- Как проверить датчик наддува
- Датчик турбонаддува
- Для необходим турбонаддув?
- Как устроен датчик турбонаддува?
- Barkkda › Блог › Как проверить датчик абсолютного давления
- Ошибка P0238 — Датчик “А” давления наддува турбокомпрессора — высокий уровень входного сигнала
- Определение кода ошибки P0238
- Что означает ошибка P0238
- Для чего нужен датчик наддува турбины?
- Ошибка P0238 — Датчик “А” давления наддува турбокомпрессора — высокий уровень входного сигнала
- Что означает ошибка P0238
- Причины возникновения ошибки P0238
- Какие симптомы ошибки P0238?
- Как механик диагностирует ошибку P0238?
- При диагностировании данной ошибки механик выполнит следующее:
- Общие ошибки при диагностировании кода P0238
- Насколько серьезной является ошибка P0238?
- Какой ремонт может исправить ошибку P0238?
- Дополнительные комментарии для устранения ошибки P0238
- Нужна помощь с кодом ошибки P0238?
- Турбоннадув воздуха
- Принцип работы
- РАСПОЛОЖЕНИЕ
- НЕИСПРАВНОСТИ
- Методика проверки
- РЕМОНТ
- Что такое клапан управления турбиной и как он работает
- Что такое клапан управления турбиной
- Как работает клапан управления турбиной
- Виды клапанов
- Принцип работы актуатора турбины — проверка, регулировка и ремонт
- Как работает актуатор турбины
- Наиболее распространенные поломки актуатора
- Проверка актуатора
- Регулировка осуществляется несколькими путями
- Настройка актуатора
- Как работает клапан управления турбиной?
- Виды клапанов и их краткая характеристика
- Выделяют следующие виды:
- Как настроить клапан турбины?
- Зачем нужна регулировка?
- Где можно отремонтировать турбину?
- Тема: Диагностика и «лечение» проблемы дизеля — «не едет»
- О чём поёт турбина? причины преждевременных поломок
Как проверить датчик наддува
Датчик турбонаддува
Для необходим турбонаддув?
Прежде чем говорить о том, для чего необходим датчик наддува турбины, стоит разобраться в том, что представляет собой само понятие турбонаддува. Автопроизводители постоянно стремятся повысить эксплуатационные характеристики силовых агрегатов. С каждым годом появляется все больше технологических новшеств, однако суть и принцип работы моторов остается прежним.
Сам термин «наддув» характеризует процесс увеличения свежего заряда топлива в цилиндрах двигателя внутреннего сгорания посредством искусственного нагнетания давления. Эта технология необходима для повышения мощности мотора. В наиболее благоприятных ситуациях мощность можно увеличить почти на половину от номинальной.
Самое широкое распространение получил так называемый турбонаддув, который обеспечивается специальным турбокомпрессором. Механический компрессор, сильно распространенный ранее, постепенно уходит в прошлое.
В силовые агрегаты, которые не оборудованы турбокомпрессором, воздух поступает естественным образом от возникновения разряжения при открытии поршня. Искусственное нагнетание воздуха обеспечивает поступление в цилиндры гораздо большего количества топливно-воздушной смеси. Это ведет к возрастанию мощности двигателя. Однако у турбокомпрессора существуют и свои существенные недостатки. При увеличении объема сгораемой рабочей смеси очень сильно повышается температура внутри цилиндров. Это может приводить к появлению детонации.
Для недопущения этого явления становится необходимой установка дополнительных элементов, таких, как:
- Датчик турбонаддува;
- Промежуточный охладитель;
- Регулятор степени сжатия.
Без вышеперечисленного невозможна слаженная работа всей системы турбонаддува. При выходе из строя любого из этих элементов необходима срочная замена.
Как устроен датчик турбонаддува?
Датчик давления надува устанавливается непосредственно между турбокомпрессором и впускным коллектором. Он служит для контроля за давлением наддува и по его показаниям электронный блок управления делает выводы о потребностях силового агрегата в нагнетаемом воздухе.
Датчик турбонаддува
На сегодняшний день производство этих датчиков осуществляется по двум технологиям: микромеханической и толстопленочной. Первая является наиболее совершенной и прогрессивной. Большинство этих устройств сегодня построены именно по этой технологии. Основным элементами в данном случае являются чип, выполненный из кремния, диафрагма, а также четыре тензорезистора, расположенные непосредственно на ней. Когда на эту диафрагму оказывается давление, она изгибается. Вследствие ее механического растяжения тензорезисторы начинают менять свое сопротивление. Пропорционально ему происходит изменение напряжения. Для большей чувствительности терморезисторы соединяются между собой по особой мостовой схеме. Электросхема чипа увеличивает мостовое напряжение, которое на выходе составляет от одного до пяти вольт. Анализируя величину этого напряжения, электронный блок управления двигателем дает оценку давлению во впускном коллекторе. Чем больше напряжение, тем выше давление воздуха.
Если мотор не заведен, то величина давления во впускном коллекторе равняется величине атмосферного давления. В момент запуска силового агрегата во впускном коллекторе образуется разряжение или вакуум. Когда двигатель работает с открытой дроссельной заслонкой давление во впускном коллекторе начинает сравниваться с атмосферным.
Выход из строя датчика может привести к отключению турбонаддува. Однако для точной постановки правильного диагноза необходимо провести грамотную диагностику. Вполне возможно, что неисправен не датчик, а сама турбина. В этом случае будет необходима ее замена.
Проверка датчика турбонаддува
Силовые агрегаты с турбонаддувом должны быть оборудованы специальным датчиком, который следит за отклонениями давления наддува. Для того чтобы в нужный момент времени ограничить это давление, электронный блок управления двигателем приводит в действие специальный электромагнитный клапан, который способен устанавливать разряжение.
Контроль над отклонением давления наддува турбины весьма схож с контролем отклонения рециркуляции отработавших газов. Если давление наддува в течение достаточно долгого времени выходит за определенные рамки, то это может говорить о том, что в системе турбонаддува велика вероятность неисправности. Если же эти отклонения носят достаточно непродолжительный характер, то наличие неисправности является маловероятным.
Давление наддува должно контролироваться абсолютно у всех турбированных двигателей, поскольку этот показатель влияет на правильное наполнение цилиндров, а также на развиваемую мощность, величину крутящего момента и химический состав отработавших газов. Проверка точности показаний датчика давления наддува производится на незаведенном силовом агрегате в момент между включением зажигания и запуском мотора. В процессе проверки сопоставляют значения, полученные с датчика давления наддува турбины и датчика атмосферного давления. В результате сравнения этих показателей получают так называемое дифференциальное давление, которое в норме не должно превышать определенного предела. Если это предел не превышен, то датчик давления наддува можно считать полностью исправным.
Barkkda › Блог › Как проверить датчик абсолютного давления
Назначение и принцип работы датчика абсолютного давления
Датчик давления предназначен для измерения абсолютного давления, то есть давления воздуха относительно вакуума. Полученные данные используются системой управления двигателем для вычисления плотности воздуха и его расхода при оптимизации приготовления воздушно-топливной смеси. Прибор выступает альтернативой расходомера воздуха, а в некоторых моделях авто работает совместно с расходомером.
В современных датчиках применяют две технологии измерения: микромеханическую и тонкопленочную. Первая – более прогрессивная, так как производит более точные измерения, и большинство датчиков изготовлены именно по ней. При наличии в двигателе турбонаддува, между компрессором и коллектором ставят дополнительный датчик, регулирующий давление наддува в зависимости от потребности двигателя, который конструктивно идентичен ДАД.
В конструкции датчика давления воздуха присутствует 2 камеры – атмосферная, связанная со впускным коллектором, и вакуумная. Там же расположены 4 тензорезистора, прикрепленных к диафрагме, и электронный чип. Давление воздуха действует на диафрагму, и она перемещает тензорезисторы, которые в зависимости от положения меняют сопротивление, что в итоге влияет на величину импульса от чипа к блоку управления.
Чувствительные полупроводники для повышения импульса соединены по схеме моста, а исходящее напряжение изменяется от 1 до 5 В. Полученное напряжение позволяет ЭБУ определить давление во впускном коллекторе – чем оно больше, тем показатель считается выше. Исходя из типа датчика, он выдает различный тип сигнала – цифровой или аналоговый. В аналоговом приборе дополнительно устанавливают аналогово-цифровой преобразователь.
Датчик получает результаты о давлении воздуха следующим образом:
Воздушный поток в коллекторе давит на диафрагму прибора, и она изгибается.
При механическом растяжении диафрагмы на тензорезисторах меняется сопротивление, то есть наблюдается пьезорезистивный эффект.
Пропорционально сопротивлению тензорезисторов, меняется напряжение.
Полупроводники в датчике соединены по мостовой схеме и очень чувствительны. Электрическая схема, расположенная в приборе, мостовое напряжение усиливает, в итоге на выходе оно изменяется в пределах 1-5 В.
Исходя из того, какое выходное напряжение поступает в блок управления, рассчитывается уровень давления на впускном клапане. Более высокое напряжение соответствует более высокому давлению.
Признаки неисправности датчика абсолютного давления
О возникшей неисправности ДАД свидетельствуют следующие признаки:
Увеличение расхода топлива. Прибор подает в блок управления данные о высоком давлении воздуха, которое фактически гораздо ниже. По этой причине БУ подает в цилиндры богатую смесь.
Падает динамика двигателя, не улучшающаяся при прогреве.
При работе мотора из выхлопной трубы ощущается запах топлива.
Работающий двигатель даже в теплое время года выдает белый выхлоп.
Двигатель в холостом режиме работы долго не сбрасывает обороты.
При переключении передач заметны рывки машины.
Нестабильная работа двигателя во всех режимах работы, наличие посторонних шумов, зачастую переходящих в гул.
Возможные причины неисправности
Датчик абсолютного давления – достаточно надежное устройство, но иногда он выходит из строя, вызывая переключение работы двигателя в аварийный режим, и даже препятствуя запуску мотора. Причин неполадок в работе ДАД существует несколько:
Плохое соединение датчика и входного штуцера.
Закоксованный трубопровод, который имеет достаточно гибкую конструкцию.
Поломка датчика температуры воздуха, который связан с ДАД, а иногда объединен с ним в одном корпусе.
Разгерметизация вакуумного шланга по причине повреждения или отключения от датчика.
Обрыв контакта «масса».
Неисправность внутри датчика.
Проверка датчика абсолютного давления
В различных моделях авто конструкция датчика может отличаться, и, следовательно, алгоритм проверки тоже. Следующая обобщенная инструкция позволит исследовать большинство типов приборов. Для этого понадобятся:
Простой вакуумный манометр.
Тестер или вольтметр.
Вакуумный насос.
Тахометр.
Проверка датчика давления воздуха состоит из следующих этапов:
Для проверки аналогового датчика, его переходник подключается к вакуумному шлангу между датчиком давления и впускным коллектором. К переходнику также подсоединяют манометр.
Двигатель запускают и дают ему некоторое время поработать на холостых оборотах. При показателе разрежения в коллекторе менее 529 мм рт. ст., проверяют целостность вакуумного шланга, так как через повреждения на нем утрачивается часть воздуха. Также следует обратить внимание на состояние диафрагмы датчика, на которой могут присутствовать как заводские, так и приобретенные при эксплуатации дефекты.
После снятия показаний манометра, его заменяют на вакуумный насос, после чего создают разрежение 55-56 мм рт. ст. и прекращают откачку. При исправном датчике разрежение будет сохраняться 25-30 сек. Если требование не выполняется – датчик подлежит замене.
При проверке цифрового датчика пользуются тестером в режиме вольтметра.
Включают зажигание, находят контакты заземления и питания. К вольтметру подключают провод, соединенный с сигнальным контактом тестируемого датчика. При его нормальной работе напряжение будет составлять около 2,5 В. При наличии неисправностей – отличаться в большую или меньшую сторону.
Тестер переключают в режим работы тахометра и отсоединяют от ДАД вакуумный шланг. Положительный ввод подключают к сигнальному проводу, а минус – к заземлению. При исправном датчике тахометр выдаст результат – 4400-4850 об/мин.
Снова используется вакуумный насос, который подключается к датчику давления. Насосом постоянно меняют разрежение в приборе и следят за показаниями тахометра. При исправном датчике разрежение и показатели тахометра будут стабильными.
При отключении вакуумного насоса, тахометр останавливается на показателе 4400-4900 об/мин. Если показания отличаются от указанных в ту или иную сторону – датчик неисправен.
Ремонт
После диагностики неисправности ДАД, приступают к ее устранению. При мелкой поломке, поддающейся ремонту, прибор оставляют. Если прибор выдает неправильные показания – необходима его полная замена. Конструкция датчика на проведение ремонта не рассчитана, и все действия, направленные мастером на устранение неисправностей, проводятся на его страх и риск. Но стоимость нового прибора достаточно высока, и все манипуляции в случае успеха становятся оправданными.
Ремонт датчика осуществляют в определенной последовательности:
Ножом или другим острым инструментом снимают крышку прибора, после чего выявляют местонахождение неисправности.
Контакты чистят от загрязнений и ржавчины, проверяют надежность их соединения, а после чистки просушивают, заливают силиконовым герметиком, и снова сушат. На собранном приборе герметиком заделывают все стыки.
Прибор устанавливают на автомобиль и проверяют его исправность. Быстрый запуск двигателя и его ровная работа означают исправность прибора. Если ремонт не принес ожидаемых результатов – датчик меняют на новый.
Использовать автомобиль с неисправным ДАД очень пагубно скажется на состоянии ДВС!
Ошибка P0238 — Датчик “А” давления наддува турбокомпрессора — высокий уровень входного сигнала
Определение кода ошибки P0238
Ошибка P0238 указывает на высокий уровень входного сигнала датчика “А” давления наддува турбокомпрессора.
Что означает ошибка P0238
Ошибка P0238 является общим кодом ошибки, который указывает на то, что модуль управления двигателем (ECM) обнаружил слишком высокое напряжение в цепи датчика “А” давления наддува турбокомпрессора.
Источник
Для чего нужен датчик наддува турбины?
Обратился в мою мастерскую клиент с проблемой, которую, как он рассказал, не может решить с момента покупки автомобиля, примерно полгода. Проблему он эту уже изучил, так как побывал, по его словам, на двух сервисах в Минске. Суть заключалась в повышенном давлении наддува.
То есть давление турбокомпрессора превышало норму, и машина сваливалась в аварийный режим работы. При этом загорались лапочки на панели инструментов: Check Engine, ESP, Service. И, соответственно, машина теряла тягу.
Также клиент рассказал, что на одном из этих сервисов, не найдя никаких неисправностей, забраковали турбину. Эту турбину сняли и завезли в ремонт. Но в фирме, занимающейся ремонтом турбокомпрессоров, неисправностей не нашли. И турбину пришлось ставить на место.
Я не уточнял, брали деньги за снятие-установку или нет, так как если не брали, то людей мне немного жаль. Снять-поставить ее -та еще работенка. На нее отводится 4,7 нормо-часа. А так как это Citroen С5, то уложиться в это время весьма сложно. В решении проблемы с наддувом я ничего особенно сложного не представлял.
Ни один раз сталкивался на современных дизелях с проблемами по наддуву. С одним только нюансом — НАДДУВА ОБЫЧНО НЕ ХВАТАЕТ. Полный энтузиазма быстро во всем разобраться, беру машину в работу. Приступаем.
Итак, Citroen С5, 2.2 HDI, код двигателя 4НХ.
Подключаю сканер (Lexia) и стираю ошибки. Пробная поездка. Разгоняюсь динамично, насколько позволяет слегка заснеженная дорога. Первая, вторая, третья — полет нормальный. Турбина свистит. Разгон хороший. Все пока в норме.
На четвертой передаче в районе 90 км/ч происходит все то, о чем рассказал клиент. С упавшей тягой и горящими лампочками на панели возвращаюсь в гараж. Еще раз смотрю все сканером. Да. В памяти ЭБУ двигателя висит ошибка: Р0245 «Высокое давление в турбокомпрессоре».
- При этом в записи по ошибке видно следующее:
- — режим работы двигателя — 3373 об/мин;
- — давление турбокомпрессора — 2165 mbar;
- — номинальное давление в турбокомпрессоре(расчетное) — 1835 mbar;
- — циклическое соотношение открытия электроклапана давления турбины — 4%.
Так что давление наддува превысило расчетное на 330 mbar. В блок ESP прописались две ошибки по проблемам с крутящим моментом, на которые я решил пока не обращать внимание. Стираю ошибки. И смотрю дату на холостом ходу. Газую до 3500 об/мин. Да, действительно, расчетное давление 1200-1300 mbar , а фактическое, согласно показанию датчика давления во впускных патрубках, 1700 — 1800 mbar.
Управление сканер отображает в процентах, дословно, «циклическое соотношение открытия электроклапана давления турбины». На холостом ходу 53-55%, на 3500 об/мин 5%.
Правда, сколько не газовал, на холостом ходу, ошибка так и не появилась. Подсоединил в вакуумную магистраль управления наддувом вакуумметр (рис. 1). На холостом ходу: -0,4 bar. Газую: -0,1 — -0,05 bar.
Вроде, нормально управление работает. Хотя вакуум -0,4 bar, на мой взгляд, был маловат. Но данных по этому измерению все равно нет. Так что не заостряем на этом внимание. Перегнал машину на подъемник.
Поднял авто и снял защиту моторного отсека. Турбокомпрессор находится в крайне недоступном даже для осмотра месте. Попросил друга завести машину и погазовать. Кое- как приловчился, чтобы видеть шток привода регулировки турбокомпрессора. При запуске двигателя шток вакуумного привода втянулся, при 3500 об/мин выдвинулся в исходное положение.
Опять, вроде, все правильно. По стремянке добрался до электромагнитного клапана и снял вакуумный шланг привода управления наддувом. Шток выдвинулся. Съехал с подъемника и прокатился с отсоединенным вакуумным шлангом. Та же картина. Я имею ввиду появление ошибок и пропадание тяги. Еще раз на сканер.
С отсоединенным вакуумом давление наддува на 3500 об/мин даже увеличилось до 1950-2050 mbar. Странновато. Но выводы, как говорится, налицо. Проблема с механизмом управления наддувом в турбине. Что же еще может быть. Хоть мне и не хотелось, но видно придется снимать турбину и, скорее всего, везти в ремонт. Это был уже вечер пятницы.
И снятие, соответственно, отложили на понедельник.
В понедельник, прежде чем приступить к демонтажу сего агрегата, позвонил в ОДО «Турбоком». Этот звонок решил ход всех дальнейших действий. Общался я с инженером. Хороший и внимательный человек. Во-первых, он просветил меня, что у данного турбокомпрессора управление производится не так, как в обычном случае.
То есть когда шток выдвинут (отсутствие вакуума), турбина раскручивается по максимуму, создавая максимальный наддув. А когда шток втянут, соответственно, наддув создается минимальный. Во-вторых, управление производится не перекрытием байпасного канала, а изменением положения лопаток в улитке. Про это «во-вторых» я, правда, знал.
Но это «во-первых» явилось для меня откровением, так как разрушало мои представления о логике французской инженерной мысли. Неужели нельзя было разработать ПРАВИЛЬНЫЙ привод. Я имею ввиду, логичный. Пропал вакуум, пропал наддув. Есть вакуум, есть наддув.
А так получается в случае пропадания вакуума (это зачастую просто треснувший шланг) я разгоняюсь до 4-й без вакуума, давление 2165 mbar рвет мне патрубки и интеркуллер. Еще газуя на холостом ходу, заметил, что патрубки раздуваются очень сильно. То есть, я считаю, какая-никакая угроза поломки из-за перенаддува есть.
Иначе бы не появлялись ошибки. Или ошибки должны появиться при первых же прогазовках. Напомню: на холостом ошибка не появлялась.
Также инженер мне посоветовал на всякий случай проверить правильность показания датчика давления.
Сразу же его и проверил, включив в его воздушную магистраль свой манометр (рис. 2). Здесь оказалось все в порядке. Показания манометра и датчика практически идентичны.
Проверил наддув на 3500 об/мин, подключив вакуумный шланг управления наддувом к внешнему вакуумному насосу (своим легким). Давление сразу упало практически до атмосферного.
Новые знания, конечно, внесли определенную ясность, но не до конца, потому что управление электромагнитным клапаном наддува теперь никак не вписывалось в происходящее. Проверил еще раз, тот ли это клапан. Всего одинаковых клапанов Bosch 0928400414 (рис. 3) на этом двигателе четыре.
Причем, три из них расположены в одном месте на одном кронштейне. Нет, клапан на 100% тот. Почему же такое обратное управление? Холостой ход 55% и -0,4 bar, 3500 об/мин 5% и 0.1 bar. Тестирование с подключенным к клапану осциллографом расставило все по своим местам.
Логика инженеров концерна PSA вне конкуренции. Попробуйте угадать, как они описывают 100%-ное и 0%-ное открытие клапана. Извиняюсь, «цикличное соотношение открытия клапана».
Нормальные люди с базовыми знаниями по электротехнике ответят однозначно — есть питание, управление полное (клапан открыт), 0% — нет питания, управление отсутствует (клапан закрыт).
У инженеров и программистов, написавших дилерскую программу диагностики Lexia, все как раз наоборот. 100% — клапан закрыт, выключен, нет питания. 0% -соответственно, полностью включен.
То есть, когда ЭБУ хочет сбросить давление наддува и, соответственно, исходя из новой информации, втянуть шток (подать вакуум) — «цикличное соотношение» 5%. Но почему же у меня при открытом клапане вакуум не поднимается, а падает почти до нуля.
Эту неувязку нашел за пару минут без всяких премудростей поочередным отключением от вакуумной магистрали других клапанов. Виновником оказался клапан управления геометрией впускного коллектора (рис. 4).
При раскручивании двигателя он включался, чтобы повернуть заслонки, и из-за неисправности стравливал весь вакуум из системы. Он был отключен от вакуумной магистрали — и проблема решилась.
На холостом ходу вакуум так и остался около 0.4bаг. При раскручивании двигателя сначала падал до -0,2 — -0,15 bar (полагаю, для скорейшей раскрутки турбины), затем поднимался до -0,6 bar (снижение давления наддува).
Давление наддува стало соответствовать расчетному (рис. 5).
При пробной поездке аварийный режим больше не включался. Исчезла проблема и с ESP.
Неисправный клапан Bosch 0928400309 в дальнейшем будет заменен. С клиентом этот вопрос согласован.
Хочется вернуться к логике отображения данных. Вскользь подумал, а может это и правильно, может диагносту и не надо знать, подано питание на клапан или нет. 55% — надув большой, 5% маленький.
Все бы неплохо, но с рециркуляцией тогда беда (специально проверил). 95% — машина не прогрета (рис. 6), и рециркуляции практически нет (проверял вакуумметром), вакуум не подается к исполнительному механизму.
65% — прогретый двигатель, холостой ход, рециркуляция работает.
Конечно, этот метод отображения данных я запомню.
Но когда чинишь технику, которая сконструирована по законам механики и электротехники, хотелось бы, чтобы дилерская программа корректно отображала эти законы. Тогда будет меньше путаницы.
Возможно, диагносту дилерского центра это все давно известно. Но большинству подобная информация достается по крупицам из интернета или практической наработкой.
Надеюсь, эта статья кому-то даст новые знания и поможет не наткнуться на «грабли» в виде снятия-установки турбокомпрессора, только для того, чтобы узнать, что он полностью работоспособен.
А. Яниславский, «Автомастер»
Ошибка P0238 — Датчик “А” давления наддува турбокомпрессора — высокий уровень входного сигнала
Ошибка P0238 указывает на высокий уровень входного сигнала датчика “А” давления наддува турбокомпрессора.
Что означает ошибка P0238
Ошибка P0238 является общим кодом ошибки, который указывает на то, что модуль управления двигателем (ECM) обнаружил слишком высокое напряжение в цепи датчика “А” давления наддува турбокомпрессора.
Причины возникновения ошибки P0238
- Обрыв цепи или короткое замыкание внутри датчика “А” давления наддува турбокомпрессора
- Повреждение разъема датчика “А” давления наддува турбокомпрессора
- Короткое замыкание на бортсеть проводов между датчиком “А” давления наддува турбокомпрессора и ECM
Какие симптомы ошибки P0238?
- В памяти ECM сохранится код ошибки P0238 и на приборной панели автомобиля загорится индикатор Check Engine
- ECM автомобиля может отключить турбонаддув, что, в вою очередь, может привести к падению мощности двигателя (при ускорении автомобиля)
Как механик диагностирует ошибку P0238?
При диагностировании данной ошибки механик выполнит следующее:
- Считает все сохраненные данные и коды ошибок с помощью сканера OBD-II
- Очистит коды ошибок с памяти компьютера и проведет тест-драйв автомобиля, чтобы выяснить, появляется ли ошибка P0238 снова
- Проверит работу датчика “А” давления наддува турбокомпрессора во время работы двигателя на холостом ходу, сравнив его показания с показаниями коллекторного датчика абсолютного давления
- Проверит электрические провода датчика “А” давления наддува турбокомпрессора на предмет короткого замыкания
- Проверит разъем датчика “А” давления наддува турбокомпрессора на предмет короткого замыкания и наличия коррозии
Общие ошибки при диагностировании кода P0238
Наиболее распространенными ошибками при диагностировании данного кода являются:
- Пренебрежение проверкой датчика давления наддува турбокомпрессора на предмет короткого замыкания на борт. сеть
- Пренебрежение проверкой проводов датчика давления наддува турбокомпрессора на предмет ослабление или расплавления вследствие чрезмерного нагрева
Насколько серьезной является ошибка P0238?
- Короткое замыкание на бортсеть в цепи датчика давления наддува может привести к перегоранию ECM (в случае если напряжение превысит 5 вольт)
- Если ECM перегорит, двигатель автомобиля может заглохнуть и не запуститься
Какой ремонт может исправить ошибку P0238?
- Замена датчика давления наддува, если датчик отправляет неверные показания на ECM вследствие короткого замыкания
- Ремонт или замена закороченных или поврежденных электрических проводов, а также обеспечение защиты проводов от чрезмерного нагрева
- Очистка или замена электрических соединителей, подвергнутых действию коррозии
- Замена перегоревшего ECM и устранение причины возникновения короткого замыкания
Дополнительные комментарии для устранения ошибки P0238
Ошибка P0238 указывает на высокий уровень входного сигнала датчика “А” давления наддува турбокомпрессора. Наиболее распространенной причиной возникновения ошибки является короткое замыкание либо внутри датчика давления наддува турбокомпрессора, либо в электрических проводах.
Нужна помощь с кодом ошибки P0238?
Компания — CarChek, предлагает услугу — выездная компьютерная диагностика, специалисты нашей компании приедут к вам домой или в офис, чтобы диагностировать и выявлять проблемы вашего автомобиля. Узнайте стоимость и запишитесь на выездную компьютерную диагностику или свяжитесь с консультантом по телефону +7(499)394-47-89
Турбоннадув воздуха
Предназначен для подачи дополнительного воздуха в цилиндры при помощи турбонагнетателя, приводимого в действие отработанными газами, для увеличения мощности и крутящего момента за счёт повышения количества топливовоздушной смеси в цилиндрах при сохранении литрового объема двигателя.
Принцип работы
Двигатели с наддувом воздуха в цилиндры оснащены системами впрыска топлива, которые позволяют реализовать все возможности форсировки двигателя. Если степень форсирования характеризовать литровой мощностью, то у двигателей с наддувом она на 30 — 40 % выше, чем у атмосферных.
Разные производители, в зависимости от конструкции двигателя, применяют различные схемы наддува воздухом. Основным элементом в схеме является турбокомпрессор, включающий турбину и компрессор, расположенных на одном валу.
Приводные лопасти турбины находятся в выпускном коллекторе и вращаются потоком раскалённых отработанных газов. Нагнетающий компрессор находится во впускном коллекторе — засасывает воздух через воздушный фильтр, сжимает его и подаёт в цилиндры двигателя.
Для создания избыточного давления во впускном коллекторе (0,1-0,2 мПа), колесо компрессора должно иметь частоту вращения 80 -120 тыс. обмин (в дизельных двигателях — до 200 тыс.обмин).
Во впускном коллекторе установлен датчик давления наддува, который информирует ЭБУ двигателем о текущем давлении.
При превышении максимальных значений из-за опасности повреждения деталей двигателя, ЭБУ двигателем подаёт сигнал на клапан ограничения давления, который открывает обводной канал и часть отработанных газов минует приводные лопасти турбины, и тем самым уменьшается скорость вращения и нагнетания давления.
При помощи этого же клапана можно обеспечить устойчивую работу двигателя на холостом ходу и на режимах максимальных нагрузок. Такая конструкция является нагнетателем с перепуском ОГ.
Двигатели с наддувом имеют меньшую геометрическую степень сжатия и, она обычно не превышает значение 8,5. Па выходе из компрессора воздух имеет повышенную температуру, снижающую плотность заряда, поэтому для улучшения наполнения цилиндров применяют промежуточное (после компрессора) охлаждение воздуха.
Для этого применяется специальный радиатор (интеркуллер), в котором воздух охлаждается. В связи с тем, что количество топливовоздушной смеси в цилиндрах увеличивается при сохранении рабочего объема, увеличивается и количество выделившегося при сгорании тепла.
Температура и давление в цилиндрах повышено, поэтому необходимо более прочные детали цилиндропоршневой группы и, соответственно, усиленная система охлаждения. Использование турбокомпрессора приводит к необходимости применения высокосортных синтетических масел, обеспечивающих смазку подшипников ротора, т.к.
компрессор работает при высоких оборотах и температуре. Разрушение подшипников ведёт к утечке масла во впускную и выпускную системы. Выходит из строя нейтрализатор, детали впускной системы.
Рис. Схема построения системы наддува двигателя: 1 — поступающий в двигатель воздух, 2 — охладитель воздуха, 3 — впускной коллектор, 4 — выпускной коллектору 5 — нейтрализатор, 6 — турбокомпрессор, 7 — клапан до жиг а отработанных газов (EGR), 8 — датчик положения клапана
Существуют и другие конструкции. Нагнетатель с изменяемой геометрией турбины позволяет ограничить поток ОГ через турбину при помощи подвижных направляющих лопаток, изменяющих направление движения потока ОГ. Такая конструкция применяется в основном на дизельных двигателях.
Нагнетатель с дросселированием турбины применяется на двигателях легковых ам малого объема. Управление работой турбины осуществляется путём изменения сечения воздушных каналов, подводимых к лопастям турбины. Через встроенный в корпус турбины клапан можно перепускать ОГ мимо лопастей турбины.
РАСПОЛОЖЕНИЕ
Расположен сразу за выпускным коллектором.
НЕИСПРАВНОСТИ
Закоксовывание масляных каналов смазки компрессора приводит к выходу из строя подшипников оси компрессора. Ось может заклинить.
Методика проверки
В условиях автосервиса можно проверить лишь подвижность оси компрессора, целостность лопастей, наличие масла в каналах смазки. Проверить давление наддува во впускном коллекторе на разных режимах работы двигателя. Ранее наддув применялся даже на карбюраторных двигателях.
На рисунке приведена схема построения системы наддува карбюраторного двигателя автомобиля РОВЕР Маэстро.
Рис. Схема турбонаддува воздуха автомобиля РОВЕР: 1 — охладитель надувного воздуха; 2 — клапан сброса давления наддува; 3 — карбюратор; 4 — к регулятору давления топлива; 5 — турбокомпрессор; 6 — регулятор сброса оборотов турбины; 7 — вакуумная диафрагма клапана сброса давления наддува; 8 — воздушный термометр.
РЕМОНТ
Ремонт возможен только в специализированных центрах.
Что такое клапан управления турбиной и как он работает
Для полноценного функционирования турбины в двигателе автомобиля, нужен специальный клапан, который поддерживает надлежащий уровень давления в воздушной и жидкой среде. Без этого устройства двигатель машины может выйти из строя. Поэтому важно понимать особенности работы данного механизма. В этой публикации мы расскажем, что такое клапан управления турбиной и как он работает.
Содержание
Что такое клапан управления турбиной
Мощность, создаваемая двигателем с турбонаддувом напрямую связана с количеством воздуха, который заполняет цилиндры. Другие переменные, такие как температура, влажность, время зажигания и т.д., влияют на количество наддува.
Услуги по ремонту клапана турбины
Помимо этого, повышение давления наддува является очень простым и эффективным способом увеличения объема воздушного потока в двигатель, тем самым, увеличивая выходную мощность.
Клапан управления турбиной
Хотя увеличение наддува является простым способом получения мощности, это следует делать разумно и с пониманием механических ограничений двигателя. Поэтому важно использовать датчик наддува (клапан управления турбиной, буст-контроллер).
Если не применять данный механизм, неконтролируемое повышение уровня наддува приведет к увеличению механического и термического напряжения на всех компонентах двигателя. В большинстве случаев увеличение наддува на 10-20% вполне безопасно.
Как работает клапан управления турбиной
Все двигатели с турбонаддувом имеют ту или иную форму заводского контроля наддува, и все они работают на пневматической системе. Чтобы понять, как работает буст-контроллер, для начала нужно взглянуть на эту систему. Давление наддува определяется перепускным клапаном, который на большинстве заводских турбин встроен в корпус турбины.
Назначение перепускной заслонки состоит в том, чтобы выпускать контролируемое количество выхлопных газов, чтобы поддерживать скорость вращения вала турбины, а, следовательно, и наддув, под контролем.
Если бы не клапан, давление наддува продолжало бы быстро подниматься до катастрофических уровней.
Клапан управления турбиной установленный на турборежиме (за исключением внешних систем заслонки), является частью пневматической системы, которая управляет заслонкой.
Давление нагнетания подается к приводу через небольшой шланг из выпускного отверстия компрессора, образуя тем самым контур управления. По мере повышения давления наддува, это давление начинает открывать задвижку через привод, чтобы замедлить наращивание наддува, пока не будет достигнут установленный уровень.
При правильном подключении к шлангу, который питает привод заслонки, буст-контроллер «отбирает» измеренное количество воздуха (заданное регулировочным винтом наверху), чтобы снизить давление в шланге.
Виды клапанов
Электромагнитный клапан управления турбиной представляет собой электромеханическое устройство, которое открывает или закрывает проходные сечения. Используется для регулировки потока воздуха. Электромагнитный буст-контроллер характеризуется рабочим давлением, рабочей средой, температурой работы, температурой окружающей среды, ресурсом и опцией клапанов.
Байпасный (внешний) клапан зачастую встраивается в мощных автомобилях (от 400 л.с.), для установки понадобится перекрестная труба или же изменение части коллектора.
Внутренний клапан используется во многих автомобилях с дизельным турбодвигателем. Чтобы достичь нужного давления, заслонка данного механизма приоткрывает поступление отработанных газов, а для набора таких газов закрывается.
Клапан регулировки наддува, пример — видео:
Что такое актуатор турбины и его функции. Настройка актуатора турбины.
Принцип работы актуатора турбины — проверка, регулировка и ремонт
Автомобиль – неизменных помощник практически половины населения страны. Не удивительно, что многие стараются получить максимальную пользу с машины, с минимальными вложениями. И сегодня, чтобы улучшить тяговые характеристики авто, не нужно что-то кардинально менять. Увеличить тяговые характеристики машины можно просто установив турбонаддув.
Суть улучшения – турбонаддув позволяет принудительно увеличить объемы воздуха, подающиеся в камеру сгорания, тем самым улучшить процесс сгорания топлива без необходимости физического изменения параметров самого двигателя.
Здесь важно учесть, что больший объем сожженного топлива увеличивает давление и объем выхлопных газов. Поэтому требуется усиленное, оперативное их отведение, чтобы освободить место для новой порции воздуха. Именно на этом и базируется принцип работы актуатора турбины, который мы сегодня рассмотрим.
Как работает актуатор турбины
Для начала определимся в терминологии. Актуатор может иметь множество разговорных названий – вестгейт, вакуумный регулятор, избыточный клапан.
Все это одна деталь, базовая роль которой сводится к выполнению функции сброса повышенного давления воздуха (выхлопных газов), во время работы двигателя автомобиля.
Этот элемент выступает промежуточным звеном между турбокомпрессором и двигателем, оберегая их от перегрузки.
Устанавливается практически на турбине.
- Принцип работы актуатора сводится к тому, что при высоких оборотах двигателя, когда возрастает давление выхлопных газов с одной стороны и воздуха, направляемого через турбокомпрессор в двигатель с другой открывается клапан и стабилизирует ситуацию. Во время открытия клапана часть выхлопных газов попросту проходят мимо турбинного колеса, что приводит к снижению работы турбинного нагнетающего колеса и снижает давление воздуха.
Снижение давления выхлопных газов и направление их в обход турбинного колеса выполняется через актуатор. Иными словами, картридж турбокомпрессора обеспечивает оптимальное соотношение работы отвода выхлопов и нагнетания воздуха для последующих операций сгорания. Тем самым потребность в воздухе для горючей смеси четко соответствует моменту очищения камеры сгорания от выхлопных газов.
Наиболее распространенные поломки актуатора
- получают повреждение электрические элементы вестгейта, отвечающие за своевременное выполнение действия по открытию и закрытию клапана;
- ломаются зубья шестерёнок, отвисающих за запуск в работу клапана, что в дальнейшем приводит к сложностям его работы;
- выходит из строя электромотор, базовая роль которого обеспечивать открытие и закрытие створок.
В таких случаях, чтобы отремонтировать актуатор турбины, необходимо выполнить его диагностику с целью точно определить поломку. Для устранения неисправности целесообразно обратиться в специализированный сервисный центр. Устранить поломку самостоятельно будет достаточно сложно – для определения неисправности нужно специальное оборудование, которое в большинстве случаев отсутствует в домашних условиях. А если покупать отдельно – намного дешевле ремонт актуатора провести в сервисном центре.
Проверка актуатора
Изначально, в момент реализации, актуатор имеет заводские настройки и, фактически, готов к работе. Но после установки на транспортное средство целесообразно проверить актуатор и отрегулировать.
Характерным сигналом выполнить такие действия будет дребезжание компрессора в момент глушения двигателя авто. Здесь не стоит паниковать, это не поломка актуатора.
Просто шток клапана излишне болтается в процессе работы.
Кроме этого, часто, если правильно настроить актуатор, можно существенно увеличить производительность турбокомпрессора путем наращивания давления воздуха, подаваемого в двигатель.
Регулировка осуществляется несколькими путями
- Самый простой и распространенный способ – просто выполнить замену пружины на более мощную. То позволит увеличить и поддерживать высокое давление турбины до момента срабатывания выпускного клапана.
Следующий вариант, это выполнить подтяжку (можно затянуть, либо послабить) регулятора, влияющего на процесс открытия и последующее закрытия заслонки. При расслаблении тяга удлиняется. Если немного подтянуть – укорачивается. От длины тяги напрямую зависит плотность закрытия заслонки. Чем она меньше, тем плотнее будет примыкать заслонка.
Следовательно, чтобы ее открыть нужно больше давления и времени. Тем самым турбина получает возможность обеспечить высокие обороты за короткий промежуток времени.
Еще один вариант – установка буст-контроллера. Устройство устанавливают перед вестгейтом и обеспечивает снижение давления, при котором срабатывает мембрана актуатора.
Фактически такое устройство берет на себя часть функции регулирования давления, вследствие чего клапан не получает информации о реальном давлении газов и продолжает работать в штатном режиме.
Настройка актуатора
Конечно, ремонт турбин следует выполнять в условиях профессиональных сервисных центров, имеющих все необходимое диагностическое оборудование и запасные детали в случае необходимости что-либо менять. Вместе с этим обычная настройка может быть выполнена в домашних условиях.
Для этого потребуется пассатижи и ключ на 10. Последовательность действий будет такой:
- Снять турбокомпрессор (некоторые модели машин дают возможность добраться до клапана без необходимости выполнения этой процедуры).
- Снять скобу со штока, ослабить гайку, подтянуть винт регулировки (необходимо крутить влево).
- Выполнить легкое постукивание по заслонке. Подтягивать до момента, пока не пропадет небольшое дребезжание. Учитывайте, чем туже затягиваете, тем сильнее будет возрастать давление на мембране.
- Затяните гайку, верните скобу в исходное положение.
Чтобы проверить правильность ваших действий при настройках – запустите мотор и опробуйте его на разных режимах работы. Если все действия были верными – посторонних звуков не будет, в том числе и в момент глушения двигателя.
Как узнать номер турбины?
Для того,чтобы идентифицировать турбокомпрессор,необходимо правильно «прочитать» информационную табличку,которая на нем установлена.
Ниже приведены фотографии информационных табличек наиболее распространенных турбокомпрессоров — Garrett,Mitsubishi,IHI,KKK,Holset с описанием нанесенной на них информации.
Турбокомпрессоры производства Garrett
- MODEL No — модель турбокомпрессора
- S/N — номер производителя автомобиля
- GAG P/N — номер производителя турбокомпрессора
Турбокомпрессоры производства IHI
- Turbo.Spec. — номер производителя турбокомпрессора
- Serial No. — модель турбокомпрессора
- Parts No. — номер производителя автомобиля
Турбокомпрессоры производства Mitsubishi
- MODEL No — модель турбокомпрессора
- S/N — номер производителя автомобиля
- GAG P/N — номер производителя турбокомпрессора
Турбокомпрессоры производства Mitsubishi
- MODEL No — модель турбокомпрессора
- S/N — номер производителя автомобиля
- GAG P/N — номер производителя турбокомпрессора
Турбокомпрессоры производства Holset
- Номер производителя автомобиля
- Серийный номер турбокомпрессора
- Номер производителя турбокомпрессора
- Модель турбокомпрессора
Турбокомпрессоры производства KKK
- KUND-NR — номер производителя автомобиля
- GROSSE — модель турбокомпрессора
- AUSF-NR — номер производителя турбокомпрессора
Как работает клапан управления турбиной?
Принцип действия клапана заключается в том, что выхлопные газы попадают на крыльчатку и разгоняют турбину. В результате чего во впускном коллекторе возникает давление.
Детально рассмотрев этот процесс, мы видим, что чем сильнее нажимать на педаль газа, тем оперативнее раскручивается ДВС. А чем больше оборотов двигателя, тем выше скорость и объем отработанных газов.
Такие газы, попадая в турбину, повышают давление. Вследствии этого сильнее раскручивается мотор , возникает избыток давления и появляется больше отработанных газов.
Такое давление мотор может и не выдержать.
Во избежание дорогостоящих поломок турбокомпрессора и двигателя, лучше приобрести клапан управления турбиной.
Виды клапанов и их краткая характеристика
Перепускной клапан обеспечивает контроль потока выхлопных газов. Такая деталь стравливает избыток газов через саму турбину или до входа в нее. Благодаря этому и говорят клапан сброса давления турбины.
Выделяют следующие виды:
- Байпасные клапаны – подходят для мощных машин (от 400 лошадиных сил). При установке необходимо поставить перекрестную трубу или же изменить часть коллектора.
Внутренние клапаны – используются во многих турбированных автомобилях. Заслонка данной детали, при достижении давления, приоткрывает поступление отработанных газов и, наоборот, для набора закрывается.
Как настроить клапан турбины?
Установить и настроить внутренний клапан самостоятельно можно, но есть определенные риски. Для вашего спокойствия лучше обратится к специалистам.
Расслабление и затягивание конца активатора позволяет контролировать степень закрытия-открытия заслонки. Расслабленным концом можно сделать тягу длиннее, а затянутым; короче. При укорачивании тяги, активатору требуется выше давление для приоткрытия заслонки. Такое действие вызывает максимально быстрое раскручивание турбины. А при удлинении все наоборот.
Только сейчас, Вы можете купить актуатор турбины для вашей турбины по цене от 500 гривен
В случае с внешним клапаном требуются настройки, если давление слишком сильное либо, наоборот, слабое. В процессе регулирования может потребоваться замена пружины. В результате выполнения каких-либо работ с клапаном перепускного типа необходима регулировка турбонаддува.
Зачем нужна регулировка?
В определенных случаях нужна регулировка клапана. Если посмотреть на это со стороны, то мы увидим:
- рычаг работает рывками при нагреве;
- ощутимо резкое снижение наддува;
- слышится дребезжание турбины;
- при отсоединении от тяги рычаг свободно не двигается.
Где можно отремонтировать турбину?
Компания Турборотор обеспечивает высококвалифицированный ремонт турбин. При необходимости, производится диагностика и настройка деталей. Преимущества сотрудничества с мастерской:
- новое ЧПУ оборудование;
- имеется балансировочный стенд;
- разборочный стенд;
- предусмотрены новые высокоточные слесарные и токарные станки.
Тема: Диагностика и «лечение» проблемы дизеля — «не едет»
24.10.2010, 11:54 #1
24
Spaze Разговор пойдет о дизелях AHH, AHU (90 сил), AFN (110 сил) AJM/ATJ (116 сил), а также всех дизелей VAG, турбина которых управляется разрежением. Итак, на данных дизелях имеется турбина с изменяемой геометрией, т.е. давление наддува регулируется блоком управления по показаниям датчика давления наддува. Само описание турбокомпрессора и принципов его работы будет вынесено в отдельную главу (см. Приложение 1 в конце статьи) Датчик давления находится в пластиковой трубе, идущей перпендикулярно двигателю:
Итак. Как происходит управление наддувом (рассматриваем все, кроме AHU)? Турбина управляется разрежением, создаваемым вакуумным насосом. Разумеется, сам ЭБУ не может управлять вакуумом, он управляет т.н. клапаном N75, который находится возле турбины (см Приложение 2). Итак, блок судит о давлении наддува в системе по показаниям датчика давления наддува. Логично, правда? В зависимости от условий работы двигателя и желания водителя (положения педали газа) блок управления вычисляет необходимое давление наддува и подает соотвествующий сигнал на клапан N75, который уже и обеспечивает необходимое давление. Увидеть это можно, имея диагностический адаптер и Vag-COM, или официальный прибор VAG. 1. Подключаемся к машине, заводим двигатель. 2. выбираем «двигатель», заходим в «измерения» 3. Выбираем 11 группу. 1 значение — это обороты двигателя. 2 значение — это необходимое ЭБУ давление наддува 3 значение — это измеренное датчиком давления значение 4 значение — это % участия атмосферы в тракте разрежения, т.е. 100% соотвествует полностью перекрытому каналу вакуума. Надо сказать, что в процессе работы клапан N75 крайне редко полностью перекрывает доступ атмосферы в тракт управления наддувом. Обычно составляющая атмосферы не менее 30%. Т.е. для корректной работы управления необходимо не более 70% от производимого вакуумным насосом разрежения. При выключенном зажигании или отключенной фишке клапан полностью открыт в атмосферу, чтобы не стравливать разрежение, созданное вакуумным насосом (не забываем, что этот же вакуум используется для усилителя тормозов). Сопротивление катушки клапана — около 17 ом. Одновременно в память ЭБУ запишется ошибка о превышении давления наддува. Блок будет продолжать работать в таком режиме до выключения зажигания, после чего все повторится вновь. Итак, что же теперь делать, если машина «не едет»? В основном машина не едет вследствие недоудва или передува. Еще машина может не ехать из-за массы дргуих причин, но их мы пока в обсуждение не выносим. Что такое недодув (передув)? Это значит, что несмотря на усилия ЭБУ, турбина не дает нужного давления. Кстати, максимальная величина давления у ATJ — 2300 мбар, у AFN — 2100 мбар. Далее я буду делать отметки, если указанная проблема относится к недодуву или передуву («Н» или «П»). Если не отмечено — значит может быть причиной как недодува, так и передува. Замечу также, что передув лечится все-таки легче, чем недодув. Решение проблемы «не едет» следующее: — проверить систему на предмет утечек (опрессовка, отдельная статья). Можно взглянуть на интеркулер, и если он в масле — скорее всего дырка в нем. Протираются соты интеркулера снизу пластиковым диффузором, надо снять, почистить интеркулер и заклеить его герметиком. И убрать диффузор или же подрезать его на 1,5-2 см, чтоб не доставал до сот интеркулера. — проверить функционирование геометрии. Для этого необходимо на холостом ходу найти турбину и отсоединить управляющий вакуумный шланг с привода пневмоклапана управления геометрией (т.н. грибок). Шток клапана должен резко и одним движением уйти вниз. Затем надо надеть шланг обратно и наблюдать. Шток должен плавно пойти вверх одним движением. Диапазон хода штока — около 12 мм (точный диапазон??). Если плавности хода вверх нету — поздравляю, у вас «закисла» геометрия. На самом деле геометрия не закисла, а изношена. Мельчайшие образования сажи и нагара в «горячей улитке» препятствуют нормальному движению лопаток, и они периодически застревают в одном из положений, заставляя турбину выдавать болшее или меньшее давление. Как правило, причина не в загрязнениии механизма, а в его износе! Разборка и чистка турбины в большинстве своем помогает на срок от недели до месяца, дальше все возвращается на круги своя (добавил метод чистки геометрии без снятия турбины, Приложение 4) — проверить функционирование клапана N75. Для этого необходимо в 11 группе измерений ваг-кома нажать кнопку «к базовым установкам». Педаль газа не трогать. ЭБУ станет поочередно, раз в 10 секунд открывать и закрывать клапан. Шток управления геометрией при этом должен двигаться в указанном диапазоне (около 12 мм). Если вы проверили, что геометрия исправна, т.е. не заедает, а при тесте клапана она ходит не так — скорее всего неисправен клапан. Или просто попросить у друга с дизелем такой же клапан и проверить. Обычно неисправностей у клапана две — либо не перекрывает полностью канал вакуума, либо не перекрывает полностью канал сообщения с атмосферой (т.е. клапан «подсасывает»). Как следствие — либо недодув, либо передув. — проверить правильность подсоединения вакуумных шлангов к N75 и турбине. В дальнейшем размещу схему, но уже сейчас известно, что самый внешний тонкий «сосок» на клапане — это подающий разрежение шланг, который идет к «тройнику», который в свою очередь идет на аккумулятор разрежения (сферический бачок около турбины) и еще куда-то. Второй «сосок», чуть большего диаметра идет непосредственно на управление геометрией, и третий, находящийся с другой стороны клапана — это сообщение с атмосферой. Менее распространенные, но также возможные неисправности:
— (Н) Проверить катализатор. Он забивается нечасто, но когда забивается, препятствует нормальному движению выхлопных газов, как следтвие — двигатель «задыхается», и турбина не в состоянии продавить эту пробку.
Как змея, которая ест свой хвост: выхлопные газы проходят с затруднениями (как следствие — мала скорость прохождения газов через горячую улитку), колесо турбины не раскручивается — мало воздуха — мало топлива подается в цилиндры — нет выхлопных газов.
В дополнение еще скажу, что если у Вашей машины назревает проблема с подклинивающими лопатками (иногда случается, что бывает передув, но крайне редко), то совместите чистку геометрии с удалением катализатора — этим вы ускорите движение газов в выпускном тракте и уменьшите осаждение сажи на лопатках геометрии. Настоятельно рекомендую.
О чём поёт турбина? причины преждевременных поломок
Турбина, турбокомпрессор, turbocharger является одним из самых термонагруженных агрегатов в двигателе. ля того, чтобы создать избыток давления во впуске турбина использует полезную работу отработавших газов двигателя, поэтому и температура там соответствующая. Вал турбины в пиковых значениях наддува достигает частоты вращения свыше 300 000 оборотов в минуту или 5000 оборотов в секунду.
Поэтому чтобы этот узел служил достаточно долго, есть моменты за которыми обязательно нужно следить.
От качества масла напрямую зависит то, как будут смазываться подшипники вала турбины. Подшипники валов бывают двух видов: качения и скольжения. То есть обычные шариковые подшипники и втулки.
Температура масла при серьёзных нагрузках на турбомоторах может достигать свыше 100 градусов по Цельсию, и оно может потерять свои свойства. Нет смазки- держи износ подшипников и вала с последующим клином.
Если не клин, то при большом износе вала или подшипников, вал может вставать на перекос и лопатки колеса турбины начнут задевать о корпус.
Первые симптомы износившихся подшипников-это вой турбины при выходе на буст. Не свист, а именно вой. В последних стадиях может появляться даже хруст.
Лейте качественное масло и для профилактики можно поставить доп. радиатор для его охлаждения. Также некачественное масло способствует отложению нагара на валу при локальных нагревах турбины, что также приведёт к задирам.
2. Резкие остановки двигателя либо остановка двигателя без промежуточного охлаждения.
Ну я думаю все слышали про «турботаймер». Он нужен для того чтобы температура движка упала до нормальной рабочей, особенно если вы только что дубасили на своей турбо-ласточке. Если преждевременно заглушить движок, то масляный насос остановится и соответственно масло в турбине перестанет циркулировать, что приведёт к его локальному закипанию на валу. С последующим образованием лака на нём.
Также помимо маслянного протока, через вал турбины в её корпусе организовано охлаждение антифризом. Поэтому дайте мотору поработать лишних 10 минут, чтобы всё пришло в норму.
3. Внутренняя интеллигентность мотора. Или попросту чистота.
Подача масла в турбу организованна путём узких каналов. С применением банджо-болтов и внедрёнными в них рестрикторами, которые регулируют объём подачи. Если в моторе шлак, то с поставкой будут проблемы и каналы может забить.
4. Картерные газы.
При износе поршневых колец и цилиндров увеличивается утечка газов из последних. Что способствует возрастанию давления там, где не надо.
А так как на турбине слив масла организован зачастую в поддон, то такой исход приведёт к тому, что противодавление в картере не позволит маслу свободно стекать.
Это нарушит циркуляцию масла и охлаждение вала, а также может послужить выдавливанию масла через картридж турбы.
5. Попадание инородных частиц в крыльчатку.
а) Езда на убогом фильтре нулевике либо без него, а также редкая смена фильтра, вызывает пескоструй крыльчатки. А так как крыльчатка и вал отлично сбалансированы, то потери в массе крыльчатки приведут к дисбалансу и разрушению картриджа.
б) Непосредственное попадание в крыльчатку инородного тела. Болтики, гаечки, окалина от сварки при ремонте выхлопа, забытые тряпки в пайпинге, куски развалившихся EGT (exhaust gas temperature или датчик температуры выхлопа) и т.д.
Что-то явно тут не так.
6. Поломка вэйстгейта (wastegate) и передув.
Передув может случиться как от поломки вэйстгейта(заклинит в закрытом положении например), так и по причине неисправного соленоида управления калиткой или актуатора.
Если вэйстнейт не будет пускать выхлопные газы в обход крыльчатки, то в теории турбина сможет раскрутиться в бесконечность, а на практике это приведёт к прорыву газов через уплотнения картриджа и дальнейшее падение производимого ей давления, выкидыванию масла и нестабильному бусту. В конце концов турба вообще перестанет выходить на положительные значения.
А в случае неплотно закрытого вэйстгейта турба также не сможет выходить в нормальный буст из-за отсутствия давления выхлопа на крыльчатке, ведь ему будет проще выйти через вэйстгейт.
Стандартная калитка сброса.
7. Неисправность блоуоффа или байпаса.
Суть у них одна: сброс давления компрессорной части, чтобы не передуть воздух в двигатель. С одним отличием: блоуофф выпускает воздух в атмосферу, а байпас-обратно в коллектор.
При высоких значениях наддува и резком закрытии дросселя, если воздух не будет сброшен из системы, это может привести к помпажу с последующим разрушением подшипников вала, вплоть до искривления самого вала.
Спасибо за внимание! Подпишитесь, поставьте лайк.
Также в эту тему будут интересны статьи про масло, про хонинговку и про жор масла.
Источник