аббревиатура уже несколько раз упоминалась, но не расшифровывалась. ШИМ – это широтно-импульсная модуляция, то есть изменение длительности импульсов напряжения при их постоянной амплитуде и частоте. Задача блока ШИМ, основанного на специализированной микросхеме TL494 или ее функциональных аналогах – преобразование постоянного напряжения в импульсы соответствующей частоты, которые после разделительного трансформатора сглаживаются выходными фильтрами. Стабилизация напряжений на выходе импульсного преобразователя осуществляется подстройкой длительности импульсов, генерируемых ШИМ-контроллером.

Важным достоинством такой схемы преобразования напряжения также является возможность работы с частотами, значительно большими, чем 50 Гц электросети. Чем выше частота тока, тем меньшие габариты сердечника трансформатора и число витков обмоток требуются. Именно поэтому импульсные блоки питания значительно компактнее и легче классических схем с входным понижающим трансформатором.

За включение блока питания ATX отвечает цепь на основе транзистора T9 и следующих за ним каскадов. В момент включения блока питания в сеть на базу транзистора через токоограничительный резистор R58 подается напряжение 5В с выхода источника дежурного питания, в момент замыкания провода PS-ON на массу схема запускает ШИМ-контроллер TL494. При этом отказ источника дежурного питания приведет к неопределенности работы схемы запуска БП и вероятному отказу включения, о чем уже упоминалось.

Основную нагрузку несут на себе выходные каскады преобразователя. В первую очередь это касается коммутирующих транзисторов T2 и T4, которые устанавливаются на алюминиевых радиаторах. Но при высокой нагрузке их нагрев даже с пассивным охлаждением может оказаться критическим, поэтому блоки питания дополнительно оснащаются вытяжным вентилятором. При его отказе или сильной запыленности вероятность перегрева выходного каскада значительно возрастает.

Современные блоки питания все чаще используют вместо биполярных транзисторов мощные MOSFET-ключи, за счет значительно меньшего сопротивления в открытом состоянии обеспечивающие больший КПД преобразователя и поэтому менее требовательные к охлаждению.

Видео про устройство БП компьютера, его диагностику и ремонт

Распиновка основного коннектора БП

Изначально компьютерные блоки питания стандарта ATX использовали для соединения с материнской платой 20-контактный разъем (ATX 20-pin). Сейчас его можно встретить только на устаревшей технике. В дальнейшем рост мощностей персональных компьютеров, а следовательно – и их энергопотребления, привел к использованию дополнительных 4-контактных разъемов (4-pin). Впоследствии разъемы 20-pin и 4-pin были конструктивно объединены в один 24-контактный разъем, причем у многих блоков питания часть коннектора с дополнительными контактами могла отделяться для совместимости со старыми материнскими платами.

Назначение контактов разъемов стандартизировано в форм-факторе ATX следующим образом согласно рисунку (термином «управляемое» отмечены те выводы, на которых напряжение появляется только при включении ПК и стабилизируется ШИМ-контроллером):

Наименование контакта Назначение
+3.3V Положительное напряжение 3,3 В, управляемое. Питание материнской платы и процессора.
+5V Положительное управляемое напряжение 5В. Питание части узлов материнской платы, жестких дисков, внешних устройств USB.
+12V Управляемое напряжение 12В для жестких дисков, вентиляторов систем охлаждения.
-5V Управляемое напряжение -5В. Стандартом ATX, начиная с версии 1.3, более не используется.
-12V Управляемое напряжение -12В. Практически не используется.
Ground Масса.
PG Имеет высокий уровень при условии превышения напряжениями 5В и 3,3В нижнего порога (сигнализирует о выходе БП в рабочий режим).
+5VSB Постоянное напряжение 5В (дежурный источник).
PS-ON Включение блока питания при замыкании вывода на массу.

Распределение нагрузки на блок питания

Поэтому для каждого блока, кроме суммарной максимальной мощности, указывается и максимальное потребление тока для каждого выходного напряжения.

Используя в качестве примера приведенную выше фотографию, продемонстрируем принцип расчета применимости БП:

  • Цепь 3,3В имеет максимально допустимый ток нагрузки 27А (89 Вт);
  • Цепь 5В может отдавать ток до 26А (130 Вт);
  • Цепь 12В рассчитана на ток до 18А (216 Вт).

Но, так как все эти цепи запитаны от обмоток общего трансформатора, их суммарное потребление ограничивается: если в теории максимальная нагрузка по напряжениям 3,3В и 5В может доходить до 219 Вт, она ограничена значением в 195 Вт. При максимальной теоретической токоотдаче всех трех цепей в 411 Вт реальная нагрузка ограничена цифрой в 280 Вт.

Таким образом, при добавлении нового «железа» в свой ПК нужно учитывать не только общее энергопотребление, но и баланс электрических цепей. Особенно часто замена блоков питания на более мощные требуется при установке высокопроизводительных видеокарт, значительно нагружающих цепь 12В, в то время как большую часть мощности ПК отбирают по низковольтным цепям – запас по высокому напряжению остается недостаточным.

Возможные неисправности БП

Поэтому большинство неисправностей БП персональных компьютеров связаны либо со старением его компонентов, либо со значительными отклонениями питания или нагрузки от номинальных параметров. Отдельно стоит упомянуть перегрев выходных каскадов из-за накопления пыли внутри БП при недостаточной частоте обслуживания компьютера.

Читайте также:  Затон для ремонта судов

Сильнее всего старение сказывается на состоянии электролитических конденсаторов выпрямителя и выходных каскадов. Со временем они деградируют, теряя емкость, что приводит к заметному росту пульсаций напряжения на выходе блока, что может приводить к сбоям в работе ПК. Также, особенно в дешевых блоках, старение электролитических конденсаторов сопровождается их заметным вздутием, иногда приводящему к их разрушению с характерным хлопком.

Значительный рост напряжения питания или избыточная нагрузка способны привести к перегреву и короткому замыканию внутри диодного моста входного выпрямителя. В этом случае переменный ток из сети поступает в цепи, не рассчитанные на работу с ним: разрушаются электролитические конденсаторы, рассчитанные на однополярное питание, повреждаются ШИМ-контроллер и его транзисторная обвязка. Зачастую повреждение БП при этом делает его ремонт менее рентабельным по сравнению с полной заменой.

Отказ выходных транзисторов импульсного преобразователя чаще всего является следствием их длительного перегрева, вызванного перегрузкой или недостаточным охлаждением.

Проверка блока питания

Хотя импульсный БП и не относится к числу радиоэлектронных схем начального уровня, его диагностика и ремонт своими руками доступны многим людям, имеющим базовые знания и навыки в области радиоэлектроники. Рассмотрим типовую процедуру проверки снятого с компьютера БП:

  1. Подключите к выводам +3,3В, +5В и +12В мощные нагрузочные резисторы, рассчитанные на ток около 1А и соответствующую мощность. Это нужно для избежания неправильной работы некоторых блоков без нагрузки.
  2. Подайте на блок сетевое питание.
  3. Проверьте наличие напряжения на линии +5VSB. Оно должно возникать непосредственно после включения блока в сеть.
  4. Замкните вывод PS-ON на корпус БП. При этом на силовых выходах БП и выводе PG должны установиться соответствующие напряжения.

Возможные варианты неисправностей:

  • При включении питания отсутствует дежурное напряжение. Если при этом БП запускается и генерирует управляемые напряжения, проверьте работоспособность импульсного преобразователя дежурного напряжения (наличие импульсов на первичной обмотке его трансформатора), исправность выпрямителя (наличие постоянного напряжения не менее 9В на входе микросхемы 7805) и работоспособность стабилизатора (на выходе микросхемы 7805 должно быть +5В).
  • Если присутствует дежурное напряжение, но БП не запускается, попробуйте принудительно запустить ШИМ-контроллер следующим образом:
  • При отсутствии генерации импульсов на обозначенных ножках микросхемы потребуется ее замена. В противном случае следует обратить внимание на выходной каскад преобразователя, особенно – коммутирующие транзисторы.
  • Если нет дежурного напряжения и БП не запускается, последовательно проверьте входной выпрямитель: целостность предохранителя и терморезистора, отсутствие обрывов в обмотках дросселей. Однако наиболее часто встречающаяся неисправность – это выгорание диодного моста в результате короткого замыкания в конденсаторе фильтра. Это будет сразу заметно и по характерному запаху, и по сгоревшим диодам.
  • Если же отсутствует напряжение только на одном из управляемых силовых выходов, стоит в первую очередь обратить внимание на выпрямительный диод и фильтрующий конденсатор этой цепи.

Ремонт блока питания

Так как вопрос «как отремонтировать компьютерный БП» вряд ли возникнет у профессионально владеющего соответствующим инструментом (паяльной станцией, оловоотсосом и т.д.) человека, в дальнейшем мы будем исходить из минимального набора самых распространенных приспособлений. Следовательно, нам понадобится паяльник мощностью в пределах 65 Вт с плоской заточкой жала, припой, бескислотный флюс (канифоль), пинцет и плоская отвертка. Удалить лишний припой можно с помощью зачищенного многожильного медного провода, внесенного под флюсом в каплю расплавленного олова.

При замене крупногабаритных элементов наподобие конденсаторов нужно последовательно разогреть точки пайки их ножек, по возможности убрать лишний припой и далее, либо поочередно прогревая ножки и наклоняя корпус конденсатора из стороны в сторону извлечь его, либо, если размеры жала паяльника это позволяют, одновременно нагреть обе точки пайки и быстро выдернуть конденсатор из отверстий в плате. При этом, как и при работе с другими элементами, важно минимизировать время воздействия паяльника на плату и деталь.

Транзисторы и мощные диоды при их замене устанавливаются в отверстия на плате таким образом, чтобы из крепежное отверстие совпало с резьбой в теле радиатора. Перед прикреплением к радиатору поверхность детали смазывается термопроводной пастой (КПТ -8 или ее аналоги).

Заменяя электролитический конденсатор или диод, необходимо помнить, что это элемены полярные, и их установка должна строго соответствовать рисунку на плате (у конденсаторов, кроме танталовых, полоска обозначает отрицательный полюс).

Еще один материал про ремонт БП компьютера

После ремонта блока питания не стоит спешить устанавливать его в компьютер – лучше всего повторить проверку, описанную ранее.

Заключение

Хотя современные блоки питания ATX и очень надежны, знание общего принципа их работы и проверки может зачастую пригодиться не только для правильного выбора БП к своему компьютеру, но и для экономии денег при его отказе – ремонт своими руками обычно значительно дешевле покупки нового блока.

Источник

Оцените статью