Радиоэлектроника для новичка
Первый шаг — он самый сложный.
С чего начать изучение радиоэлектроники? Как собрать свою первую электронную схему? Можно ли быстро научиться паять? Именно для тех, кто задаётся такими вопросами и создан раздел «Старт«.
На страницах данного раздела публикуются статьи о том, что в первую очередь должен знать любой новичок в радиоэлектронике. Для многих радиолюбителей, электроника, когда-то бывшая просто увлечением, со временем переросла в профессиональную среду деятельности, помогло в поиске работы, в выборе профессии. Делая первые шаги в изучении радиоэлементов, схем, кажется, что всё это кошмарно сложно. Но постепенно, по мере накопления знаний загадочный мир электроники становиться более понятен.
Если Вас всегда интересовало, что же скрывается под крышкой электронного прибора, то Вы зашли по адресу. Возможно, долгий и увлекательный путь в мире радиоэлектроники для Вас начнётся именно с этого сайта!
Ну, а для начала, рекомендуем научиться паять.
Для перехода на интересующую статью кликните ссылку или миниатюрную картинку, размещённую рядом с кратким описанием материала.
Измерения и измерительная аппаратура
Обзор характеристик и особенностей выбора мультиметра для начинающего радиолюбителя.
Любому радиолюбителю требуется прибор, которым можно проверить радиодетали. В большинстве случаев любители электроники используют для этих целей цифровой мультиметр. Но им можно проверить далеко не все элементы, например, MOSFET-транзисторы. Вашему вниманию предлагается обзор универсального ESR L/C/R тестера, которым также можно проверить большинство полупроводниковых радиоэлементов.
Амперметр – один из самых важных приборов в лаборатории начинающего радиолюбителя. С помощью его можно замерить потребляемый схемой ток, настроить режим работы конкретного узла в электронном приборе и многое другое. В статье показано, как на практике можно использовать амперметр, который в обязательном порядке присутствует в любом современном мультиметре.
Вольтметр – прибор для измерения напряжения. Как пользоваться этим прибором? Как он обозначается на схеме? Подробнее об этом вы узнаете из этой статьи.
Из этой статьи вы узнаете, как определить основные характеристики стрелочного вольтметра по обозначениям на его шкале. Научитесь считывать показания со шкалы стрелочного вольтметра. Вас ждёт практический пример, а также вы узнаете об интересной особенности стрелочного вольтметра, которую можно использовать в своих самоделках.
Омметр – прибор для измерения сопротивления. Здесь вы узнаете о том, как омметр можно использовать в своей радиолюбительской практике.
Здесь вы познакомитесь с тем, как устроен и работает осциллограф. Научитесь разбираться в органах управления осциллографа. Осциллограф является одним из самых мощных инструментов для изучения процессов, происходящих в электронной технике.
Как проверить транзистор? Этим вопросом задаются все начинающие радиолюбители. Здесь вы узнаете, как проверить биполярный транзистор цифровым мультиметром. Методика проверки транзистора показана на конкретных примерах с большим количеством фотографий и пояснений.
Как проверить диод мультиметром? Здесь подробно рассказано о том, как можно определить исправность диода цифровым мультиметром. Подробное описание методики проверки и некоторые «хитрости» использования функции тестирования диодов цифрового мультиметра.
Время от времени мне задают вопрос: «Как проверить диодный мост?». И, вроде бы, о методике проверки всевозможных диодов я уже рассказывал достаточно подробно, но вот способ проверки диодного моста именно в монолитной сборке не рассматривал. Заполним этот пробел.
Как проверить ИК-приёмник? Методика проверки исправности инфракрасного приёмника с помощью мультиметра и пульта ДУ.
Как узнать мощность трансформатора, не производя сложных расчётов? Здесь вы узнаете о простой методике определения мощности силового трансформатора.
Если Вы ещё не знаете, что такое децибел, то рекомендуем неспеша, внимательно прочитать статью про эту занимательную единицу измерения уровней. Ведь если Вы занимаетесь радиоэлектроникой, то жизнь рано или поздно заставит Вас понять, что такое децибел.
Часто на практике требуется перевод микрофарад в пикофарады, миллигенри в микрогенри, миллиампер в амперы и т.п. Как не запутаться при пересчёте значений электрических величин? В этом поможет таблица множителей и приставок для образования десятичных кратных и дольных единиц.
Несколько рекомендаций и советов начинающим радиолюбителям по правильному измерению сопротивления цифровым мультиметром. Общие правила по проверке работоспособности цифрового мультитестера и подготовки его к работе.
В процессе ремонта и при конструировании электронных устройств возникает необходимость в проверке конденсаторов. Зачастую с виду исправные конденсаторы имеют такие дефекты, как электрический пробой, обрыв или потерю ёмкости. Провести проверку конденсаторов можно с помощью широко распространённых мультиметров.
Эквивалентное последовательное сопротивление (или ЭПС) — это весьма важный параметр конденсатора. Особенно это касается электролитических конденсаторов, работающих в высокочастотных импульсных схемах. Чем же опасно ЭПС и почему необходимо учитывать его величину при ремонте и сборке электронной аппаратуры? Ответы на эти вопросы вы найдёте в данной статье.
Таблица значений ESR конденсаторов разной ёмкости поможет вам определить качество электролитического конденсатора.
Здесь вы узнаете, как правильно соединять конденсаторы и рассчитывать общую ёмкость при их последовательном и параллельном включении.
Узнайте, как правильно соединять резисторы и рассчитывать их общее сопротивление при последовательном и параллельном включении.
Мощность рассеивания резистора является важным параметром резистора напрямую влияющего на надёжность работы этого элемента в электронной схеме. В статье рассказывается о том, как оценить и рассчитать мощность резистора для применения в электронной схеме.
Простой апгрейд мультиметра DT — 830B. Встраиваем светодиодный фонарик в цифровой мультиметр.
Мастерская начинающего радиолюбителя
Как читать принципиальные схемы? С этим вопросом сталкиваются все начинающие любители электроники. Здесь вы узнаете о том, как научиться различать обозначения радиодеталей на принципиальных схемах и сделаете первый шаг в понимании устройства электронных схем.
Вторая часть рассказа о чтении принципиальных схем. Соединения и разъёмы, повторяющиеся элементы, механически связанные элементы, экранированные детали и проводники. Обо всём этом читайте здесь.
Приводится даташит на микросхему TA8201AK, а также пример тестового усилителя, собранного по схеме из него. Показано видео работы усилителя. На живом примере разбираемся с основными характеристиками микросхемы TA8201AK, графиками из даташита на данный интегральный усилитель.
Блок питания своими руками. Блок питания – это непременный атрибут в мастерской радиолюбителя. Здесь вы узнаете, как самостоятельно собрать регулируемый блок питания с импульсным стабилизатором.
Самый востребованный прибор в лаборатории начинающего радиолюбителя — это регулируемый блок питания. Здесь вы узнаете, как с минимумом усилий и временных затрат собрать регулируемый блок питания 1,2. 32V на базе готового модуля DC-DC преобразователя.
Собираем радиоуправляемое реле на базе готового радиомодуля.
Здесь я расскажу об универсальном зарядном устройстве, которым можно заряжать/разряжать практически любые аккумуляторы (Pb, Ni-Cd, Ni-Mh, Li-Po, Li-ion, LiFe).
Портативные USB-колонки для ноутбука являются достаточно востребованным атрибутом компьютерной периферии. Из каких электронных компонентов состоят данные устройства? В статье приводится принципиальная схема усилителя портативных компьютерных колонок с питанием от USB-порта.
Модернизация USB-колонок SVEN PS-30 на базе микросхемы-декодера CM6120-S.
Что такое мультивибратор и зачем он нужен? Здесь вы узнаете, как собрать мультивибратор на транзисторах. Познакомитесь с формулой расчёта его колебаний.
Для преобразования переменного тока в постоянный применяется так называемый выпрямитель. Здесь вы узнаете о типах диодных выпрямителей, а также об их особенностях и сферах применения. Материал будет интересен начинающим радиолюбителям и тем, кто хочет больше узнать о том, какие схемы выпрямителей применяются в электронике и электротехнике.
Здесь вы узнаете, как собрать мигалку на светодиодах из доступных радиодеталей. Много фоток и пояснений гарантируется.
Здесь показана схема маячка на микросхеме к155ла3. Подробно рассказано о подборе деталей для светодиодного маячка на микросхеме.
Как собрать мультивибратор на микросхеме? Здесь вы узнаете, как собрать мультивибратор на логических микросхемах серии К561, К176 и др.
Организуем рабочее место радиолюбителя-новичка. Собираем многофункциональную розетку.
Непременным атрибутом современного музыкального устройства служит вход внешнего сигнала AUX IN. Как использовать столь полезную функцию? Музыка налету.
Узнайте как можно переделать проводную гарнитуру мобильного телефона и максимально использовать возможности сотового телефона Sony Ericsson. В статье приводиться принципиальная схема проводной гарнитуры сотового телефона и методика её доработки.
Трёхцветную светодиодную ленту можно использовать по-разному: фоновая и декоративная подсветка, световое оформление, мягкое освещение и пр. Но после приобретения RGB-ленты возникает вопрос: «А как управлять этой лентой?». Здесь я расскажу о личном опыте применения RGB контроллера с радиоуправлением. Кроме того, разберёмся в том, как подобрать блок питания для светодиодной ленты.
Как научиться электронике? Конечно, на самых простых вещах! Например, на обычном аккумуляторном фонарике. Показана схема аккумуляторного фонаря, а также даны пояснения о назначении радиоэлементов.
Источник
Сайт про изобретения своими руками
МозгоЧины
Сайт про изобретения своими руками
Курс начинающего электронщика часть 1
Курс начинающего электронщика часть 1
Каждый из нас, когда начинает увлекаться чем-то новым, сразу кидается в «пучину страсти» пытаясь выполнить или реализовать непростые проекты самоделок. Так было и со мной, когда я увлекся электроникой. Но как обычно бывает – первые неудачи поубавили запал. Однако отступать я не привык и начал систематически (буквально с азов) постигать таинства мира электроники. Так и родилось «руководство для начинающих технарей»
Шаг 1: Напряжение, ток, сопротивление
Эти понятия являются фундаментальными и без знакомства с ними продолжать обучение основам было бы бессмысленно. Давайте просто вспомним, что каждый материал состоит из атомов, а каждый атом в свою очередь имеет три типа частиц. Электрон — одна из этих частицы, имеет отрицательный заряд. Протоны же имеют положительный заряд. В проводящих материалах (серебро, медь, золото, алюминий и т.д.) есть много свободных электронов, которые перемещаются хаотично. Напряжение является той силой, которая заставляет электроны перемещаться в определенном направлении. Поток электронов, который движется в одном направлении, называется током. Когда электроны перемещаются по проводнику, то они сталкиваются с неким трением. Это трение называют сопротивлением. Сопротивление «ужимает» свободное перемещения электронов, таким образом снижая величину тока.
Более научное определение тока – скорость изменения количество электронов в определенном направлении. Единица измерения тока — Ампер (I). В электронных схемах протекающий ток лежит в диапазоне миллиампера (1 ампер = 1000 миллиампер). Например, свойственный ток для светодиода 20mA.
Единица измерения напряжения – Вольт (В). Батарея – является источником напряжения. Напряжение 3В, 3.3В, 3.7В и 5В является наиболее распространенным в электронных схемах и устройствах.
Напряжение является причиной, а ток – результатом.
Единица измерения сопротивления – Ом (Ω).
Шаг 2: Источник питания
Аккумуляторная батарея — источник напряжения или «правильно» источник электроэнергии. Батарея производит электроэнергию за счет внутренней химической реакции. На внешней стороне у неё присутствуют две клеммы. Одна из них является положительным выводом (+ V), а другая отрицательным (-V), или «землёй». Обычно источники питания бывают двух типов.
Батарейки используются один раз, а затем утилизируются. Аккумуляторы могут быть использованы несколько раз. Батарейки бывают разных форм и размеров, от миниатюрных, используемых для питания слуховых аппаратов и наручных часов до батарей размером с комнату, которые обеспечивают резервное питание для телефонных станций и компьютерных центров. В зависимости от внутреннего состава источники питания могут быть разных типов. Несколько наиболее распространённых типов, используемых в робототехнике и технических проектах:
Батарейки с таким напряжением могут иметь различные размеры. Наиболее распространённые размеры АА и ААА. Диапазон ёмкости от 500 до 3000 мАч.
3В литиевая «монетка»
Все эти литиевые элементы рассчитаны номинально на 3 В (при нагрузке) и с напряжением холостого хода около 3,6 вольт. Ёмкость может достигать от 30 до 500мAч. Широко используется в карманных устройствах за счёт их крошечных размеров.
Эти батареи имеют высокую плотность энергии и могут заряжаться почти мгновенно. Другая важная особенность — цена. Такие аккумуляторы дешёвые (в сравнение с их размерами и ёмкостями). Этот тип батареи часто используется в робототехнических самоделках.
3.7 В литий-ионные и литий-полимерные аккумуляторы
Они имеют хорошую разряжающую способность, высокую плотность энергии, отличную производительность и небольшой размер. Литий-полимерный аккумулятор широко используется в робототехнике.
Наиболее распространенная форма — прямоугольная призма с округленными краями и клеммами, что расположены сверху. Ёмкость составляет около 600 мАч.
Свинцово-кислотные аккумуляторы являются рабочей лошадкой всей радио-электронной промышленности. Они невероятно дешёвы, перезаряжаются и их легко купить. Свинцово-кислотные аккумуляторы используются в машиностроении, UPS (источниках бесперебойного питания), робототехнике и других системах, где необходим большой запас энергии, а вес не так важен. Наиболее распространенными являются напряжения 2В, 6В, 12В и 24В.
Последовательно-параллельное соединение батарей
Источник питания может быть подключен последовательно или параллельно. При подключении последовательно величина напряжения увеличивается, а когда подключение параллельное – увеличивается текущая величина тока.
Существует два важных момента относительно батарей:
Емкость является мерой (как правило, в Aмп-ч) заряда, хранящейся в батарее, и определяется массой активного материала, содержащегося в ней. Ёмкость представляет собой максимальное количество энергии, которую можно извлечь при определенно заданных условиях. Тем не менее, фактические возможности хранения энергии аккумулятора могут значительно отличаться от номинального заявленного значения, а ёмкость батареи сильно зависит от возраста и температуры, режимов зарядки или разрядки.
Ёмкость батареи измеряется в ватт-часах (Вт*ч), киловатт-часах (кВт-ч), ампер-часах (А*ч) или миллиампер-час (мА * ч). Ватт-час – это напряжение (В) умноженное на силу тока(I) (получаем мощность – единица измерения Ватты (Вт)), которое может выдавать батарея определенный период времени (как правило, 1 час). Так как напряжение фиксируемое и зависит от типа аккумулятора (щелочные, литиевые, свинцово-кислотные, и т.д.), часто на внешней оболочке отмечают лишь Ач или мАч (1000 мАч = 1Aч). Для более продолжительной работы электронного устройства необходимо брать батареи с низким током утечки. Чтобы определить срок службы аккумулятора, разделите ёмкость на фактический ток нагрузки. Цепь, которая потребляет 10 мА и питается от 9-вольтной батареи будет работать около 50 часов: 500 мАч / 10 мА = 50 часов.
Во многих типах аккумуляторов, вы не можете «забрать» энергию полностью (другими словами, аккумулятор не может быть полностью разряжен), не нанося серьезный, и часто непоправимый ущерб химическим составляющим. Глубина разрядки (DOD) аккумулятора определяет долю тока, которая может быть извлечена. Например, если DOD определено производителем как 25%, то только 25% от ёмкости батареи может быть использовано.
Темпы зарядки/разрядки влияют на номинальную ёмкость батареи. Если источник питания разряжается очень быстро (т.е., ток разряда высокий), то количество энергии, которое может быть извлечено из батареи снижается и ёмкость будет ниже. С другой стороны если батарея разряжается очень медленно (используется низкий ток), то ёмкость будет выше.
Температура батареи также будет влиять на ёмкость. При более высоких температурах ёмкость аккумулятора, как правило, выше, чем при более низких температурах. Тем не менее, намеренное повышение температуры не является эффективным способом повышения ёмкости аккумулятора, так как это также уменьшает срок службы самого источника питания.
С-Ёмкость: Токи заряда и разряда любой аккумуляторной батареи измеряются относительно её емкости. Большинство батарей, за исключением свинцово-кислотных, оценено в 1C. Например, батарея с ёмкостью 1000mAh, выдает 1000mA в течение одного часа, если уровень – 1C. Та же батарея, с уровнем 0.5C, выдает 500mA в течение двух часов. С уровнем 2C, та же батарея выдает 2000mA в течение 30 минут. 1C часто упоминается как одночасовой разряд; 0.5C – как двухчасовой и 0.1C – как 10-часовой.
Ёмкость батареи обычно измеряется с помощью анализатора. Анализаторы тока отображают информацию в процентах отталкиваясь от значения номинальной ёмкости. Новая батарея иногда выдает больше 100 % тока. В таком случае, батарея просто оценена консервативно и может выдержать более длительное время, чем указанно производителем.
Зарядное устройство может быть подобрано с точки зрения ёмкости батареи или величины C. Например зарядное устройство с номиналом C/10 полностью зарядит батарею через 10 часов, зарядное устройство с номиналом в 4C, зарядило бы аккумулятор через 15 минут. Очень быстрые темпы зарядки (1 час или менее) обычно требуют того, чтобы зарядное устройство тщательно контролировало параметры аккумулятора, такие как предельное напряжение и температура, чтобы предотвратить перезаряд и повреждения батареи.
Напряжение гальванического элемента определяется химическими реакциями, что проходят внутри него. Например, щелочные элементы – 1.5 В, все свинцово- кислотные – 2 В, а литиевые – 3 В. Батареи могут состоять из нескольких ячеек, поэтому вы редко, где сможете увидеть 2-вольтовую свинцово-кислотную батарею. Обычно они соединены вместе внутри, чтобы выдавать 6 В, 12 В или 24 В. Не стоит забывать о том, что номинальное напряжение в «1.5-вольтовой» батарее типа AA фактически начинается с 1.6 В, затем быстро опускается к 1.5, после чего медленно дрейфует вниз к 1.0 В, при котором батарею уже принято считать ‘разряженной’.
Как лучше выбрать батарею для поделки?
Как вы уже поняли, в свободном доступе, можно найти много типов батарей с разным химическим составом, таким образом, не легко выбрать, какое питание является лучшим для именно вашего проекта. Если проект очень энергозависимый (большие системы звука и моторизованные самоделки) следует выбирать свинцово-кислотную батарею. Если вы хотите построить переносную поделку, которая будет потреблять небольшой ток, то следует выбрать литиевую батарею. Для любого портативного проекта (легкий вес и умеренное питание) выбираем литиево-ионный аккумулятор. Вы можете выбрать более дешёвый аккумулятор на основе метало-никелевого гидрида (NIMH), хотя они более тяжёлые, но не уступают литиево-ионным в остальных характеристиках. Если вы хотели бы сделать энергоёмкий проект то литиево-ионный щелочной (LiPo) аккумулятор будет лучшим вариантом, потому что он имеет маленькие размеры, лёгок по сравнению с другими типами батарей, перезаряжается очень быстро и выдаёт ток высокого значения.
Хотите, чтобы Ваши аккумуляторы прослужили долгое время? Используйте высококачественное зарядное устройство, которое имеет датчики для поддержания надлежащего уровня заряда и подзарядки малым током. Дешёвое зарядное устройство убьёт ваши аккумуляторы.
Шаг 3: Резисторы
Резистор — очень простой и наиболее распространённый элемент на схемах. Он применяется для того, чтобы управлять или ограничивать ток в электрической цепи.
Резисторы — пассивные компоненты, которые только потребляют энергию (и не могут производить её). Резисторы, как правило, добавляются в цепь, где они дополняют активные компоненты, такие как ОУ, микроконтроллеры и другие интегральные схемы. Обычно они используются, чтобы ограничить ток, разделить напряжения и линии ввода/вывода.
Сопротивление резистора измеряется в Омах. Большие значения могут быть сопоставлены с префиксом кило-, мега-, или гига, чтобы сделать значения легко читаемыми. Часто можно увидеть резисторы с меткой кОм и МОм диапазоне (гораздо реже мОм резисторы). Например, 4,700Ω резистор эквивалентен 4.7kΩ резистору и 5,600,000Ω резистор можно записать в виде 5,600kΩ или (более обычно ) 5.6MΩ.
Существуют тысячи различных типов резисторов и множество фирм, что их производят. Если брать грубую градацию то существуют два вида резисторов:
- с чётко заданными характеристиками;
- общего назначения, чьи характеристики могут «гулять» (производитель сам указывает возможное отклонение).
Пример общих характеристик:
- Температурный коэффициент;
- Коэффициент напряжения;
- Шум;
- Частотный диапазон;
- Мощность;
- Физический размер.
По своим свойствам резисторы могут быть классифицированы как:
Линейный резистор — тип резистора, сопротивление которого остается постоянным с увеличением разности потенциалов (напряжения), что прикладываются к нему (сопротивление и ток, что проходит через резистор не изменяется от приложенного напряжения). Особенности вольт-амперной характеристики такого резистора — прямая линия.
Не линейный резистор – это резистор, сопротивление которого изменяется в зависимости от значения прикладываемого напряжения или протекающего через него тока. Это тип имеет нелинейную вольт-амперную характеристику и не строго следует закону Ома.
Есть несколько типов нелинейных резисторов:
- Резисторы ОТК (Отрицательный Температурный Коэффициент) — их сопротивление понижается с повышением температуры.
- Резисторы ПЕК (Положительный Температурный Коэффициент) — их сопротивление увеличивается с повышением температуры.
- Резисторы ЛЗР (Светло-зависимые резисторы) — их сопротивление изменяется с изменением интенсивности светового потока.
- Резисторы VDR (Вольт зависимые резисторы) — их сопротивление критически понижается, когда значение напряжения превышает определенное значение.
Не линейные резисторы используются в различных проектах. ЛЗР используется в качестве датчика в различных робототехнических проектах.
Кроме этого, резисторы бывают с постоянным и переменным значением:
Резисторы постоянного значения — типы резисторов, значение которых уже установлено, при производстве и не может быть изменено во время использования.
Переменный резистор или потенциометр – тип резистора, значение которого может быть изменено во время использования. Этот тип обычно имеет вал, который поворачивается или перемещается вручную для изменения значения сопротивления в фиксированном диапазоне, например, от. 0 кОм до 100 кОм.
Этот тип резистора состоит из «упаковки», в которой содержится два или более резисторов. Он имеет несколько терминалов, благодаря которым может быть выбрано значение сопротивления.
По составу резисторы бывают:
Сердечник таких резисторов отливается из углерода и связующего вещества, создающих требуемое сопротивление. Сердечник имеет чашеобразные контакты, удерживающие стержень резистора с каждой стороны. Весь сердечник заливается материалом (наподобие бакелита) в изолированном корпусе. Корпус имеет пористую структуру, поэтому углеродные композиционные резисторы чувствительны к относительной влажности окружающей среды.
Эти типы резисторов обычно производит шум в цепи за счёт электронов, проходящих через углеродные частицы, таким образом, эти резисторы, не используются в «важных» схемах, хотя они дешевле.
Резистор, который сделан путём нанесения тонкого слоя углерода вокруг керамического стержня — называется углеродо-осаждённым резистором. Он изготавливается путем нагревания керамических стержней внутри колбы метана и осаждением углерода вокруг них. Значение резистора определяется количеством углерода, осажденного вокруг керамического стержня.
Резистор выполнен путем осаждения распыляемого металла в вакууме на керамическую основу прута. Эти типы резисторов очень надежны, имеют высокую устойчивость, а также имеют высокий температурный коэффициент. Хотя они дороже по сравнению с другими, но используются в основных системах.
Проволочный резистор изготовлен путем намотки металлической проволоки вокруг керамического сердечника. Металлический провод представляет собой сплав различных металлов подобранных согласно заявленным особенностям и сопротивлениям требуемого резистора. Эти тип резистора имеет высокую стабильность, а также выдерживает большие мощности, но, как правило, они более громоздкие по сравнению с другими типами резисторов.
Эти резисторы изготовлены путем обжига некоторых металлов, смешанные с керамикой на керамической подложке. Доля смеси в смешанном метало-керамическом резисторе определяет значение сопротивления. Этот тип очень стабилен, а также имеет точно вымеренное сопротивление. Их в основном используют для поверхностного монтажа на печатных платах.
Резисторы, значение сопротивлений которых лежит в пределах допуска, поэтому они очень точны (номинальная величина находится в узком диапазоне).
Все резисторы имеют допуск, который даётся в процентах. Допуск говорит нам, насколько близко к номинальному значению сопротивления может изменяться. Например, 500Ω резистор, который имеет значение допуска 10%, может иметь сопротивление между 550Ω или 450Ω. Если же резистор имеет допуск 1%, сопротивление будет меняться только на 1%. Таким образом, 500Ω резистор может варьироваться от 495Ω 505Ω.
Прецизионный резистор — резистор, у которого уровень допуска всего 0.005%.
Проволочный резистор, разработан таким образом, чтобы легко перегореть, когда номинальная мощность превысет граничный порог. Таким образом плавкий резистор имеет две функции. Когда питание не превышено, он служит ограничителем тока. Когда номинальная мощность превышена, оа функционирует как предохранитель, после перегорания цепь становится разорванной, что защищает компоненты от короткого замыкания.
Теплочувствительный резистор, значение сопротивления которого изменяется с изменением рабочей температуры.
Терморезисторы показывают или положительный температурный коэффициент (PTC) или отрицательный температурный коэффициент (NTC).
Насколько изменяется сопротивление с изменениями рабочей температуры зависит от размера и конструкции терморезистора. Всегда лучше проверить справочные данные, чтобы узнать все спецификации терморезисторов.
Резисторы, сопротивление которых меняется в зависимости от светового потока, что падает на его поверхность. В тёмной среде сопротивление фоторезистора очень высоко, несколько M Ω. Когда интенсивный свет попадает на поверхность, сопротивление фоторезистора существенно падает.
Таким образом фоторезисторы — переменные резисторы, сопротивление которых зависит от количества света, что падает на его поверхность.
Выводные и безвыводные типы резисторов:
Выводные резисторы: Этот тип резисторов использовался в самых первых электронных схемах. Компоненты подключались к выводным клеммам. С течением времени, начали использоваться печатные платы, в монтажные отверстия которых впаивались выводы радиоэлементов.
Резисторы поверхностного монтажа:
Этот тип резистора всё более часто стали использовать начиная с введения технологии поверхностного монтажа. Обычно этот тип резистора создается путём использования тонкоплёночной технологии.
Шаг 4: Стандартные или общие значения резисторов
Система обозначений имеет свои истоки, которые выходят с начала прошлого века, когда большинство резисторов были углеродными с относительно плохими производственными допусками. Объяснение довольно простое – используя 10% допуск можно уменьшить число выпускаемых резисторов. Было бы малоэффективно производить резисторы с сопротивлением 105 Ом, так как 105 находится в пределах 10%-го диапазона допуска резистора на 100 Ом. Следующая рыночная категория составляет 120 Ом, потому что у резистора на 100 Ом с 10%-й терпимостью, будет диапазон между 90 и 110 Ом. У резистора на 120 Ом диапазон лежит между 110 и 130 Ом. По этой логики предпочтительно выпускать резисторы с 10% допуском 100, 120, 150, 180, 220, 270, 330 и так далее (соответственно округлены). Это — ряд E12, показанный ниже.
Терпимость 20% E6,
Терпимость 10% E12,
Терпимость 5% E24 (и обычно 2%-я терпимость),
Терпимость 2% E48,
E96 1% терпимости,
E192 0,5, 0,25, 0,1% и выше допуски.
Стандартные значения резисторов:
Е6 серии: (20% допуска) 10, 15, 22, 33, 47, 68
E12 серии: (10% допуска) 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82
E24 серии: (5% допуска) 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91
E48 серии: (2% допуска) 100, 105, 110, 115, 121, 127, 133, 140, 147, 154, 162, 169, 178, 187, 196, 205, 215, 226, 237, 249, 261, 274, 287, 301, 316, 332, 348, 365, 383, 402, 422, 442, 464, 487, 511, 536, 562, 590, 619, 649, 681, 715, 750, 787, 825, 866, 909, 953
E96 серии: (1% допуска) 100, 102, 105, 107, 110, 113, 115, 118, 121, 124, 127, 130, 133, 137, 140, 143, 147, 150, 154, 158, 162, 165, 169, 174, 178, 182, 187, 191, 196, 200, 205, 210, 215, 221, 226, 232, 237, 243, 249, 255, 261, 267, 274, 280, 287, 294, 301, 309, 316, 324, 332, 340, 348, 357, 365, 374, 383, 392, 402, 412, 422, 432, 442, 453, 464, 475, 487, 491, 511, 523, 536, 549, 562, 576, 590, 604, 619, 634, 649, 665, 681, 698, 715, 732, 750, 768, 787, 806, 825, 845, 866, 887, 909, 931, 959, 976
E192 серии: (0,5, 0,25, 0,1 и 0,05% допуска) 100, 101, 102, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 129, 130, 132, 133, 135, 137, 138, 140, 142, 143, 145, 147, 149, 150, 152, 154, 156, 158, 160, 162, 164, 165, 167, 169, 172, 174, 176, 178, 180, 182, 184, 187, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213, 215, 218, 221, 223, 226, 229, 232, 234, 237, 240, 243, 246, 249, 252, 255, 258, 261, 264, 267, 271, 274, 277, 280, 284, 287, 291, 294, 298, 301, 305, 309, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 357, 361, 365, 370, 374, 379, 383, 388, 392, 397, 402, 407, 412, 417, 422, 427, 432, 437, 442, 448, 453, 459, 464, 470, 475, 481, 487, 493, 499, 505, 511, 517, 523, 530, 536, 542, 549, 556, 562, 569, 576, 583, 590, 597, 604, 612, 619, 626, 634, 642, 649, 657, 665, 673, 681, 690, 698, 706, 715, 723, 732, 741, 750, 759, 768, 777, 787, 796, 806, 816, 825, 835, 845, 856, 866, 876, 887, 898, 909, 920, 931, 942, 953, 965, 976, 988
При разработке оборудования лучше всего придерживаться самого низкого раздела, т.е. лучше использовать E6, а не E12. Таким образом, чтобы число различных групп в любом оборудовании было минимизировано.
Источник