- Ремонт деталей гальваническими покрытиями
- Практическая работа №5. Восстановление изношенных поверхностей деталей гальваническими покрытиями
- Гальваника и гальваническое покрытие: оборудование, методы, процесс, технология
- Сущность электролитического осаждения металлов
- Присоединение электродов
- Подготовка деталей к нанесению гальванических покрытий
- Гальванические технологии
- Железнение
- Способы вневанного осаждения металлов.
- Гальванический метод
- Хромирование
- Специальные процессы хромирования.
- Гальванический процесс
- Восстановление изношенных деталей давлением
- Восстановление деталей металлизацией
Ремонт деталей гальваническими покрытиями
Для восстановления изношенных поверхностей деталей применяется гальваническое покрытие металлами: хромирование, осталивание, меднение. Хром — очень твердый металл серебристо-стального цвета. Гальваническим способом хром может быть нанесен на чугун, сталь, медь и алюминиевые сплавы. Толщина слоя хрома от 0,001 до 0,5 мм. Хромовый слой при обычных атмосферных условиях почти не окисляется и хорошо сопротивляется износу. Процесс хромирования состоит из подготовки деталей к хромированию, хромирования и обработки деталей после хромирования.
Подготовка к хромированию заключается в шлифовании и полировании деталей для получения правильной геометрической формы и чистоты поверхности, промывки в бензине, изоляции нехромируемых мест лаком, монтажа деталей на подвеску, обезжиривания, промывки и декапирования (удаления с поверхности тончайших окислов—невидимых пленок).
Процесс хромирования осуществляется в специальных ваннах с электролитом (раствором хромового ангидрида и серной кислоты в дистиллированной воде). Восстанавливаемая деталь является Катодом, анодом служит свинцовая пластина.
Рекламные предложения на основе ваших интересов:
После хромирования детали моют в дистиллированной холодной и горячей воде, сушат в специальном шкафу при температуре 150— 200 °С. Затем их подвергают окончательной механической обработке — шлифованию и полировке.
Хромированием восстанавливают такие детали автомобиля, как, например: цилиндры противодавления подвески, втулки вторичного вала коробки передач, наружные обоймы подшипников, ступицу, реакторов, шейки вала привода насосов гидравлической системы, посадочные поверхности под подшипники валов согласующего редуктора и коробки передач, стакан шарового пальца сошки руля и др. Хромирование выгодно применять только для восстановления малоизношенных деталей.
Для восстановления деталей со значительными взносами используют процесс осталивания, дающий толстый слой отложений и в 8—10 раз более производительный, чем хромирование. Методом осталивания можно получать покрытия толщиной до 1,5—2 мм и более. Осталивание может применяться для восстановления деталей без дополнительной термической обработки, для создания подслоя с последующим хромированием или для восстановления деталей с последующей -цементацией слоя. При этом можно получать покрытия мягкие, нормальной твердости (хорошо подающиеся механической обработке) или высокой твердости и износостойкости. Материалами для приготовления электролита являются техническая соляная кислота, стальные стружки, поваренная соль и хлористый марганец. Растворимые аноды изготовляют из малоуглеродистой стали.
Стоимость осталивания в (несколько раз ниже хромирования. К недостаткам его относятся: сложность подготовки деталей, необходимость частой фильтрации электролита для поддержания его чистоты, подогрев электролита, трудность подбора материала ванны (так как электролит сильно действует «а сталь, то ванна должна быть пластмассовая — из фаолита), необходимость отдельного помещения для ванны и хорошей вентиляции.
Источник
Практическая работа №5. Восстановление изношенных поверхностей деталей гальваническими покрытиями
Цель работы: ознакомиться с технологией нанесения гальванических покрытий, научиться рассчитывать режимы и нормы времени.
Сущность процесса нанесения гальванических покрытий. В авторемонтном производстве при восстановлении деталей нашли широкое применение гальванические и химические процессы. Они применяются для компенсации износа рабочих поверхностей деталей, а также при нанесении на детали противокоррозионных и защитно-декоративных покрытий.
Гальванические и химические способы обработки предназначены для восстановления изношенных поверхностей деталей (хромирование, железнение, никелирование); для защиты деталей от коррозии (цинкование, бронзирование, оксидирование):для защитно-декоративных целей (хромирование, никелирование, цинкование, оксидировацие); ддя придания поверхностям дсталей специальных свойств, обеспечиваюших хорошую прирабаты ваемость (меднение, лужение, свинцование, фосфатирование), защиту от науглероживания при цементации (меднение), повышение электрической проводимости (меднение, серебрение), повышение отражательной способности (хромирование, никелирование), цодслоя под другое покрытие (медь, никель) или грунта под окраску
В основе восстановления деталей гальваническими покрытиями лежит процесс электролиза, т.е. прохождения постоянного тока через электролит, связанное с передвижением электрически заряженных частиц – ионов.
Электролиз — электрохимический процесс (электролиз металлов), протекающий между анодом и катодом (деталью) в электролите (водном растворе соли, кислоты или щелочи) и сопровождающийся выделением на катоде металла (рисунки 5.1и 5.2).
Рисунок 5.1. Принципиальная схема процесса электролитического наращивания.
|
Рисунок 5.2. Схема электрохимического осаждения металла:
1—ванна; 2 — Анодная штанга; 3 — Крюк (подвеска) для завешивания анода;
4 — катодная штанга; .5 —крюк подвеска для завешивания детали (катода);
6 — ионы металла (катионы); 7 — покрытие; 8 — Анод; 9 —- деталь (катод).
При прохождении постоянного тока через электролит на аноде 3 происходит растворение металла (переход его в электролит) и выделение кислорода, а на катоде 9 (деталь) — отложение металла и выделение водорода.
Из гальванических процессов наиболее широко применяются хромирование и железнение, а также никелирование, цинкование и меднение. Применяются также химические процессы; химическое никелирование, оксидирование и фосфатирование
Электролитические покрытия предпочтительнее наплавки, так как:
процессы гальванического осаждения металла не вызывают структурных изменений в деталях,
· позволяют устранять незначительные износы,
· легче поддаются механизации и автоматизации,
· можно получать равномерные по толщине покрытия с широким диапазоном твердости (от 1000 до 12000 МПа), что позволяет восстанавливать большую номенклатуру деталей, значительно от-личающихся конструктивно-технологическими характеристиками и условиями эксплуатации,
· одновременно можно восстанавливать значительное количество деталей,
· применяемые электролиты можно использовать многократно,
· технологический процесс легко поддается механизации и автоматизации.
Недостатки электролитического наращивания:
· сравнительно низкая производительность процесса,
· большой цикл подготовительных операций,
· значительное выделение вредных веществ (хлор, кислотные испарения и т, п.).
Наибольшее распространение получили осталивание (железнение), хромирование, никелирование, меднение, нанесение электролитических сплавов.
— высокая производительность наращивания (скорость осаждения металла 0,2…0,5 мм/ч),
— толстые осадки (до 2 мм и более),
— высокие физико-механические свойства,
— недорогие и недефицитные материалы,
— себестоимость восстановления – 30…50% от стоимости новой детали при одинаковой износостойкости.
— высокая твердость, жаростойкость, износостойкость покрытий, низкий коэффициент трения;
— осадки хрома обладают повышенной хрупкостью и плохой прирабаты-ваемостью;
— процесс чувствителен к изменениям температуры электролита и плотности тока,
— электролит нестабилен по составу и требует корректировки в процессе электролиза.
Увеличивает износо — и коррозионную стойкость деталей, улучшает внешний вид.
— высокая твердость, жаростойкость, износостойкость покрытий, низкий коэффициент трения;
— электролит нестабилен по составу и требует корректировки в процессе электролиза,
— высокая себестоимость восстановления.
Применятся для защитно-декоративных целей, как подстилающий слой при декоративном хромировании, а иногда для повышения изностойкости и восстановления деталей – поршневых колец, пальцев, плунжеров и т. п.
Безванные способы применяют для восстановления крупногабаритных деталей: коленчатых валов, отверстий корпусных деталей, цилиндров двигателей и др. К безванному осаждению металла относятся три способа: струйный, проточный, натиранием.
Рисунок 5.3. Струйное хромирование.
В проточном электролите восстанавливают внутренние поверхности цилиндров двигателей (рисунок 5.4) и гидроцилиндров, которые образуют местную ванну для циркулирования электролита. Он нагнетается в полость детали насосом. Расстояние между зеркалом цилиндра (катодом) и стержнем (анодом) должно быть не менее 5. 10 мм. При струйном и проточном способах восстановления деталей применяют плотность тока 180. 220 А/дм2.
Рис.5.4.Установка для безванного хромирования в проточном электролите.
Принципиальная схема наращивания металла электролитическим натиранием приведена на рис. 5.5
Восстанавливаемую деталь закрепляют в патроне станка и подключают к катоду источника постоянного тока 9. Электролит из сосуда 1 с помощью капельницы с краном подается к войлочному тампону 4, Закрепленному в тампонодержателе (анод).
В межэлектродном пространстве между деталью и стержнем (это собственно местная ванна) протекает электрохимическая реакция, в резуль-тате которой на детали наращивается металл.
Этим способом можно восстанавливать и внутренние поверхности (например, отверстия корпусных деталей), при этом применяют подвижный (вращающийся) анод.
Относительное перемещение анода (катода) препятствует росту зерен, структура осадка получается мелкозернистая и ненапряженная, а поверхность очень гладкая, что в отдельных случаях позволяет исключить механическую обработку покрытия.
Рабочая плотность тока при электронатирании — 150. 180 А/дм2. Производительность этого способа в 3. 4 раза выше, чем ванных.
|
Рисунок 5.5.. Электролитическое осаждение металла натиранием: 1 — емкость для сбора электролита; 2 — деталь (катод); 3 — графитовый стержень (анод); 4 — тампон; 5 — пластмассовый колпачок; 6 — алюминиевый корпус; 7 — кран; 8 — резервуар с электролитом; 9 — источник тока; 10 — клемма; 11 — пластмассовая гайка; 12 — штеккер для подвода тока к аноду. |
Хромирование. Технологический процесс хромирования включает следующие операции:
1) механическая обработка поверхности;
2) промывка органическими растворителями;
3) изоляция участков, не подлежащих покрытию;
4) монтаж на подвесные приспособления;
6) промывка в горячей и холодной воде;
8) электроосаждение покрытия.
При хромировании в качестве электролита используют водный раствор хромового ангидрида (CrО3) и серной кислоты (Н2SO4). При хромировании используют нерастворимые аноды, изготовленные из сплава свинца с сурьмой.
Изменяя режим электролиза (плотность тока, температуру электролита) можно получить различные хромовые покрытия:
— матовые (серые) отличаются высокой твердостью, хрупкостью и пониженной износостойкостью (некачественные);
— блестящие отличаются высокой твердостью, хрупкостью и износостойкостью. Имеется сетка пересекающихся трещин. Применяется для деталей, работающих на износ;
— молочные отличатся высокой износостойкостью, большой вязкостью и пониженной твердостью. Сетка трещин отсутствует. Для деталей воспринимающих большие удельные давления и знакопеременные нагрузки.
Железнение. Технологический процесс включает следующие операции:
1) механическая обработка поверхности;
2) защита поверхностей, не подлежащих покрытию;
3) обезжиривание в бензине или щелочном растворе;
4) промывка в горячей и холодной воде;
5) монтаж на подвесные приспособления;
6) анодная обработка (травление);
7) промывка в холодной воде;
9) промывка в горячей воде;
11) механическая обработка.
В качестве электролита применяют водный раствор хлористого железа (FeCl2×4H2O) и соляную кислоту (НСl) и некоторые другие компоненты. Железнение производят с применением растворимых анодов из малоуглеродистой стали 08 или 10, помещенных в чехлы из стеклоткани для сбора шлама.
Технологические приемы получения износостойких покрытий.Применение ассиметричного периодического тока позволяет путем изменения параметров обратного импульса управлять свойствами покрытий (износостойкость, микротвердость, усталостная прочность), а также увеличить производительность процесса.
Ассиметричный периодический ток получают применением схемы, изображенной на рисунке 5.6.
Рисунок 5.6 – Принципиальная схема установки
для получения ассиметричного периодического тока
Источник
Гальваника и гальваническое покрытие: оборудование, методы, процесс, технология
Более 85 % деталей тракторов, автомобилей и технологического оборудования различного рода производств выбраковывают при износе до 0,3 мм. Большинство таких деталей целесообразно восстанавливать нанесением гальванических покрытий, которые имеют ряд преимуществ по сравнению с другими способами восстановления:
- отсутствие термического воздействия на деталь, которое вызывает в ней нежелательные изменения структуры и механических свойств;
- получение покрытий с высокой точностью заданной толщины, что позволяет уменьшить до минимума припуск на последующую механическую обработку или совсем исключить ее;
- осаждение покрытий с заданными постоянными по толщине физикомеханическими свойствами;
- одновременное восстановление большого числа деталей (в ванну загружают десятки деталей), что снижает трудоемкость и себестоимость восстановления единицы изделия;
- возможность автоматизации процесса.
При восстановлении изношенных деталей из гальванических покрытий чаще всего применяют железнение, реже – хромирование, цинкование и никелирование.
Сущность электролитического осаждения металлов
Электролитическое осаждение металлов основано на явлении электролиза. Электролизом называются химические процессы, протекающие на электродах при прохождении через электролит электрического тока. Электролитами являются растворы солей, кислот и щелочей, проводящие электрический ток.
Схема электролиза показана на рис 1.
При растворении вещества в воде его молекулы диссоциируют (растворяются) на отрицательно и положительно заряженные ионы, находящиеся в хаотическом движении. Если в электролит погрузить электроды, подключенные к источнику постоянного тока, в электролите возникнет направленное движение ионов и ток. При этом положительно заряженные ионы (ионы металлов и водорода) будут перемещаться к отрицательному электроду – катоду, а отрицательно заряженные ионы (ионы металлоидов и кислотных остатков) – к положительному электроду – аноду.
Рис 1. Схема процесса электролиза: 1 – анод; 2 – катод
По достижении поверхности электродов, ионы разряжаются и превращаются в нейтральные атомы или группы атомов. На катоде происходит осаждение металлов и выделение водорода. Анод как правило является растворимым, его ионы переходят в раствор, с выделением на поверхности анода кислорода.
При нанесении гальванических покрытий на детали в качестве электролитов используют растворы солей осаждаемых металлов. Также в электролит вводят определенные компоненты, улучшающие свойства покрытий, увеличивающие электропроводность электролита и т. д.
Детали, подлежащие покрытию, являются катодом, а анодом – пластины из осаждаемого металла. В некоторых процессах (например, при хромировании) используют аноды из металла или сплава, которые в электролите не растворяются (свинец), а также нерастворимые аноды из графита. На таких анодах при электролизе обычно происходит выделение кислорода.
В процессе электролиза ионы металла (катионы), находящиеся в электролите, разряжаются на катоде, переходят в атомарное состояние, и осаждаются на нем. Атомы образуют кристаллическую решетку, покрывая поверхность детали слоем металла. Анод растворяется (в случае электролиза с растворимым анодом), образуя новые ионы металла взамен выделившихся на катоде, тем самым поддерживая концентрацию электролита при электролизе.
Количественно процесс электролиза описывается двумя законами Фарадея, открытыми в 1833 г:
- Масса вещества, выделившегося на катоде или растворившегося на аноде, прямо пропорциональна силе тока и времени его прохождения, то есть прямо пропорциональна количеству прошедшего через электролит электричества.
- При прохождении одного и того же количества электричества через разные электролиты масса выделившихся или растворившихся веществ пропорциональна их химическим эквивалентам.
Оба закона Фарадея в общем виде выражают формулой
где МT– масса выделившегося на катоде (растворившегося на аноде) вещества, г;
С – электрохимический эквивалент вещества, г/А·ч;
I – сила тока, проходящего через электролит, А;
t – продолжительность электролиза, ч.
Электрохимический эквивалент показывает, какое количество вещества выделится на катоде при пропускании через электролит 1 Ач электричества. При хромировании С = 0,323, а при железнении С = 1,042 г/(А· ч);
В процессе электролиза одновременно с осаждением металла на катоде выделяется водород, а также протекают и другие побочные процессы, на что потребляется часть электрического тока. Поэтому действительная масса осажденного металла всегда будет меньше теоретической, рассчитанной по закону Фарадея. Отношение практически полученного на катоде количества металла МПк теоретически возможному называется катодным выходом металла по току ηк , который выражают в процентах:
ηк = (МП / МТ) 100 % = (МП / С I t) 100 %
Выход металла по току является важнейшим показателем эффективности электролиза. Выход металла по току представляет собой коэффициент использования электрического тока (иногда его называют КПД ванны, что неверно, так как КПД характеризует использование энергии, а не тока). При железнении выход металла по току очень высок и составляет 85…95 %. Это означает, что 85…95 %, затраченного на электролиз, электричества полезно используется на осаждение металла.
Так же определяют и анодный выход по току – это отношение количества металла, практически растворенного на аноде, к теоретически возможному.
Режим электролиза определяется следующими, основными параметрами: состав и концентрация электролита, выраженная количеством граммов вещества, растворенного в 1 литре электролита, г/л;
кислотность электролита, выраженная в г/л или в единицах рН. Удобнее пользоваться водородным показателем, так как его легко определить, не производя химический анализ электролита, с помощью серийно выпускаемых приборов (рН-метров) или индикаторной бумаги;
температура электролита, °С;
катодная плотность тока, равная отношению силы тока, проходящего через электролит, к площади покрываемой поверхности.
Силу тока можно определить по формуле
где Dк– катодная плотность тока, при хромировании Dк = 50…75, при железнении Dк = 20…30 А/дм2;
Fк– площадь восстанавливаемой поверхности, дм2.
Продолжительность электроосаждения металлов в ванне рассчитывают по формуле
t = 1000 h γ / С Dк ηк,
где h – толщина покрытия, мм;
γ – плотность осажденного металла, при хромировании γ = 6,9 г/см3, при железнении γ = 7,8 г/см3;
Отношение площади анода к площади катода принимают равным 2 : 1. Изменяя условия электролиза можно управлять процессом электрокристаллизации металла и получать покрытия с заданными структурой и свойствами.
Если разделить толщину покрытия на продолжительность электролиза, то получим скорость осаждения металла или производительность процесса (мм/ч)
V = h / t = C Дк η / 1000 γ .
Так как электрохимический эквивалент вещества С и плотность осажденного металла зависят от природы осаждаемого металла и для каждого металла является постоянными, то скорость осаждения будет тем выше, чем выше плотность тока и выход по току. Поэтому при восстановлении деталей необходимо задавать как можно большую плотность тока, однако следует учитывать то, что при чрезмерном увеличении плотности тока требуемые свойства покрытия ухудшаются.
Электролитическое наращивание в зависимости от вида детали производят в установках 0013-006, 0013-022, 0013-024, 0013-31, 0013-040 «Ремдеталь». В качестве источников постоянного тока применяются либо низковольтные двигатель-генераторы типа АНД, либо выпрямители: селеновые типа ВСМН, ВСМР и др.; кремниевые типа ВАКГ и др.; германиевые типа ВАГГ, ВГВ и др.
Напряжение источников тока составляет 6…12 В.
Присоединение электродов
К ванне и изделию подсоединяют электроды для запуска электрического тока. Положительная клемма подключена к анодам, а обрабатываемая деталь – к отрицательной клемме. После запуска гальванической системы через электролит проходит электрический ток, поэтому катионы металла налипают на поверхность отрицательно заряженного изделия. Металл, который содержится в электролите, ровным однородным слоем оседает на детали. Два анода применяют, чтобы обработать поверхность с обеих сторон одновременно. Это очень упрощенная, но верная схема гальванического процесса.
Подготовка деталей к нанесению гальванических покрытий
Прочность сцепления гальванических покрытий зависит в основном от качества подготовки поверхности перед покрытием. Покрываемым поверхностям придают необходимую шероховатость, с них удаляют различные загрязнения, жировые и оксидные пленки. Если металл осаждается на активном чистом катоде, возникает межмолекулярное взаимодействие с основным металлом и покрытие не отслаивается от детали даже при ее разрушении. Нарушение технологии подготовки значительно снижает сцепляемость покрытия и приводит к его отслаиванию от детали.
Подготовка деталей к нанесению гальванических покрытий включает следующие операции:
- Очистка деталей от загрязнений на разборочно-моечном участке.
- Предварительная механическая обработка деталей для удаления следов износа, придания покрываемой поверхности правильной геометрической формы и шероховатости Ra 1,25…1 мкм.
- Промывка деталей синтетическим моющим средством (например 10 %-ный раствор МС-37 при температуре 70 °С) для удаления загрязнений.
- Изоляция поверхностей не подлежащих покрытию с помощью постоянных изоляторов (коробки, трубки, шайбы и т.д.) или различными изоляционными материалами: тонкой резиной, листовым целлулоидом, изоляционной лентой, пленочными полимерными материалами, церезином, пластизолем и др.
- Завешивание деталей на подвеску. Конструкция подвески должна создавать надежный электрический контакт с покрываемыми изделиями и штангой ванны.
- Обезжиривание химическим и электрохимическим методами.
К первому методу относится обезжиривание венской известью, представляющей собой смесь оксидов кальция и магния в соотношении 1 : 1. Ее разводят водой до кашицеобразного состояния, наносят на поверхность и протирают деталь волосяной щеткой. Это достаточно трудоемкая операция, однако обеспечивает высокое качество обезжиривания и оправдана при небольшой программе восстановления.
При электрохимическом обезжиривании детали, погруженные в щелочной раствор, включают в цепь электрического тока в качестве катода или анода. На поверхности электродов бурно выделяются пузырьки газа (водород на катоде, кислород на аноде), которые способствуют эмульгированию жиров и масел, механически разрывая и удаляя их пленки. Процесс обезжиривания ускоряется многократно. Скорость электрообезжиривания в основном зависит от плотности тока и незначительно от концентрации и температуры раствора. Плотность тока составляет 3…10 А/дм2, а температура раствора – 60…80 °С. Для обезжиривания черных металлов рекомендуется раствор, содержащий 30 г/л едкого натра, 30 г/л тринатрийфосфата и 40 г/л кальцинированной соды. В растворы можно вводить 3…5 г/л жидкого стекла или метасиликата натрия.
Обезжиривание ведут как на катоде, так и на аноде. Катодное обезжиривание более производительно, но приводит к наводороживанию деталей, что увеличивает их хрупкость и снижает усталостную прочность. Кроме того, ухудшается сцепляемость покрытия с поверхностью детали. Поэтому предпочтительна комбинированная обработка – обезжиривание на катоде в течение 4…5 мин, а затем переключают детали на анод и обезжиривают 1…2 мин.
- Промывка деталей горячей водой (70…80 °С).
- Промывка холодной водой.
- Анодное травление деталей. Операцию выполняют для удаления с поверхностей оксидных пленок и выявления кристаллической структуры металла. Состав электролита и режим обработки зависят от вида покрытия.
При железнении анодное травление проводят в 30-процентном растворе серной кислоты (365 г/л) и 10…20 г/л сернокислого железа (FeSO4 7Н2О) при температуре 18…25 °С. Детали завешивают на анодную штангу. Катодами служат свинцовые пластины, площадь которых в 4…5 раз превышает площадь покрываемых деталей. Стальные детали обрабатывают при плотности тока 30…50 А/дм2 в течение 2…3 мин, а чугунные – при 18…20 А/дм2 в течение 1,5…2 мин.
При хромировании анодное травление проводят в электролите, содержащем 100…150 г/л хромового ангидрида (CrO3) и 2…3 г/л серной кислоты (H2SO4), при анодной плотности тока Да = 25…40 А/дм2 в течение 30…90 с – для стальных деталей и при Да = 20…25 А/дм2 в течение 25…30 с – для чугунных деталей. Температура электролита 55…60 °С.
- Промывка холодной водой.
- Промывка горячей водой (60…70 °С).
Гальванические технологии
В гальванике широко распространен метод гальванопластки. При этом изделие, погружаемое в гальваническую ванну, выступает в роли негатива, то есть покрытие растет не на рабочей стороне изделия а на задней, обратной стороне. На форму из непроводящего материалы осаждается слой металла, чаще всего это медь. Толщина меди может достигать 2 мм, обычно такого запаса по прочности не требуется и в среднем, в гальванопластике растят покрытия до 1 мм. После отделения матрицы от созданного слоя получают его точную копию. Таким способом создают точные копии окладов, медали, панно, декоративные элементы.
Железнение
Железнение получило широкое применение при восстановлении деталей с износом от нескольких микрометров до 1,5 мм на сторону. Производительность процесса железнения примерно в 10 раз выше, чем при хромировании. Средняя скорость осаждения металла составляет 0,72…1 мкм/с, а выход металла по току равен 80…95 %.
По составу электролиты для железнения делят на три группы, которые различаются видом аниона соли железа: хлористые, сернокислые и смешанные (сульфатно-хлористые). Сернокислые электролиты по сравнению с хлористыми менее химически агрессивны и устойчивы к окислению. Однако они уступают хлористым электролитам по производительности, качеству получаемых покрытий и другим показателям.
По температуре электролиты делят на горячие и холодные. Горячие электролиты (процесс протекает при температуре электролита 60…95°C) производительнее холодных, но при работе с ними необходимы дополнительный расход энергии на поддержание высокой температуры электролита, частая его корректировка, дополнительная вентиляция и большая предосторожность со стороны рабочих.
Холодные электролиты устойчивее к окислению и покрытия получаются с лучшими механическими свойствами. В холодные электролиты вводится хлористый марганец, замедляющий образование дендритов и способствующий получению гладких покрытий большой толщины. Марганец на электроде не осаждается и сохраняется в электролите длительное время.
В табл 1 приведены наиболее распространенные составы электролитов и режимы железнения.
Таблица 1. Составы электролитов и режимы железнения
Компонент и режим | Электролит | ||
1 | 2 | 3 | |
Хлористое железо, г/л | 300…500 | 400…600 | 150…200 |
Сернокислое железо, г/л | — | — | 200 |
Аскорбиновая кислота, г/л | — | 0,5…2,0 | — |
Кислотность (HCl), pH | 0,8…1,2 | 0,5…1,3 | 0,6…1,1 |
Температура электролита, С | 70…80 | 20…50 | 30…50 |
Плотность тока, А/дм2 | 20…50 | 10…30 | 20…25 |
Выход по току, % | 85…95 | 85…92 | 85…92 |
Наибольшее распространение из вышеуказанных составов получил горячий хлористый электролит № 1.
Для обеспечения высокой прочности сцепления покрытий с деталями применяют разгонный режим: после промывки детали завешивают в ванну железнения и выдерживают без тока 10…60 с, затем включают ток плотностью 2…5 А/дм2 и проводят электролиз в течение 0,5…1 мин. Далее в течение 5…10 мин постепенно повышают катодную плотность тока до заданного значения. При железнении используют растворимые аноды из малоуглеродистой стали с содержанием углерода до 0,2 %. При электролизе аноды растворяются,
образуя на поверхности нерастворимый шлам, состоящий из углерода, серы, фосфора и других примесей. Попадая в ванну, они загрязняют ее и ухудшают качество покрытий. Во избежание этого аноды помещают в диафрагмы из пористой керамики или чехлы, сшитые из кислотостойкого материала (стеклоткань, шерсть и др.).
Соотношение площадей анодов и катодов Sа: Sk= 1 : 2, расстояние между ними 80…120 мм.
При определении необходимой толщины покрытия учитывают припуск на последующую механическую обработку, принимаемый равным 0,1…0,2 мм на диаметр для шлифования и 0,2…0,3 мм для токарной обработки.
Одним из основных недостатков процесса железнения является большое количество водорода в осадке, который в осадке находится в различных формах и отрицательно влияет на механические свойства восстановленных деталей. Поэтому рекомендуется детали после железнения подвергать низкотемпературному сульфидированию с последующей размерно-чистовой обработкой пластическим деформированием. В результате усталостная прочность деталей повышается на 40…45 %, а износостойкость возрастает в 1,5…2 раза.
Железнение проводят в стальных ваннах, внутренние стенки которых облицовывают кислотостойкими материалами (антегмитовая плитка АТМ-1, эмаль типа 105А, железокремниймолибденовый сплав МФ-15, кислотостойкая резина, фторопласт-3, керамика, фарфор). Стационарная ванна представляет собой емкость прямоугольной формы. В нее входят: нагревательное устройство (при необходимости), бортовые отсосы для удаления вредных испарений, катодные и анодные штанги, подсоединенные к источнику тока, для завешивания деталей и анодов.
При восстановлении крупногабаритных деталей сложной конфигурации (блоки цилиндров, картеры коробок передач и задних мостов, коленчатые валы и другие) возникают трудности, связанные с изоляцией мест, не подлежащих покрытию (площадь их поверхности в десятки раз превышает покрываемую площадь), сложной конфигурацией подвесных устройств, необходимостью иметь ванны больших размеров, быстрым загрязнением электролитов и т.д.
Для железнения таких деталей применяют вневанный способ. Сущность способа заключается в том, что в зоне нанесения покрытия создается местная ванночка, в которую подают электролит, а деталь и анод подключают к источнику тока. При этом непокрываемые поверхности не изолируют, уменьшается обеднение прикатодного слоя электролита и возможно увеличение плотности тока в несколько раз и, следовательно, повышение производительности процесса.
Способы вневанного осаждения металлов.
К безванным способам относят: проточный, струйный, электроконтактный и другие способы.
Проточный способ. При этом способе электролит прокачивают насосом с определенной скоростью через пространство между покрываемой поверхностью и анодом (например, через отверстие в корпусе коробки передач). Наибольшая скорость осаждения металлов наблюдается при скорости протекания электролита более 1 м/с, создающей турбулентный режим течения. Плотность тока может быть увеличена в 5…10 раз (при железнении – до 200…300 А/дм2 и более).
Струйное железнение. Электролит с помощью насоса подают струями в подводящий штуцер 2 (рис 2, а) межэлектродное пространство через отверстия насадка. Насадок одновременно служит анодом 3 и местной ванночкой. Для получения равномерного покрытия деталь 4 вращается с частотой до 20 мин-1. При использовании концентрированного холодного хлористого электролита и плотности тока DK= 40…55 А/дм2, производительность составляет 0,4 мм/ч.
Для упрощения технологического процесса применительно к ремонту шеек коленчатых валов разработана электролитическая ячейка 1 (рис 2, б), которая дает возможность вести железнение и хромирование шеек без вращения детали. В эту ячейку электролит поступает под давлением через патрубок 2 и благодаря наклонному расположению отверстий в цилиндрическом аноде 3 (под углом 30…40° к радиальному направлению) приобретает вращательное движение вокруг детали 4. Скорость протекания электролита в аноднокатодном пространстве принимают 100…150 см/с при удельном его расходе 40…45 л/мин на 1 дм2 покрываемой поверхности.
Рис 2. Схема электролитических ячеек для струйного осаждения металлов c вращением (а) и без вращения детали (б): 1– корпус; 2 – подводящий штуцер; 3 – анод; 4 – деталь; 5 – сливной штуцер
При проточном и струйном способах меньше обеднение прикатодного слоя электролита, возможно увеличение плотности тока в несколько раз, что позволяет повысить производительность процесса в 2…3 раза. Способы обеспечивают более высокое качество покрытий и лучшую равномерность. Первым способом восстанавливают посадочные поверхности корпусных деталей (блоков цилиндров, корпусов коробок передач и др.), а вторым – крупные валы, например коленчатые.
Местное осаждение. В данном способе осаждение производят при неподвижном электролите. С помощью приспособлений изношенное отверстие детали превращается в закрытую местную гальваническую ванночку (рис 3). В центр ванночки устанавливают анод 3. Отверстие герметизируют снизу, заливают в него электролит, анод и деталь при этом неподвижны. При их подключении к источнику постоянного тока на поверхности отверстия осаждается железо. Температура электролита составляет 75…80 °С, катодная плотность тока – 25…30 А/дм2. Осаждаются качественные гладкие покрытия со скоростью 0,3 мм/ч, толщиной до 0,7 мм и твердостью 4000…4500 МПа. Этот способ часто применяют для восстановления посадок под подшипники в корпусных деталях. Электронатирание. При этом способе осаждения металла деталь 2 устанавливают в центрах (патроне) товарного станка и присоединяют к катоду источника постоянного тока (рис 4). Анодами служат металлические ролики 1, которые вращаясь совместно с деталью приводят в движение ленточный тампон 4, изготовленный из адсорбирующего материала. Необходимое усилие прижатия ленточного тампона к детали обеспечивает натяжной ролик 5. В системе катод (деталь) – тампон (своего рода гальваническая ванна) – анод (ролики) протекает электрохимическая реакция и на поверхности катода (детали) осаждается тот или другой металл. Тампон в зависимости от требуемого покрытия постоянно пропитывается электролитом из крана 4. Излишки электролита собираются в поддоне для повторного использования, откуда, очищаясь в фильтре, поступают в бак. Насос закачивает электролит в распределительный стакан при его опорожнении.
Рис 3. Схема местного железнения: 1 – деталь (корпус коробки передач); 2 – электролит; 3 – анод; 4 – резиновые прокладки; 5 – стакан; 6 – раздвижная распорка; 7 – опорная плита; 8 – подставка; 9 – кольцо
Рис 4. Принципиальная схема электроконтактного железнения: 1 – анод; 2 – катод (деталь); 3 – трубки подачи электролита; 4 – ленточный тампон; 5, 6 – натяжной и направляющий ролики
Постоянное поступление в зону электролиза свежего электролита и перемещение анода по покрываемой поверхности препятствуют росту зародившихся кристаллов металла, снижают внутренние напряжения в покрытии и уменьшают дендритообразование. Все это позволяет получать мелкозернистые покрытия высокого качества.
Состав электролита включает сульфат (250…300 г/л) и хлорид (130…150 г/л) железа. Режим процесса: рН 0,9…1,2; средняя катодная плотность тока 20…60 А/дм2; скорость вращения катода 20…40 м/мин; расход электролита 0,3…0,6 л/мин; угол обхвата детали тампоном 90…120°. Скорость осаждения составляет 3,3…12,3 мкм/мин. Микротвердость покрытия составляет 5500…7000 МПа. Так как покрытие получают гладким и равномерным, при толщине покрытия до 0,1 мм не требуется последующая механическая обработка.
Этот способ железнения рекомендуется применять для восстановления посадочных поверхностей крупных валов, осей и корпусных деталей.
Гальванический метод
Гальванический метод нанесения покрытий применяется в следующих отраслях деятельности:
- Обработка изделий от коррозии;
- Покрытие деталей и узлов сложных станков, оборудования;
- Обработка бижутерии и ювелирных украшений;
- Обеспечение паяемости и смачиваемости поверхности деталей;
- Придание антиокислительных и декоративных свойств поверхности (в основном, драгоценные покрытия).
Если в сфере машиностроения, автомобилестроения, производства металлоконструкций требуются большие промышленные гальванические ванны, то при производстве и гальванике ювелирных украшений и контактных групп используют компактное оборудование.
Ювелирные предприятия составляют число постоянных клиентов нашей организации. Производство украшений из драгоценных металлов и ювелирных сплавов периодически требует нанесения защитного или декоративного слоя гальваники на поверхность. Например, бижутерные сплавы, покрытые слоем настоящего золота в несколько раз вырастают в цене, при этом себестоимость украшений сравнительно невысока. Этим часто пользуются владельцы громких имен, выпуская коллекции бижутерии в золотом или родиевом покрытии при том что цена покрытых сережек часто сравнима с ценой на серьги сделанные из чистого золота.
Требования к электролитам и результату обработки на ювелирном предприятии очень высоки: необходимо выдерживать класс поверхности, оттенок нанесенного металла, толщину его нанесения. Обычно в ювелирных, а также декоративных целях толщина нанесения не превышает 2 микрометров, поэтому перечисленные требования выполнимы.
В сфере нанесения декоративных покрытий на ювелирные украшения, ООО «6 микрон» сотрудничает с заводами из Московской области, Санкт-Петербурга, Костромы, Калининградской области, а также других субъектов Российской Федерации.
Для нашей организации обширная область деятельности – нанесение гальваники на сувениры, подарки, предметы обихода. Подарить сувенир, покрытый золотом или серебром, сделать гальванику старинных часов, восстановить ее на антикварной посуде – все это наши ежедневные услуги. Например, в подарок строителю делают золотую каску, а хоккеисту – золотую шайбу. Список идей тут ограничивается только человеческой фантазией. Любую вещь можно обработать гальваническим золотом — получить оригинальный сувенир или памятный подарок. Золочение выполняется только золотом пробы 999. Гальваника единственный способ нанесения настоящего золота или серебра.
Также, клиенты обращаются к нам с целью получения красивого химически стойкого покрытия сантехники – смесителей, кнопок, рычагов, вентилей.
Последние 5 лет гальванику также часто применяют для золочения украшений из настоящих древесных листиков, цветов, веточек. В недавнее время эта идея стала популярна и запросы на такую работу поступают все чаще.
Хромирование
Хромирование широко применяют для восстановления деталей, а также для получения декоративных и антикоррозионных покрытий.
Преимущества хромирования по сравнению с другими способам: покрытия электролитического хрома имеют: серебристо – белый цвет и высокую микротвердость 400…1200 МН/м2 (в 1,5…2 раза выше, чем при закалке ТВЧ), близкую к микротвердости корунда; обладают высокой износостойкостью (в 2…3 раза выше по сравнению с закаленной сталью); устойчивость к химическим и температурным воздействиям, причем высокая коррозионная стойкость сочетается с красивым внешним видом; имеют низкий коэффициент трения (на 50 % ниже, чем у стали и чугуна); высокую прочность сцепления покрытия с поверхностью детали.
Недостатками хромирования являются: низкий выход металла по току (8…42 %); небольшая скорость отложения осадков (0,03 мм/ч); большая трудоемкость и себестоимость наращивания; высокая агрессивность электролита; большое количество токсичных выделений, образующихся при электролизе; толщина отложения покрытия практически не превышает 0,3 мм.
В зависимости от назначения хромового покрытия применяются различные концентрации электролитов и режимы электролиза. Наибольшее применение получил так называемый универсальный электролит:
- хромовый ангидрид (CrО3) – 200…250 г/л;
- серная кислота (H2SO4) – 2…2,5 г/л.
Изменяя режим электролиза, из этого электролита можно получать все виды хромовых покрытий: блестящие, молочные и серые.
Блестящий хром характеризуется высокой микротвердостью (600…900 МН/м2), мелкой сеткой трещин, видимой под микроскопом. Осадки хрупкие, но с высокой износостойкостью. Молочный хром характеризуется пониженной микротвердостью (400…600 МН/м2), пластичностью и высокой коррозионной стойкостью. Серый хром отличается весьма высокой микротвердостью (900…1200 МН/м2) и повышенной хрупкостью, что снижает его износостойкость.
При восстановлении изношенных деталей, работающих в соединениях при давлениях до 0,5 МПа, применяются блестящие износостойкие покрытия, получаемые при плотности тока 30…100 А/дм2 и температуре электролита 50…70 °С (наиболее часто применяют Т = 55 ± 1 °С и Дk = 40…60 А/дм2).
В качестве защитно-декоративных применяются блестящие покрытия, получаемые при Дk = 15…25 А/дм2 и Т = 50 °С. Молочные покрытия, полученные при Дk = 25…35 А/дм2 и Т = 70 °С, обладают наибольшей коррозионной стойкостью, вязкостью, пониженным коэффициентом трения и применяются в качестве защитных покрытий, а также для восстановления деталей, работающих в тяжелых условиях: при высоких динамических нагрузках, при абразивном изнашивании в коррозионной среде и др. Колебание температуры электролита в процессе хромирования допускается в пределах ±1…2 °С.
При хромировании необходимо выдерживать соотношение анодной и катодной поверхностей Sa: Sk= 1,5…2, а расстояние между анодом и деталью – 30…35 мм.
В отличие от других гальванических процессов, при хромировании применяются нерастворимые аноды, изготавливаемые из свинца или сплава свинца с 6 % сурьмы. Поэтому электролит постоянно обедняется и его необходимо периодически корректировать, добавляя в него хромовый ангидрид.
В хромовом покрытии возникают растягивающие напряжения, значения которых растут с увеличением толщины покрытия. При определенной толщине растягивающие напряжения достигают таких значений, которые приводят к отслоению покрытия. Поэтому хромирование целесообразно применять для восстановления деталей при толщине покрытия до 0,3 мм. При определении необходимой толщины покрытия учитывают припуск на последующую механическую обработку, принимаемый равным 0,05…0,15 мм на диаметр.
В табл 2 приведены составы электролитов и режимы хромирования.
Таблица 2. Составы электролитов и режимы хромирования
Компонента и режим | Номер | электролита | |||
1 | 2 | 3 | 4 | ||
Хромовый ангидрид, г/л | 120…150 | 200…250 | 300…350 | 380…420 | |
Серная кислота, г/л | 1,2…1,5 | 2,0…2,5 | 3,0…3,5 | – | |
Сернокислый стронций, г/л | – | – | – | – | |
Кремнефтористый калий, г/л | – | – | – | – | |
Углекислый кальций, г/л | – | – | – | 40…60 | |
Сернокислый кобальт, г/л | – | – | – | 18…20 | |
Температура электролита, оС | 50…65 | 45…60 | 40…50 | 18…25 | |
Плотность тока, А/дм2 | 30…100 | 20…60 | 15…30 | 100…300 | |
Выход по току, % | 15…18 | 12…14 | 12…18 | 35…40 |
Электролит № 1 имеет лучшую рассеивающую способность и более высокий выход по току, чем электролиты № 2 и № 3. Покрытия из этого электролита отличаются наибольшей твердостью и износостойкостью. Электролит применяют при восстановлении деталей, когда требуется высокая износостойкость.
Электролит № 2 называют универсальным, так как из него получают износостойкие покрытия и покрытия с защитно-декоративными свойствами.
Электролит № 3 используют при защитно-декоративном хромировании деталей сложной конфигурации.
Саморегулирующийся холодный электролит № 4 имеет наиболее высокие выход по току и скорость осаждения хрома, которая до 10 раз превышает скорость осаждения из обычных электролитов. Покрытия имеют хорошее качество.
Специальные процессы хромирования.
Пористое хромирование. Способ применяют для повышения износостойкости деталей, работающих при больших давлениях и температурах, а также в условиях недостаточной смазки. Пористый хром представляет собой покрытие с большим количеством пор или сеткой трещин, достаточно широких для проникновения в них масла. Данный вид покрытия можно получить механическим, химическим и электрохимическим способами. Наиболее широко применяют электрохимический способ, который заключается в том, что хром осаждают при режиме блестящего хромирования, в результате чего в покрытии появляются сетки микротрещин. Для их расширения и углубления покрытие подвергают анодной обработке в электролите того же состава.
Изменяя режимы хромирования и анодного травления можно получить пористость двух типов: канальчатую и точечную.
Для получения пористых покрытий деталь хромируют в универсальном электролите при плотности тока 40…50 А/дм2, а затем переключают полярность ванны и проводят анодное травление при той же плотности тока.
Канальчатую пористость получают при температуре электролита 58…62 °С и продолжительности травления 6…9 мин, а точечную – при 50…52 °С и 10…12 мин. Пористые покрытия применяют при размерном хромировании, например поршневых колец. Толщина пористых покрытий составляет 0,1…0,15 мм. Износостойкость поршневых колец с пористыми покрытиями увеличивается в 2…3 раза, а износостойкость гильзы цилиндров двигателя – в 1,5 раза.
Детали после покрытия пористым хромом подвергают термообработке в масле при температуре 150…200 °С в течение 1,5…2 ч для устранения водородной хрупкости и насыщения пор маслом.
Струйное хромирование. Процесс проводят в саморегулирующемся электролите при температуре 50…60 °С и плотности тока, достигающей 200 А/дм2. Скорость протекания электролита 40…60 см/с, катодно-анодное расстояние – 15 мм. В результате получают блестящие покрытия. Выход по току достигает 22 %, что вместе с высокой плотностью тока ускоряет процесс осаждения хрома. При температуре 50 °С и катодной плотности 100 А/дм2 скорость осаждения составляет 0,1 мм/ч. При струйном хромировании в тетрахроматном электролите и катодной плотности 150…160 А/дм2 высококачественные покрытия осаждаются со скоростью 0,25 мм/ч. В случае использования универсального электролита процесс осуществляют при температуре 50 °С, плотности тока 70…90 А/дм2, скорости протекания электролита 100…120 см/с, катодно-анодном расстоянии 15 мм. Скорость осаждения хрома при этом составляет 0,08…0,10 мм/ч.
Проточное хромирование. Данным способом получают блестящие покрытия повышенной твердости и износостойкости, а также повышенной равномерности покрытия. Процесс осуществляют в универсальном электролите с повышенным содержанием серной кислоты (3…7 г/л) при температуре 55…65 оС, плотности тока 100…150 А/дм2, скорости протекания электролита 100…120 см/с и межэлектродном расстоянии 15…30 мм. Выход по току составляет 20…21 %. Способ рекомендуется для хромирования цилиндров и коленчатых валов двигателей.
Гальванический процесс
Система запускается через источник постоянного тока с регулировкой уровня входящего напряжения или тока. Чем дольше длится воздействие электрического тока на электролит и изделие, тем толще становится слой защитного покрытия. Иногда деталь обрабатывают несколько раз, в зависимости от конкретной технологии и конечной задачи от клиента.
Важна температура электролита. Иногда используется дополнительное нагревательное устройство, которое погружается в гальваническую ванну или находится вне ее.
Строгие требования предъявляют к помещению, где проходит обработка. Обязательное условие – эффективная вентиляция, проточная вода и пожарная безопасность. Работы проходят в лабораториях , которые специально оборудованы для выполнения таких заданий. Здесь созданы оптимальные микроклиматические условия, поддерживается требуемая температура и влажность воздуха. Эксперты работают в специальных защитных костюмах. Технология гальваники металла досконально изучена представителями научно-производственного предприятия.
Восстановление изношенных деталей давлением
Поврежденные и изношенные детали можно восстанавливать давлением. Этот способ основан на использовании пластичности металлов, т. е. их способности под действием внешних сил изменять свою геометрическую форму, не разрушаясь. Детали восстанавливают до номинальных размеров при помощи специальных приспособлений, путем перемещения части металла с нерабочих участков детали к ее изношенным поверхностям. При восстановлении деталей давлением изменяется не только их внешняя форма, но также структура и механические свойства металла. Применяя обработку давлением, можно восстанавливать детали, материал которых обладает пластичностью в холодном или нагретом состоянии. Изменение формы детали и некоторых ее размеров в результате перераспределения металла не должно ухудшать их работоспособность и снижать срока службы. Механическая прочность восстановленной детали должна быть не ниже, чем у новой детали.
К основным видам восстановления различных деталей давлением относятся:
- осадка при восстановлении втулок, пальцев, зубчатых колес;
- раздача при восстановлении пальцев поршней, роликов автоматов и т. п.;
- обжатие при восстановлении вкладышей подшипников и втулок;
- вдавливание при восстановлении зубчатых колес и шлицевых валиков;
- правка для выправления гладких и коленчатых валов и рычагов;
- накатка для увеличения диаметра шеек и цапф валов за счет поднятия гребешков металла при образовании канавок.
Метод пластического деформирования при ремонте деталей применяется не только для восстановления размеров изношенных деталей, но и с целью повышения их прочности и долговечности. Поверхностное упрочнение деталей повышает износостойкость и прочность деталей. Пластическое деформирование деталей производят также обработкой стальной или чугунной дробью, чеканкой, обкаткой роликами или шариками.
Восстановление деталей металлизацией
Металлизацией называется нанесение расплавленного металла на поверхность детали. Расплавленный металл в специальном приборе — металлизаторе струей воздуха или газа распыляется на мельчайшие частицы и переносится на предварительно подготовленную поверхность детали. Нанесенный слой не является монолитным, а представляет собой пористую массу, состоящую из мельчайших окисленных частиц.
Способом металлизации восстанавливают размеры посадочных мест для подшипников качения, зубчатых колес, муфт, шеек коленчатых валов и т. п. Чтобы металлизационный слой прочно соединился с поверхностью детали, поверхность очищают от грязи и масла и подвергают пескоструйной обработке.
Твердость металлизационного покрытия определяется качеством наносимого материала.
Источник