Ремонт магистральных трубопроводов под давлением

Содержание
  1. Технология ремонта трубопроводов без вскрытия грунта
  2. Что такое Cured-in-place pipe (CIPP)
  3. Технологический принцип ремонта труб по CIPP
  4. Работа с трубчатой вставкой
  5. Вулканизационная химия для ремонта труб
  6. Герметизация кольцевого пространства и проверка
  7. Преимущественные стороны CIPP технологии
  8. Недостатки вулканизации труб на месте
  9. Видео пример использования технологии ремонта
  10. Ремонт магистральных трубопроводов
  11. В статье рассмотрены конструкции надземных переходов магистральных трубопроводов с отводами холодного гнутья в защемлениях, которые нередко встречаются на практике. Установлено, что в надземной части таких надземных переходов возникают ненормативные изгибные напряжения, для устранения которых производился ремонт врезкой отводов холодного гнутья. В нормативной документации применение отводов холодного гнутья на надземных участках переходов не предусмотрено, но и прямого запрета нет. Авторами выдвигается гипотеза о возникновении в пластической зоне отводов холодного гнутья шарнирного, защемляющего и компенсирующего эффектов. Исследования влияния параметров транспорта газа (температурного перепада и внутреннего давления) на радиусы изгиба отводов холодного гнутья по данным 4 пропусков снарядов внутритрубной диагностики (2013, 2015, 2017 и 2019 гг.) преимущественно подтвердили положения гипотезы. При этом установлено, что потенциально опасным фактором является радиус изгиба в пластической зоне отводов холодного гнутья надземной части перехода. Данный фактор в дальнейшем может привести к образованию трещиноподобных дефектов.

Технология ремонта трубопроводов без вскрытия грунта

Главная страница » Технология ремонта трубопроводов без вскрытия грунта

Интересный метод восстановления повреждённых труб (канализации, ливневых стоков и других) был придуман в 70-80 годах 20 века инженерами Европы, Японии, Америки. Технология ремонта носит название «CIPP — Cured-in-place pipe», что в близком переводе означает – «ремонт труб на месте». Техника восстановления канализационных и других труб на месте без вскрытия грунта действительно видится уникальной методикой. Однако этот метод представляется достаточно опасным для здоровья людей и окружающей среды. Возможно, поэтому технология Cured-in-place pipe – ремонт трубопроводов на месте, не нашла широкого применения в России.

Что такое Cured-in-place pipe (CIPP)

Реабилитация, восстановление, вулканизация повреждённых сетевых трубопроводов разного назначения – это метод, который всегда рассматривался в Европе и США одним из практичных, наиболее эффективных, популярных.

Ремонт трубопровода промышленных стоков при помощи простой, но эффективной технологии горячей вулканизации труб непосредственно на месте

Так называемая бестраншейная технология ремонта магистральных трубопроводов по сей день успешно применяется на Западе для реконструкции повреждённых рукавов диаметром 0,1 – 2,8 м. Чаще всего методика восстановления повреждённых участков используется:

  • на водопроводных магистралях,
  • в системах ливневой канализации,
  • на газовых магистралях,
  • на трубопроводах химического назначения.

Система реконструкции труб без вскрытия асфальта, плитки, брусчатки, поддерживает несколько вариантов организации работ. Технология обеспечивает получение на ремонтном участке трубных стенок разной толщины в зависимости от конкретных потребностей.

Но вместе с тем, методика вулканизации — Cured-in-place pipe предъявляет определённый набор требований, которые необходимо соблюдать в процессе исполнения работ.

Технологический принцип ремонта труб по CIPP

Главным рабочим элементом методики CIPP выступает трубчатая вставка (вкладыш). Этот элемент делается на основе различных материалов:

Основное требование к материалу вкладыша – он должен иметь пористую структуру, способную пропитываться эпоксидной (полиэфирной) смолой.

Вот так — простым внедрением вкладыша на участке повреждённого трубопровода, выполняется полная реконструкция повреждённой структуры. Сохраняются все свойства и технические параметры

Такой вкладыш, предварительно пропитанный эпоксидной смолой, внедряется внутрь поврежденной трубы. Процесс внедрения обычно выполняется через верхнюю точку доступа (сервисный люк или раскопанный участок грунта незначительной площади).

Работа с трубчатой вставкой

Подвижка трубчатой вставки (вкладыша) осуществляется за счёт давления воздухом или водой, взятых от внешних источников (сосудов, компрессоров).

Процесс отверждения эпоксидной (полиэфирной) смолы активируется горячей водой, паром или ультрафиолетовым излучением. Так образуется герметичная, бесшовная, коррозионно-стойкая ремонтная вставка.

На трубах больших диаметров повреждённые стенки восстанавливаются изнутри с помощью роботизированных устройств. Иногда работы ведутся ручным способом.

Меньшие диаметры труб (до 100 мм) можно обрабатывать дистанционно, при помощи небольших приспособлений для восстановления, предназначенных под трубопроводы малого диаметра.

Схема ремонта по технологии cipp: 1 — воздушный компрессор; 2 — паровой котёл; 3 — инверсионный барабан; 4 — поток пара и воздуха

Технический люк, вырезанный для производства работ, запечатывается материалами, специально разработанными под технологию CIPP.

Вулканизационная химия для ремонта труб

Как правило, в качестве вулканизационной химии используются два вида пропитывающих составов:

  1. Полиэфирные смолы (для восстановления магистральных трубопроводов).
  2. Эпоксидные смолы (под ремонт отводных участков централизованных линий).

Поскольку все виды смол обладают (в той или иной степени) свойствами усадки, их достаточно сложно применять в системах канализации. Канализационные сети обычно имеют значительные жировые, масляные отложения на стенках внутри труб.

За счёт такой смазки, между вкладкой CIPP и корпусом ремонтной трубы неизбежно образуется кольцевое пространство. В таких случаях применяются дополнительные меры, что несколько усложняет ремонтный процесс.

Герметизация кольцевого пространства и проверка

Вообще-то кольцевое пространство образуется в любом случае применения технологии вулканизации труб на месте (Cured-in-place pipe). Просто в разных условиях каждой отдельной инсталляции образуется кольцевое пространство разного объёма.

Вид ремонтного трубопровода на срезе: 1 — надувной пузырь; 2 — существующий трубопровод; 3 — материал внутренней облицовки

Имеется несколько путей герметизации кольцевого пространства:

  • использование гидрофильных материалов,
  • футеровка места соединения прокладками,
  • точечное уплотнение по срезам главной трубы и по боковинам.

Традиционно ремонтируемые участки труб проверялись на степень проницаемости закрытыми камерами внутреннего видео-наблюдения (CCTV).

Однако в настоящее время рекомендуются для проверки более совершенные устройства – фокусируемые электроды утечки (FELL).

Преимущественные стороны CIPP технологии

Главное преимущество бестраншейной технологии ремонта трубопроводов – здесь, как правило, не требуется вести раскопки, чтобы добраться до повреждённого участка.

Правда, иногда конструктивные особенности магистралей заставляют выполнять раскопки (не более 1,5 м в диаметре). Но чаще ремонтная гильза внедряется через сервисный люк либо иную точку доступа.

Большинство случаев производства работ по горячей вулканизации на системах канализации и ливнёвки позволяют выполнять все необходимые действия через сервисные люки

Ремонтный вкладыш протягивается непосредственно к месту ремонта сразу после смачивания смолой. Ремонт боковых соединений канализационных линий также возможен без раскопок.

Исполнение работ по реконструкции боковых линий осуществляется с помощью дистанционного управляемого устройства. Таким устройством сверлится отверстие в прокладке, в точке бокового соединения.

Горячая вулканизация трубопроводов по технологии CIPP (Cured-in-place pipe) в конечном итоге даёт результат в виде гладкого ровного интерьера, без формирования швов.

Наконец, метод позволяет ремонтировать участки трубопроводов, уложенных изгибами. Поэтому способ ремонта с малыми организационными издержками остаётся пока что самым эффективным из всех существующих.

Недостатки вулканизации труб на месте

За исключением широко распространенных размерных шаблонов, трубчатые вкладыши обычно изготавливаются специально под каждый новый ремонт. Применение CIPP требует организации обходного потока для ремонтного участка на время инсталляции вкладыша.

Читайте также:  Прихожка как сделать ремонт

Отверждение смол может занимать по времени 1 — 30 часов, в зависимости от диаметра трубы и применяемой техники отверждения (пар, вода, ультрафиолет).

Внутренняя область трубопровода должна быть полностью свободна от препятствий. Окончательный результат горячей вулканизации тру тщательно проверяется.

Примерно так выглядит результат проверки выполненной работы по восстановлению, полученный с помощью видеокамеры. Здесь проверка показала безупречное качество

Стоимость применения технологии Cured-in-place pipe, примерно, сопоставима ​​с аналогичными методами:

  • торкрет-бетон (shotcrete),
  • термоформованная труба (thermoformed pipe),
  • закрытый трубный фитинг (close-fit pipe),
  • спиральная труба (spiral wound pipe).

Одним из выраженных недостатков технологии горячей вулканизации видится остаток химических веществ, используемых в процессе реакции, необходимой для восстановления труб. Эти химические вещества опасны для здоровья и окружающей среды.

Материал, традиционно применяемый под изготовление гильзы для стандартного размера диаметра труб — это обычно войлок. Сделанная из войлока гильза с трудом проходит трубные изгибы, морщинится, нередко застревает в области скруглённых углов.

После завершения работ требуется чистка внутренней области ремонтного участка методом гидроструйной обработки под высоким давлением.

Видео пример использования технологии ремонта

Видеороликом ниже демонстрируется технология описанного ремонта. Визуальный модельный просмотр позволяет более чётко понять принципиальный подход к решению задачи, прежде чем эта задача будет реализована на практике:

Источник

Ремонт магистральных трубопроводов

В статье рассмотрены конструкции надземных переходов магистральных трубопроводов с отводами холодного гнутья в защемлениях, которые нередко встречаются на практике. Установлено, что в надземной части таких надземных переходов возникают ненормативные изгибные напряжения, для устранения которых производился ремонт врезкой отводов холодного гнутья. В нормативной документации применение отводов холодного гнутья на надземных участках переходов не предусмотрено, но и прямого запрета нет. Авторами выдвигается гипотеза о возникновении в пластической зоне отводов холодного гнутья шарнирного, защемляющего и компенсирующего эффектов. Исследования влияния параметров транспорта газа (температурного перепада и внутреннего давления) на радиусы изгиба отводов холодного гнутья по данным 4 пропусков снарядов внутритрубной диагностики (2013, 2015, 2017 и 2019 гг.) преимущественно подтвердили положения гипотезы. При этом установлено, что потенциально опасным фактором является радиус изгиба в пластической зоне отводов холодного гнутья надземной части перехода. Данный фактор в дальнейшем может привести к образованию трещиноподобных дефектов.

Одним из обязательных элементов линейной части магистральных газопроводов (ЛЧМГ) являются надземные переходы (НП). В данной работе исследуются однопролетные балочные переходы, где трубопровод рассматривается как балка, защемленная по концам. Опорой для таких переходов служит грунт береговых откосов, который может дополняться опорной плитой снизу, в месте выхода его из грунта (защемления). Согласно [1] протяженность однопролетного, бескомпенсаторного НП (в зависимости от диаметра) не должна превышать 30-50 м. Напряженно-деформированное состояние (НДС) надземной части НП регулируется ее прогибом, в [2] приводятся расчетные рекомендации по протяженности надземной части.

Из вышеприведенных материалов следует, что применение отводов холодного гнутья (ОХГ) в надземных переходах, преимущественно, не предусматривалось, но прямого запрета нет. В целом НДС ОХГ изучено недостаточно, например, расчеты НДС участков с использованием ОХГ нормативами не предусмотрены [3]. Статистика аварий, по причине ОХГ не ведется [4, 5, 6], но, например, в ООО «Газпром трансгаз Уфа» 7 из 11 аварий на МГ случились на ОХГ [7].

На сегодняшний день в ПАО «Газпром» внедрена технология выявления потенциально опасных участков (ПОУ), с использованием внутритрубной диагностики (ВТД), способная строить план и профиль обследуемого участка, а также измерять радиус изгиба газопровода [8]. Данная технология позволяет с достаточной точностью измерять искривления трубопровода с радиусом изгиба от 4000 м и менее и, таким образом, выявлять зоны ненормативных (непроектных) напряжений, по [9, 10]. Кроме того, в отчетах ВТД, отражены технические данные отводов холодного гнутья (ОХГ): радиус и угол изгиба, направление изгиба (вверх, вниз, вправо влево).

Самое распространенное исполнение НП на практике – прямолинейное, как наиболее простое в конструктивном отношении. НП из прямых труб, в месте защемления, также являются прямые трубы [1, 2, 11]. Обычно такое техническое решение характерно, для сравнительно ровной местности, пересекающей, например непротяженные овраги, балки, без значительных перепадов высот.

На рисунке 1, для наглядности, приводится расчетная схема однопролетного бескомпенсаторного перехода с примыкающими, в защемлении, участками [11].

Рисунок 1 – Расчетная схема однопролетного бескомпенсаторного перехода с примыкающими участками

Под воздействием равномерно распределенной поперечной нагрузки, изменения температуры и внутреннего давления продукта, трубопровод прогибается, как правило, вниз v1, в защемлении прогиб обратного знака – выпуклостью вверх v2. Расчетная модель грунта в защемлении принимается в виде упругого (винклеровского) основания, считается, что сопротивление грунта пропорционально поперечным перемещениям трубы. Эта модель грунта хорошо описывает работу трубопровода на примыкающих подземных участках, учитывая малость поперечных перемещений [11]. Из этого следует, что защемление не полное, изменения прогиба надземной части v1 влияет и на НДС в защемлении подземной части v2, а значит и картину НДС в целом. Визуально, в защемлении, кроме стрелки прогиба вверх v2 это выражается в отклонении оси от прямолинейности вниз v3, на границе сред «земля-воздух».

Если местность холмистая, крутые откосы, значительный перепад высот и т.д., то могут быть варианты конструктивного исполнения НП. В [7] приводится вариант уникального НП, где не только защемление, но и надземная часть выполнена из ОХГ. По сути это вынужденный вариант, так как крутизна склонов не позволяла выполнить прямой НП, за счет ОХГ из защемления. НП (надземная часть) в комбинированном исполнении (прямые трубы с ОХГ) в технической литературе или на практике авторам неизвестны.

Другое конструктивное исполнение, пример участка МГ, с двумя надземными переходами, построенный по данным ВТД [12] приводится на рисунке 2. Конструктивное исполнение НП, приведенное на рисунке 1, технически нецелесообразно, также, как и только из ОХГ в надземной части.

Рисунок 2 – Профиль участка МГ, построенный по данным ВТД, включающий надземные переходы 341 км (15150 м) и 342 км (15600 м)

Чтобы, избежать строительства более дорогого и сложного подземного (подводного перехода) или с компенсаторами в надземной части, НП должен соответствовать следующим техническим требованиям:

высота надземной части должна обеспечить пропуск воды в период паводка (временный водоток);

протяженность надземной части не должна превышать максимально рекомендуемого для такого конструктивного исполнения 50 м [1];

выход из подземной части (защемления) выполняется с использованием ОХГ, в зависимости от крутизны откосов ОХГ могут быть в наборе.

По этой схеме построены два НП – 341 км (15150 м от камеры запуска внутритрубного устройства) и 342 км (15600 м), расстояние между ними 450 м [12]. Такое конструктивное исполнение на практике встречается часто, а исследования картины НДС в научно-технической литературе авторам не известны. На рисунке 3 приводится схема НП с ОХГ в защемлениях.

Читайте также:  Лачетти ремонт рабочего цилиндра сцепления

Рисунок 3 – Схема НП с ОХГ в защемлениях

Согласно [13] на обоих НП в надземной части выявлены ненормативные радиусы изгиба ρненорм. В этой работе, на примере этих двух НП, приводится сравнительная технология ремонта с целью приведения изгибных напряжений надземной части НП к нормативным показателям:

общепринятый, с разрезкой по центру и врезкой ОХГ в надземной части;

предлагаемый, с определением точки минимального радиуса изгиба и врезкой ОХГ [13, 14].

По аналогии с рисунком 3 приводится схема НП с использованием ОХГ не только в защемлении, но и надземной части (рисунок 4). Согласно [13, 14] после разрезки концы труб разошлись под углом 6 0 , в обоих случаях врезаны ОХГ 6 0 , с нормативным радиусом изгиба 40D м [15].

Рисунок 4 – Схема НП, выполненная с использованием ОХГ в надземной части и защемлениях

Таким образом, на рисунке 4 представлена классическая схема грунтового защемленного участка, в котором при повышении температуры нужно ожидать уменьшение радиуса (увеличение прогиба v1) по центру и его увеличение в грунтовых защемлениях, при понижении – наоборот.

С высокой долей вероятности можно утверждать, что прямолинейное защемление, аналогичное рисунку 1, с образованием прогиба обратного знака v2 маловероятно, вектор продольных сил воздействует на ОХГ в защемлении горизонтально и под незначительным углом, где уже имеется угол ОХГ, прогиб «выпуклостью вниз», и изменить его положение на «выпуклостью вверх» v2 (рисунок 1) не представляется возможным. В то же время изменение прогиба в надземной части v1, вызовет изменение прогиба в защемлении v3, а значит и радиуса ОХГ.

Известны «классические» подходы к конструктивным решениям защемления по правилам строительной механики – это шарнирное, жесткое или упругие опоры [16]. Если модель, приведенная на рисунке 1 подходит к определению «упругие опоры», то модель (рисунок 4) ближе всего соответствует комбинированной, состоящей из шарнирной (в пластической зоне ОХГ) и упругих опор на участке от пластической зоны ОХГ до выхода из защемления, в особенности, учитывая защемляющий и компенсирующий эффект ОХГ, рассмотренный в [17].

В качестве примера приводится совмещенный график радиусов изгиба участка МГ на 341 км, построенный по результатам ВТД за 2013 и 2019 гг. (рисунок 5).

Рисунок 5 – Совмещенный график радиусов изгиба на НП:
синий – 2013 год;
оранжевый – 2019, после врезки ОХГ в 2014 году

Из графика видно, что ситуация, после ремонта, в общем, улучшилась: слева нормативные радиусы более 1000D, однако, справа на расстоянии 15140-15150 м имеют место ненормативные радиусы около 250D, т.е. необходим ремонт правой части [13]. Ситуацию по ОХГ схема не отражает.

На рисунке 6 приводится совмещенный график радиусов изгиба участка МГ на 342 км, построенный по результатам ВТД за 2013 и 2019 гг.

Рисунок 6 – Совмещенный график радиусов изгиба НП:
синий – 2013 год;
оранжевый – 2019, после врезки ОХГ в 2014 году

Из графика видно, что ситуация, благодаря ремонту значительно улучшилась: слева нормативные радиусы более 1000D, справа 500D и более, в диапазоне рекомендуемых [17].

Данные из рисунка 6 визуально подтверждают преимущества предлагаемой технологии ремонта врезкой ОХГ, радиусы изгиба прямых труб надземной части соответствуют нормативам [9] по минимальным радиусам изгиба 1000D и более. Ситуацию по НДС ОХГ схема не отражает.

Поэтому, представляет интерес оценка влияния изменения параметров транспорта газа (температура и давление) на НДС ОХГ и, если последуют соответствующие изменения радиусов изгиба в их пластической зоне – это будет доказательством гипотезы о его шарнирном эффекте.

В таблице приводятся данные радиусов изгиба пластической части ОХГ по результатам четырех пропусков ВТД (2013, 2015, 2017 и 2019 гг.) [12, 18-20], в зависимости от изменения конструкции НП, а также параметров транспорта газа (температура и давление).

Таблица – Данные ВТД по радиусам изгиба ОХГ за 2013, 2015, 2017 и 2019 гг. [12, 18-20]

Для наглядности представим данные таблицы в виде графика зависимости радиусов изгиба от изменения конструкции НП и колебаний температуры и давления газа:

рисунок 7 (участок 341 км);

рисунок 8 (участок 342 км).

Из таблицы и графиков видно, что параметры газа по данным 2013 и 2015 (столбцы 3, 4) близки по значениям (в пределах погрешности измерений) и, соответственно не могут в значительной степени повлиять на радиусы изгиба, но проведенный ремонт изменил конструкцию НП. По данным за 2017 и 2019 годы параметры заметно отличаются: по температуре на +3 0 и -5 0 , давлению +0,8 и -1,0 МПа.

РИС. 7. График изменения радиусов изгиба по данным ВТД (341 км) в зависимости от колебаний температуры и давления газа

РИС. 8. График изменения радиусов изгиба по данным ВТД (342 км) в зависимости от колебаний температуры и давления газа

Анализ динамики радиусов ОХГ участка МГ на 341 км

ОХГ №1373. Особенность ОХГ, примерно 2/3 в грунтовом защемлении, 1/3 надземная часть. За счет врезки ОХГ, в 2015 году, радиус пластической части значительно уменьшился с 122 до 97 м (20,5%), это означает, что после разрезки концы трубы разошлись [14], минимизировав напряжения, а врезка ОХГ №1375аб должна закрепить такое положение. С одной стороны, из [21] известно, что резкое уменьшение радиуса в пластической зоне ОХГ может привести к появлению и развитию трещин, характерных для поперечного коррозионного растрескивания под напряжением (КРН), с другой стороны это возврат к номинальному радиусу ОХГ – 60 м. Обращает внимание – все радиусы больше номинала 60 м, что доказывает компенсирующий эффект ОХГ [22]. Шарнирный эффект новой конструкции проявился по результатам 2017 и 2019 года, с повышением температуры на 3 0 радиус изгиба уменьшился с 97 до 68,5 м, с понижением на 5 0 увеличился с 68,5 до 79 м.

ОХГ №1375а. Ремонт врезкой ОХГ №1375а проведен в 2014 году, поэтому в отчете ВТД за 2013 год его нет. Поведение ОХГ в центре полностью соответствует физическим законам, характерным для защемленного участка, увеличение на 3 0 привело к уменьшению радиуса с 48 до 45 м, понижение на 5 0 к увеличению с 45 до 50,5 м, (все радиусы изгиба значительно ниже предельно допустимого 40D = 56 м [15]) т.е. проявился шарнирный эффект, в соответствии с рисунком 4. Все значения ниже номинала ОХГ – 60 м (до 25%), есть риск образования трещин на пластической части.

ОХГ №1378, №1379. Параметры по результатам 2017 года не менялись, несмотря на врезку ОХГ 1375а, на обоих ОХГ изменений радиусов не произошло.

Особенность этого защемления ОХГ №1378 на 2/3 в грунте, а №1379 полностью. При увеличении температуры на 3 0 – 2017 год, ОХГ №1378а радиус увеличился с 64 до 73 м, ОХГ №1379 уменьшился с 70 до 66,6 м (соответствует схеме рисунок 4). Это свидетельствует, что осевые усилия передались и на ОХГ №1379, на котором проявился компенсирующий эффект в виде уменьшения радиуса.

Читайте также:  Ремонт прокола футбольного мяча

При понижении температуры на 5 0 (2019 год), радиус на обоих ОХГ увеличился, с 73 до 93,8 м и 66,6 до 89,2 м, что не соответствует базовой схеме рисунок 4. Такое несоответствие объясняется ненормативными радиусами изгиба «передающих усилия» труб №№ 1376 и 1377.

Некоторые особенности реакции ОХГ на изменение параметров транспорта газа можно объяснить ненормативными радиусами изгиба прямолинейных труб, сопротивлением грунта в защемлениях, а также компенсирующим и защемляющим эффектом ОХГ. Резкое уменьшение радиусов изгиба на выпуклой части пластической зоны ОХГ, несоответствующие ГОСТ [15] с радиусами изгиба до 33% ниже номинала в этой зоне, позволяет отнести их к потенциально опасным участкам (ПОУ), значит, при последующих ВТД, необходим контроль на предмет возникновения и развития трещиноподобных дефектов.

Анализ динамики радиусов ОХГ участка МГ на 342 км

ОХГ №1413. Этот ОХГ на 2/3 в грунте. После врезки ОХГ № 1416а, радиус изгиба уменьшился с 89 до 62 м. Сработал эффект снятия напряжений после разрезки трубы [14], которая заняла свое естественное положение, закрепленное врезкой ОХГ в центре. Логичным выглядит увеличение радиуса изгиба в защемлении после увеличения температуры на 3 0 с 62 до 75,6 м в 2017 году (соответствует базовой схеме, рисунок 4). Увеличение радиуса с 75,6 до 90,9 м, при понижении температуры на 5 0 в 2019 году можно объяснить компенсирующими свойствами ОХГ.

ОХГ №1416а. Поведение ОХГ в центре полностью соответствует физическим законам, характерным для защемленного участка и шарнирному эффекту (рисунок 4), увеличение на 3 0 в 2017 году привело к уменьшению радиуса с 65 до 40,6 м, понижение на 5 0 в 2019 году к увеличению с 40,6 до 55,6 м. Это может означать, что примыкающие трубы имеют нормативные радиусы изгиба и отсутствует сопротивление грунта. В данном случае, минимальный радиус в 2017 году ниже номинала до 40%, ярко выраженное несоответствие ГОСТ [15], имеет место опасность возникновения ПОУ. При более серьезном повышении температуры с уменьшением радиуса, изгибные напряжения пластической зоны ОХГ соответственно увеличатся.

ОХГ №1419, №1420. Особенность этого защемления в том, что помимо защемления ОХГ №1419 и 1420, прямая труба № 1418 также находится в грунте, возможно сползшего с крутого склона в процессе эксплуатации [13], это какое-то особое состояние и не защемление и не надземная часть, но безусловно будет препятствовать всякому изменению положения трубы от предусмотренных на рисунке 4. Изменение конструкции сказалось, на ОХГ № 1419 в 2015 году радиус увеличился незначительно с 46 до 53 м, на ОХГ № 1420 уменьшился с 97 до 66 м, что можно объяснить компенсирующими возможностями ОХГ. К тому же, не исключено «прямое» воздействие температуры на радиус ОХГ, не связанное с надземной частью.

По результатам 2017 года увеличение температуры на 3 0 на радиусы изгиба не повлияло.

По результатам 2019 года снижение температуры на 5 0 привело к увеличению радиуса изгиба на ОХГ № 1419 с 55,9 до 74,7 м, на радиусы изгиба ОХГ № 1420 не повлияло.

Реакция ОХГ (шарнирный, компенсирующий, защемляющий эффекты) на изменение параметров транспорта газа, в основном, укладываются в рамки защемленного участка с ОХГ по краям и в центре, рисунок 4. Чистоте эксперимента «помешал» грунт, сползший со склона на трубу № 1418. По сравнению с 341 км, более ярко, шарнирный эффект проявился по центру надземной части, рисунки 7, 8.

Таким образом, выводы, полученные в [13] о преимуществах картины НДС труб НП 342 км, по сравнению с НП 341 км относятся и к ОХГ, которые, в большей степени, реагируют на изменения параметров транспорта газа. В то же время проведенные исследования показывают, что этот способ ремонта [14] имеет серьезный недостаток – это высокий уровень напряжений выпуклой, пластической зоны надземного ОХГ, с радиусами изгиба значительно меньше номинала в 60 м (до 33 %), что позволяет отнести такие НП к ПОУ. Отслеживание динамики изменения радиусов изгиба по результатам ВТД (через 2-5 лет) может оказаться недостаточным. Необходим плановый контроль выпуклой зоны ОХГ надземной части на предмет возникновения усталостных трещин.

Конструктивный анализ участков защемления бескомпенсаторных надземных переходов (НП) показал, что они могут выполняться не только из прямых труб, но и из отводов холодного гнутья (ОХГ) выпуклостью вниз в защемлении на относительно крутых склонах, данный метод в научно-технических источниках изучен недостаточно.

Протяженность бескомпенсаторных НП ограничивается нормативами, а его напряженно-деформированного состояния (НДС) регулируется прогибом упругой надземной части. Приведенные примеры показали, что нередки случаи, когда НДС НП не соответствуют нормативам, из-за ненормативных радиусов изгиба и требуется ремонт, например, врезкой ОХГ в надземную часть, вследствие чего возникает расчетная схема – с ОХГ в защемлениях и надземной части.

Исследование НДС расчетной схемы с ОХГ в защемлениях и надземной части после врезки ОХГ и изменении параметров транспорта газа (температуры и давления) по данным 4х пропусков снарядов внутритрубной диагностики (ВТД) за 2013, 2015, 2017 и 2019 годы, показали:

В надземной части НП, реакция ОХГ на изменение параметров газа соответствует шарнирному эффекту на защемленном участке, при увеличении температуры радиус уменьшается, при уменьшении – увеличивается. Более ярко этот эффект проявился на участке МГ (342 км), что можно объяснить нормативными радиусами изгиба его надземной части.

Радиусы изгиба в защемление из одного ОХГ (слева), преимущественно, соответствовали перемещениям ОХГ в надземной части. Некоторое несоответствие вызвано ненормативными радиусами прямых труб надземной части.

Радиусы изгиба в защемление из двух ОХГ (справа), преимущественно, соответствовали перемещениям ОХГ в надземной части. Некоторое несоответствие вызвано ненормативными радиусами прямых труб надземной части. Кроме того, установлено, что ОХГ из защемления передает осевое воздействие на полностью подземное ОХГ.

Проведенные исследования показали, что наиболее потенциально опасный фактор – это радиус изгиба пластической зоны ОХГ надземной части, который значительно ниже номинального значения в 60 м (в нашем случае до 33%) который, к тому же, значительно ниже предельно допустимого 40D = 56 м. Радиус изгиба необходимо контролировать на предмет возникновения и развития трещиноподобных дефектов в выпуклой части ОХГ не только при ВТД, но и службой дефектоскопии, так как они могут обнаружить его зарождение на более ранней стадии.

Источник

Оцените статью