Ремонт дискового тормоза электродвигателя

Главная | Новости | Регулировка электродвигателя с электромагнитным тормозом COEL

Перечень регламентных работ по замене и обслуживанию итальянских электродвигателей «COEL» с электромагнитным тормозом :

Замена электромагнита электродвигателя

Отпустив винт поз.4, снять защитый кожух электродвигателя поз.5. Затем, отсоединить шесть контактов питания электромагнита от клеммной коробки электродвигателя. Открутив три гайки поз.7 снять электромагнит поз.6, насаженный на штифты поз.10. Насадить на штифты поз.10 новый электромагнит поз.6, соответствующим образом подсоединить контакты питания на клеммы электродвигателя. После затяжки трех гаек поз.7, рекомендуется проверить правильность подсоединения электромагнита, после чего уже окончательно установить на место защитный кожух.

Замена тормозного диска электродвигателя

Отпустить винт поз.4, снять защитый кожух электродвигателя поз.5, открутить три гайки поз.7 Не отсоединяя шесть контактов питания электромагнита от клеммной коробки электродвигателя, открутить гайки поз.8 и пружины поз.9. Установить новый тормозной диск.

Регулировка тормозного момента электродвигателя

Величина тормозного момента пропорциональна силе сжатия пружины поз.9, которая в свою очередь может регулироваться затяжкой гаек поз.8. Чем туже затянуты данные гайки, тем выше момент торможения электродвигателя.

Регулировка тормозного зазора электродвигателя

Воздушный зазор поз.40 между обмоткой электромагнита и подвижным якорем должен быть 0012 дюймов (0013 дюймов для электротормозов постоянного тока). Рекомендуется периодически проверять величину зазора, так как износ тормозного диска постпенно приводит к его увеличению.

Замена электромагнита электродвигателя

Отпустив винт поз.4, снять защитый кожух электродвигателя поз.5. Затем, отсоединить шесть контактов питания электромагнита от клеммной коробки электродвигателя. Открутив три гайки поз.7 снять электромагнит поз.6, насаженный на штифты поз.10. Насадить на штифты поз.10 новый электромагнит поз.6, соответствующим образом подсоединить контакты питания на клеммы электродвигателя. После затяжки трех гаек поз.7, рекомендуется проверить правильность подсоединения электромагнита, после чего уже окончательно установить на место защитный кожух.

Замена тормозного диска электродвигателя

Отпустить винт поз.4, снять защитый кожух электродвигателя поз.5, открутить три гайки поз.7 Не отсоединяя шесть контактов питания электромагнита от клеммной коробки электродвигателя, открутить гайки поз.8 и пружины поз.9. Установить новый тормозной диск.

Регулировка тормозного момента электродвигателя

Величина тормозного момента пропорциональна силе сжатия пружины поз.9, которая в свою очередь может регулироваться затяжкой гаек поз.8. Чем туже затянуты данные гайки, тем выше момент торможения электродвигателя.

Регулировка тормозного зазора электродвигателя

Воздушный зазор поз.40 между обмоткой электромагнита и подвижным якорем должен быть 0012 дюймов (0013 дюймов для электротормозов постоянного тока). Рекомендуется периодически проверять величину зазора, так как износ тормозного диска постпенно приводит к его увеличению.

Источник

Электромагнитные тормозные устройства

В некоторых устройствах, с целью торможения вращающихся элементов машины, применяется электромагнитный дисковый тормоз электродвигателя. Электромагнитное тормозное устройство монтируется прямо в двигателе или на двигателе, и по сути представляет собой вспомогательный двигатель или приводной узел, отвечающий всем требованиям касательно как позиционирования агрегата, так и с точки зрения безопасной его эксплуатации. Он включается пружинами и отпускается с помощью электромагнита.

Данное решение позволяет не только обеспечить безопасное торможение двигателя в случае аварии или позиционировать исполнительный орган машины во время ее функционирования, но и просто сокращает время работы машины во время ее торможения.

Существуют два типа дисковых электромагнитных тормозных устройств: дисковый тормоз переменного тока и дисковый тормоз постоянного тока (в зависимости от формы тока, которым питается данный тормоз). Для варианта тормоза, питаемого постоянным током, вместе с двигателем поставляется также и выпрямитель, при помощи которого постоянный ток получается из переменного, которым питается сам двигатель.

Конструкция тормозного устройства включает в себя: электромагнит, якорь и диск. Электромагнит изготовлен в виде набора катушек, расположенных в специальном корпусе. Якорь служит исполнительным элементом тормоза, и представляет собой антифрикционную поверхность, которая взаимодействует с тормозным диском.

Сам диск, с нанесенным на него фрикционным материалом, перемещается по зубцам втулки на валу двигателя. Когда в катушки тормозного устройства подано напряжение, якорь оттянут, и вал двигателя может свободно вращаться вместе с тормозным диском.

Затормаживание обеспечивается в свободном состоянии, когда пружины нажимают на якорь, и он воздействует на тормозной диск, вызывая тем самым остановку вала.

Тормоза такого типа находят обширное применение в системах с электрическим приводом. На случай аварийного отсутствия питания тормозного устройства, может быть предусмотрена возможность снять тормоз вручную.

В подъемно-транспортных машинах используется колодочный электромагнитный тормоз (ТКГ), удерживающий вал в заторможенном состоянии когда машина выключена.

ТКП — тормоз постоянного тока серии МП. ТКГ — тормоз электрогидравлический с толкателем серии ТЭ. Электромагнит тормоза ТКГ включает в себя привод и механическую часть, которая в свою очередь включает: подставку, пружины, систему рычагов и тормозные колодки.

Тормозное устройство устанавливается вертикально, причем тормозной шкив имеет горизонтальное положение. Механические части тормозных устройств питаемых переменным или постоянным током для шкивов одного и того же диаметра одинаковы.

Обычно такие устройства имеют буквенное обозначение ТК и число, обозначающее диаметр шкива для торможения. В момент включения питания рычаги нейтрализуют действие пружин и освобождают шкив для обеспечения ему возможности свободного вращения.

Электромагнитные тормоза находят применение в:

блокировке подъемных кранов, лифтов, укладочных машин и т. д. в выключенном состоянии; в механизмах остановки конвейеров, намоточных и ткацких станков, задвижек, прокатного оборудования и т. д.;

для сокращения выбега (времени холостого хода во время остановки) машин;

в системах аварийной остановки эскалаторов, мешалок и т. д.;

для остановки с позиционированием в точном положении в определенный момент времени.

В буровых установках применяется индукционное торможение, основанное на взаимодействии магнитных полей индуктора, в роли которого выступает электромагнит, и якоря, в обмотке которого наводятся токи, магнитные поля которых тормозят «причину их вызывающую» (см. Закон Ленца), создавая тем самым необходимый тормозящий момент ротору.

Рассмотрим это явление на рисунке. Когда в обмотке статора включается ток, его магнитное поле индуцирует вихревой ток в роторе. На вихревой ток в роторе действует сила Ампера, момент которой и является в данном случае тормозящим.

Как известно, в тормозном режиме способны работать асинхронные и синхронные машины переменного тока, а также машины постоянного тока, когда вал движется относительно статора. Если вал неподвижен (относительное перемещение отсутствует), то тормозящего действия не будет.

Таким образом, тормоза на основе электродвигателей применяются для затормаживания движущихся валов, а не для удержания их в состоянии остановки. При этом интенсивность замедления движения механизма можно в таких случаях плавно регулировать, что иногда удобно.

На следующем рисунке приведена схема работы гистерезисного тормоза. Когда в обмотку статора подается ток, на ротор действует вращающий момент, в данном случае он тормозящий, и возникает здесь из-за явления гистерезиса от перемагничивания монолитного ротора.

Физическая причина в том, что намагниченность ротора становится таковой, что его магнитный поток совпадает по направлению с потоком статора. И если ротор попытаться из такого положения повернуть (так чтобы статор оказался относительно ротора в положении Б), то он будет стараться вернуться обратно в положение А за счет тангенциальных составляющих магнитных сил, — так и возникает в данном случае торможение.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Ремонт тормозных электромагнитов и электрогидравлических толкателей

Тормозные электромагниты получили широкое распространение на предприятиях большинства ведущих отраслей промышленности и на транспорте. Они предназначены для быстрого останова механизмов, надежного удержания поднятого груза, сокращения продолжительности торможения механизмов и применяются в мостовых кранах, грузовых лифтах, шахтных подъемниках и др.

Существует множество конструктивных исполнений тормозных электромагнитов, в число которых входят короткоходовые и длинноходовые, однофазные и трехфазные тормозные электромагниты постоянного и переменного тока.

Независимо от величины хода, фазности и рода тока тормозные электромагниты имеют принципиально одинаковое устройство, отличаясь друг от друга главным образом конструкцией отдельных деталей, определяемой назначением электромагнита и его ролью в схеме управления механизмом.

Короткоходовый однофазный тормозной электромагнит (рис. 1,а) состоит из обмотки, которая включается параллельно со статорной обмоткой электродвигателя, и системы рычагов. Обмотку катушки, 6 тормозного электромагнита 5, как правило, выполняют проводом с эмалевой или с эмалевой и дополнительной хлопчатобумажной изоляцией.

Рис. 1. Устройство тормозного электромагнита: 1,7 — рычаги, 2 — шпилька, 3 — пружина, 4 — скоба, 5 — электромагнит, 6 — катушка, 8 — тормозные колодки

При отключении тормозного электромагнита с параллельно включенной обмоткой накопленная энергия магнитного поля гасится с помощью разрядного резистора. Тормозной электромагнит включается в систему управления механизмом так, чтобы обесточивание катушки и тормозящее действие электромагнита происходили одновременно с отключением соответствующего электродвигателя.

В момент отключения электродвигателя одновременно обесточивается катушка б электромагнита. Якорь электромагнита отпадая перестает удерживать растянутую пружину, которая, сжимаясь, воздействует на рычаги 1 и 7. Сближая рычаги вместе с укрепленными на них колодками 8, якорь зажимает расположенный между колодками шкив и, тормозя таким образом, гасит инерцию вращения электродвигателя или движения механизма.

Периодический осмотр и ремонт тормозных электромагнитов и электрогидравлических толкателей проводят одновременно с осмотром и ремонтом механической части тормозов кранов.

Периодичность проведения этих операций зависит от режима работы крановых механизмов: при тяжелых режимах их проводят чаще (ежедневный осмотр, проверка и регулирование), при легком режиме — реже.

Наиболее характерными неисправностями тормозных электромагнитов являются следующие:

1. Не притягивается якорь электромагнита при включении его катушки в электрическую сеть.

При исправной механической части тормоза эта неисправность может быть вызвана одной из следующих причин:

недостаточная величина напряжения на катушке электромагнита (ниже 90 % для электромагнитов постоянного тока КМП параллельного включения к трехфазных электромагнитов КMT переменного тока, ниже 85 % для электромагнитов ВМ параллельного включения),

для электромагнитов постоянного тока последовательного включения- малый ток нагрузки (цепи якоря электродвигателя),

для электромагнитов постоянного тока — ненормально большой ход якоря, больше паспортного значения,

неправильное включение катушек трехфазных электромагнитов, например, встречное включение их, сопровождающееся значительным шумом к быстрым повышенным нагревом катушек,

обрыв или витковое замыкание в катушке (в первом случае катушка не развивает никакого тягового усилия, а во втором — наблюдается завышенный и неравномерный нагрев катушки).

2. «Залипание» якоря электромагнита после отключения его катушки:

загустевание слишком обильной смазки в холодное время (заедание в механизме тормоза),

износ немагнитной прокладки у электромагнитов постоянного тока или смятие стыка магнитопровода (у электромагнитов серии МО), что приводит к исчезновению зазора между верхними стержнями ярма и якоря (этот зазор должен быть не менее 0,5 мм),

у длинноходовых электромагнитов постоянного тока серий КМП и ВМ — износ направляющей втулки, из-за чего якорь начинает касаться корпуса или крышки.

3. Ненормально сильный шум, гудение включенных электромагнитов переменного тока:

не полностью втянут якорь,

неправильная сборка или регулировка магнитопровода электромагнита,

повреждение короткозамкнутого витка у однофазного электромагнита серии МО.

4. Ненормально высокий нагрев катушки электромагнита:

завышенное напряжение у электромагнита параллельного включения или завышенный ток у электромагнитов последовательного включения,

у электромагнитов переменного тока — неполное притяжение якоря или витковое замыкание в катушке.

5. Несрабатывание электрогидравлического толкателя, включенного в сеть:

обрыв проводов, подключающих электродвигатель к сети,

заедание штоков или поршня электрогидравлического толкателя, заедание в шарнирах тормоза,

чрезмерно большое снижение напряжения (ниже 90 % номинального).

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Читайте также:  Ремонт электросамокатов павшинская пойма
Оцените статью