Замена конденсатора Acer AL1716
Когда настольные мониторы перестают работать, причина может быть связана с перегоревшими конденсаторами на плате. Вместо того, чтобы выбрасывать монитор, часто проще и дешевле заменить конденсатор самостоятельно. Стоимость монитора может варьироваться от 50 до 500 долларов, тогда как конденсаторы обычно стоят менее 1 доллара. Следует отметить, что конденсаторы являются электрическими компонентами, которые накапливают заряд, поэтому рекомендуется выполнять этот ремонт только после того, как устройство было отключено от любого источника питания в течение как минимум 24 часов. В качестве дополнительной меры предосторожности перед разборкой ознакомьтесь с руководством . Потребуется гладкая поверхность и средний уровень силы.
Шаг 1
Убедитесь, что ваш монитор был отключен от любого источника питания в течение как минимум 24 часов.
Сожмите, как показано, и потяните к корпусу, чтобы снять крышку с подставки. Это потребует значительных усилий.
Удалите четыре 0,7 мм винта Phillips # 0, соединяющие подставку с монитором.
Шаг 2
Удалите четыре 0,7 мм винта Phillips # 0, соединяющих заднюю панель с монитором.
Извлеките одиночный винт Phillips # 0 0,85 мм из указанного места.
Вставьте пластиковый инструмент открытия в щель вдоль боковой, верхней и нижней частей монитора.
Поднимите монитор, запустив пластиковый инструмент открытия вдоль щели.
Поднимите заднюю панель монитора, как показано на рисунке.
Шаг 3
Снимите два 0,7 мм винта Phillips # 0 по бокам крышки материнской платы.
Удалите вручную два винта с шестигранной головкой, которыми крепится вход цифрового визуального интерфейса (DVI).
DVI обычно представляет собой сине-черный разъем с двумя встроенными резьбовыми соединениями с каждой стороны. Он крепится ручным затягиванием двух боковых винтов.
Нажмите на крышку материнской платы центрального элемента, чтобы снять ее.
Шаг 4
Удалите три 0,7 мм винта Phillips # 0, соединяющие материнскую плату с монитором.
Снимите четыре 0,7 мм винта Phillips # 0.
Используйте spudger или пластиковый инструмент открытия, чтобы отсоединить два красных и два синих разъема, поместив инструмент в щель и подняв разъем.
Убедитесь, что ваш инструмент pry безопасен от электростатического разряда.
Шаг 5
Двумя пальцами отсоедините источник питания от корпуса, протолкнув его к корпусу через отверстие.
Удалите оставшиеся соединения, удерживая материнскую плату и поднимая соединения.
Для удаления соединений потребуется средний уровень силы.
Шаг 6
Осмотрите верхнюю часть каждого конденсатора, чтобы проверить срок службы конденсатора.
Куполообразная верхняя поверхность указывает на перегоревший конденсатор, который необходимо заменить.
Замените необходимые конденсаторы путем пайки старого конденсатора и пайки нового конденсатора.
Обратитесь к этому руководству по пайке для
Комментарии
Пока еще нет ниодного комментария, оставьте комментарий первым!
Источник
Acer AL1716 A — описание и ремонт скалера ILIF-010
Рис. Скалер ILIF-010.
Описание cкалера ILIF-010 применяемого в мониторах Acer AL1716 A.
Общее описание:
- Model: ILIF-010 REV:A 2006.05.10
- Добавочные надписи: печатная плата 490401300210R
- Фото:
- вид со стороны деталей
- вид со стороны пайки
- Процессор: TSUM16AWL-LF-1.
Схемные особенности.
Стабилизаторы 1,8В и 3,3В для процессора совмещенного со скалером TSUM16AWL-LF-1 размещены непосредственно на плате скалера. Установлен Q102, значит светодиод на передней панели двухцветный.
Особенности ремонта.
Может использоваться для проверки вместо ILIF-017 (Samsung 720N), правда клавиатура работать не будет, но для проверки работоспособности матрицы вполне достаточно.
Чаще всего выходит из строя стабилизатор на 1,8В (U 102- AS1117L-18), значительно реже стабилизатор на 3,3В (U 101- AS1117L-33). В случае выхода из строя стабилизатора 3,3В(U 101- AS1117L-33) в сторону повышения напряжения, выходит из строя FLASH U106 (pm25LV010) и/или слетает прошивка в ней.
Прошивки для U103(24C02), U106(pm25LV010), U108(24C04). U103(24C02) прошивать не надо, дамп из нее представлен чисто позырить. Шильдик с монитора Acer AL1716 A от этого набора прошивок для любителей поковыряться в U108(24C04). Прошивка U106(pm25LV010) основная программа, с заставкой Асеr.
Источник
Полезный сайт
Для того чтобы починить ЖК монитор своими руками, необходимо в первую очередь понимать, из каких основных электронных узлов и блоков состоит данное устройство и за что отвечает каждый элемент электронной схемы. Начинающие радиомеханики в начале своей практики считают, что успех в ремонте любого прибора заключается в наличии принципиальной схемы конкретного аппарата. Но на самом деле, это ошибочное мнение и принципиальная схема нужна не всегда.
Итак, вскроем крышку первого попавшегося под руку ЖК монитора и на практике разберёмся в его устройстве.
Первым делом, перед прочтением данного материала рекомендуем прочитать статью о разборке ЖК монитора.
ЖК монитор. Основные функциональные блоки.
Жидкокристаллический монитор состоит из нескольких функциональных блоков, а именно:
ЖК-панель
Жидкокристаллическая панель представляет собой завершённое устройство. Сборкой ЖК-панели, как правило, занимается конкретный производитель, который кроме самой жидкокристаллической матрицы встраивает в ЖК-панель люминесцентные лампы подсветки, матовое стекло, поляризационные цветовые фильтры и электронную плату дешифраторов, формирующих из цифровых сигналов RGB напряжения для управления затворами тонкоплёночных транзисторов (TFT).
Рассмотрим состав ЖК-панели компьютерного монитора ACER AL1716. ЖК-панель является завершённым функциональным устройством и, как правило, при ремонте разбирать её не надо, за исключением замены вышедших из строя ламп подсветки.
Маркировка ЖК-панели: CHUNGHWA CLAA170EA
На тыльной стороне ЖК-панели расположена довольно большая печатная плата, к которой от основной платы управления подключен многоконтактный шлейф. Сама печатная плата скрыта под металлической планкой.
ЖК-панель компьютерного монитора Acer AL1716 |
На печатной плате установлена многовыводная микросхема NT7168F-00010. Данная микросхема подключается к TFT матрице и участвует в формировании изображения на дисплее. От микросхемы NT7168F-00010 отходит множество выводов, которые сформированы в десять шлейфов под обозначением S1-S10. Эти шлейфы довольно тонкие и на вид как бы приклеены к печатной плате, на которой находиться микросхема NT7168F.
Печатная плата ЖК-панели и её элементы |
Плата управления
Плату управления по-другому называют основной платой (Main board). На основной плате размещены два микропроцессора. Один из них управляющий 8-битный микроконтроллер SM5964 с ядром типа 8052 и 64 кбайт программируемой Flash-памяти.
Микропроцессор SM5964 выполняет довольно небольшое число функций. К нему подключена кнопочная панель и индикатор работы монитора. Этот процессор управляет включением/выключением монитора, запуском инвертора ламп подсветки. Для сохранения пользовательских настроек к микроконтроллеру по шине I 2 C подключена микросхема памяти. Обычно, это восьмивыводные микросхемы энергонезависимой памяти серии 24LCxx.
Основная плата (Main board) ЖК-монитора |
Рис 1 .Пример принципиальной схемы блока питания |
В следующей схеме применены сдвоенные диоды с барьером Шоттки (MBR20100). Аналогичные диодные сборки (SRF5-04) применены в рассматриваемом нами блоке монитора Acer AL1716.
Рис 2. Принципиальная схема блока питания на базе микросхемы из серии TOP242-249 |
Заметим, что приведённые принципиальные схемы являются примерами. Реальные схемы импульсных блоков могут несколько отличаться.
Микросхема TOP245Y представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ – контроллер и мощный полевой транзистор, который переключается с огромной частотой от десятков до сотен килогерц. Отсюда и название — импульсный блок питания.
Блок питания ЖК монитора (AC/DC адаптер) |
Схема работы импульсного блока питания сводится к следующему:
Выпрямление переменного сетевого напряжения 220В.
Эту операцию выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе напряжение чуть больше чем сетевое. На фото показан диодный мост, а рядом фильтрующий электролитический конденсатор (82 мкФ 450 В) – синий бочонок.
Преобразование напряжения и его понижение с помощью трансформатора.
Коммутация с частотой в несколько десятков – сотен килогерц постоянного напряжения (>220 B) через обмотку высокочастотного импульсного трансформатора. Эту операцию выполняет микросхема TOP245Y. Импульсный трансформатор выполняет ту же роль, что и трансформатор в обычных сетевых адаптерах, за одним исключением. Работает он на более высоких частотах, во много раз больше, чем 50 герц.
Поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди. Но необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 герц. Те, кто не знает, что такое трансформатор и зачем он применяется, сперва ознакомьтесь со статьёй про трансформатор.
В результате трансформатор получается очень компактным. Также стоит отметить, что импульсные блоки питания очень экономичны, у них высокий КПД.
Выпрямление пониженного трансформатором переменного напряжения.
Эту функцию выполняют мощные выпрямительные диоды. В данном случае применены диодные сборки с маркировкой SRF5-04.
Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом. Обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но используются для выпрямления больших напряжений (20 – 50 вольт). Это нужно учитывать при замене дефектных диодов.
У диодов Шоттки есть некоторые особенности, которые нужно знать. Во-первых, эти диоды имеют малую ёмкость перехода и способны быстро переключаться – переходить из открытого состояния в закрытое. Это свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 вольт, против 0,6 – 0,7 вольт у обычных диодов. Это свойство повышает их КПД.
Есть у диодов с барьером Шоттки и нежелательные свойства, которые затрудняют их более широкое использование в электронике. Они очень чувствительны к превышению обратного напряжения. При превышении обратного напряжения диод Шоттки необратимо выходит из строя.
Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоках питания. Это стоит учитывать в проведении диагностики и ремонте.
Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи. На схеме обозначена как R15C14 (см.рис.1).
При анализе схемотехники блока питания ЖК монитора Acer AL1716 на печатной плате также обнаружены демпфирующие цепи, состоящие из smd резистора номиналом 10 Ом (R802, R806) и конденсатора (C802, C811). Они защищают диоды Шоттки (D803, D805).
Демпфирующие цепи на плате блока питания |
Также стоит отметить, что диоды Шоттки используются в низковольтных цепях с обратным напряжением, ограниченным единицами – несколькими десятками вольт. Поэтому, если требуется получение напряжения в несколько десятков вольт (20-50), то применяются диоды на основе p-n перехода. Это можно заметить, если просмотреть datasheet на микросхему TOP245, где приводятся несколько типовых схем блоков питания с разными выходными напряжениями (3,3 B; 5 В; 12 В; 19 В; 48 В).
Диоды Шоттки чувствительны к перегреву. В связи с этим их, как правило, устанавливают на алюминиевый радиатор для отвода тепла.
Отличить диод на основе p-n перехода от диода на барьере Шоттки можно по условному графическому обозначению на схеме.
Условное обозначение диода с барьером Шоттки.
Условное обозначение диода на основе p-n перехода.
После выпрямительных диодов ставятся электролитические конденсаторы, служащие для сглаживания пульсаций напряжения. Далее с помощью полученных напряжений 12 В; 5 В; 3,3 В запитываются все блоки LCD монитора.
Инвертор DC/AC
По своему назначению инвертор схож с электронными пуско-регулирующими аппаратами (ЭПРА), которые нашли широкое применение в осветительной технике для питания бытовых осветительных люминесцентных ламп. Но, между ЭПРА и инвертором ЖК монитора есть существенные различия.
Инвертор ЖК монитора, как правило, построен на специализированной микросхеме, что расширяет набор функций и повышает надёжность. Так, например, инвертор ламп подсветки ЖК монитора Acer AL1716 построен на базе ШИМ контроллера OZ9910G. Микросхема контроллера смонтирована на печатной плате планарным монтажом.
Микросхема контроллера OZ9910G |
Инвертор преобразует постоянное напряжение, значение которого составляет 12 вольт (зависит от схемотехники) в переменное 600-700 вольт и частотой 50 кГц.
Контроллер инвертора способен изменять яркость люминесцентных ламп. Сигналы для изменения яркости ламп поступают от контроллера ЖКИ. К микросхеме-контроллеру подключены полевые транзисторы или их сборки. В данном случае к контроллеру OZ9910G подключены две сборки комплементарных полевых транзисторов AP4501SD (На корпусе микросхемы указано только 4501S).
Сборка полевых транзисторов AP4501SD и её цоколёвка |
Также на плате блока питания установлено два высокочастотных трансформатора, служащих для повышения переменного напряжения и подачи его на электроды люминесцентных ламп. Кроме основных элементов, на плате установлены всевозможные радиоэлементы, служащие для защиты от короткого замыкания и неисправности ламп.
Плата инвертора и её элементы |
Информацию по ремонту ЖК мониторов можно найти в специализированных журналах по ремонту. Так, например, в журнале “Ремонт и сервис электронной техники” №1 2005 года (стр.35 – 40), подробно рассмотрено устройство и принципиальная схема LCD-монитора “Rover Scan Optima 153”.
Среди неисправностей мониторов довольно часто встречаются такие, которые легко устранить своими руками за несколько минут. Например, уже упомянутый ЖК монитор Acer AL1716 пришёл на стол ремонта по причине нарушения контакта вывода розетки для подключения сетевого шнура. В результате монитор самопроизвольно выключался.
После разборки ЖК монитора было обнаружено, что на месте плохого контакта образовывалась мощная искра, следы которой легко обнаружить на печатной плате блока питания. Мощная искра образовывалась ещё и потому, что в момент контакта заряжается электролитический конденсатор в фильтре выпрямителя. Причина неисправности — деградация пайки.
Деградация пайки, вызвавщая неисправность монитора |
Также стоит заметить, что порой причиной неисправности может служить пробой диодов выпрямительного диодного моста.
Добавить комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.
Источник