Ремонт наладка испытание электрооборудования

Проверка, испытание и наладка электрооборудования
учебно-методический материал на тему

В материале представлена лекция и практическая работа к МДК «Проверка и наладка электрооборудования»

Скачать:

Вложение Размер
tekst_lektsii.doc 47 КБ
no2_ispytaniya_eo.doc 30.5 КБ

Предварительный просмотр:

Проверка, испытание и наладка электрооборудования.

Общие сведения. Перед проведением измерений, связанных с наладкой или испытанием устройств, должен быть выполнен комплекс подготовительных мероприятий:

  1. тщательный осмотр испытываемого объекта с целью выявления и устранения дефектов;
  2. изучение электрической схемы и установление норм испытательных напряжений и токов
  3. составление схемы измерения с указанием необходимых приборов, их класса, предела измерения, допустимого сопротивления изоляции и т. п.;
  4. обеспечение необходимых условии при измерении (температура, влажность, чистота поверхности, освещение и т. п.) и безопасного производства работ;
  5. подготовка рабочего места и необходимого оборудования в соответствии со схемой измерения.

При производстве измерений высокого напряжения особое внимание необходимо уделить качеству подсоединения оборудования к контуру заземления, проверив его визуально или с помощью омметра.

Все работы следует проводить, строго соблюдая правила техники безопасности.

Выбор приборов. Измерительные приборы в зависимости от их назначения, области применения и условий работы должны выбираться по следующим основным принципам:

  • должна существовать возможность измерения исследуемой физической величины;
  • пределы измерения прибора должны охватывать все возможные значения измеряемой величины. При большом диапазоне изменений последней целесообразно использовать многопредельные приборы;
  • прибор должен обеспечивать требуемую точность измерений. Поэтому следует обратить внимание не только на класс выбираемого прибора, но и на факторы, влияющие на дополнительную погрешность измерений( несинусоидальность токов и напряжений, отклонение положения прибора при установке его в положение, отличное от нормального, влияние внешних магнитных и электрических полей и т. п.);
  • при проведении некоторых измерений важную роль играют экономичность (потребление) измерительного прибора, его масса, габариты, расположение органов управления, равномерность шкалы, возможность считывания показаний непосредственно по шкале, быстродействие и пр.;
  • подключение прибора не должно существенно влиять на работу исследуемого устройства, поэтому при выборе приборов следует учитывать их внутреннее сопротивление. При включении измерительного прибора в согласованные цепи входные или выходные сопротивления должны быть требуемого номинального значения;
  • прибор должен удовлетворять общим техническим требованиям техники безопасности при производстве измерений, устанавливаемым (ГОСТ 22261-76), а также техническим условиям или частным стандартам;
  • не допускается использовать приборы: с явными дефектами измерительной системы, корпуса и т. д.; с истекшим сроком поверки; нестандартные или не аттестованные ведомственной метрологической службой; не соответствующие по классу изоляции напряжениям, на которые подключается прибор.

Определение погрешности измерения. Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.

Погрешность, свойственная средству измерения, находящемуся в нормальных условиях применения (ГОСТ 22261-76), является основной. При отклонении одной из влияющих величин за пределы, установленные для нормального значения или области нормальных значений, появляются дополнительные погрешности. Пределы допустимых основной и дополнительной погрешностей средств измерений устанавливаются в виде абсолютных, приведенных, относительных погрешностей или в виде определенного числа делений.

Абсолютная погрешность измерения Δ выражается в единицах измеряемой величины и определяется как разность между измеренным Хизм. и истинным значениями измеряемой величины X, т. е. Δ = Хизм. — X.

В связи с тем, что истинное значение измеряемой величины неизвестно, на практике пользуются действительным значением величины, найденным экспериментальным путем и максимально приближающимся к истинному значению.

Наиболее полно качество измерения характеризуется относительной погрешностью измерения δ, равной отношению абсолютной погрешности измерения к истинному (действительному) значению измеряемой величины, X:

Для сравнительной оценки точности стрелочных приборов пользуются понятием приведенной погрешности прибора γ , % — отношение абсолютной погрешности к предельному значению шкалы:

Величина Хк принимается равной: конечному значению шкалы — для приборов с односторонней шкалой; сумме конечных значений шкалы прибора — для приборов с двусторонней шкалой; разности конечного и начального значений диапазона — для приборов с безнулевой шкалой; длине шкалы, если шкала имеет резко сужающиеся деления.

Средствам измерения, пределы допускаемых погрешностей которых выражаются в виде относительных или приведенных погрешностей, (согласно ГОСТ 13600-68) присваивают классы точности, выбираемые из ряда чисел (1; 1,5; 2; 2,5; 3; 4; 5; 6).

Для стрелочных приборов класс точности определяет максимально допустимое значение основной приведенной погрешности измерения. Зная класс точности прибора, можно определить предел относительной погрешности измерения:

Часто значение искомой величины А определяют косвенно по результатам нескольких измерений, связанных с искомой величиной известными зависимостями. В этом случае относительная погрешность определяется следующим образом:

1) если значение искомой величины определяется как сумма или разность нескольких
однородных величин, то максимально возможная относительная погрешность измерения

δ л=(| А δа| + | В δв| + | С δс |+..-)/Л, где δ а, δв, δс — относительные погрешности измерения величин В, С, В;

2) если искомая величина определяется как произведение нескольких измеренных ве-
личин, то максимально возможная относительная погрешность измерения.

ВИДЫ ИСПЫТАНИЙ ЭЛЕКТРООБОРУДОВАНИЯ.

В процессе монтажа и после его окончания, а также в условиях эксплуатации электрооборудование электроустановок проходит проверку, испытания и наладку.
При транспортировке и монтаже электрооборудование может быть повреждено. Во время эксплуатации возможно его повреждение вследствие естественного износа, а также конструктивных дефектов.
К наладке электрооборудования предъявляют регламентированные требования, для соблюдения которых проводят следующие испытания:
типовые в соответствии с действующими ГОСТами;
приемосдаточные в соответствии с ПУЭ, а в отдельных случаях с указаниями Минэнерго;
профилактические и другие в соответствии с Правилами технической эксплуатации электрических станций и сетей (ПТЭ), объемом и нормами испытаний электрооборудования и инструкциями на отдельные элементы электрооборудования.
Типовые испытания проводят на заводах-изготовителях по программам и с объемами, указанными в стандартах и технических условиях, но частично их можно проводить на месте монтажа электроустановок. При типовых испытаниях проверяют соответствие электрооборудования тем требованиям, которые предъявляются к нему стандартами.
Приемосдаточные испытания проводят во вновь сооружаемых и реконструируемых установках до 500 кВ. При испытаниях выявляют соответствие смонтированного оборудования проекту, снимают необходимые характеристики и выполняют определенный объем измерений. После рассмотрения результатов испытаний дают заключение о пригодности оборудования к эксплуатации.
Профилактические испытания проводят в процессе эксплуатации оборудования, что позволяет расширить возможности обнаружения дефектов с целью своевременного ремонта или замены оборудования.

Источник

Проверка электрических цепей при наладке и ремонте электрооборудования

ВИДЫ ИСПЫТАНИЙ ЭЛЕКТРООБОРУДОВАНИЯ

В процессе монтажа и после его окончания, а также в условиях эксплуатации электрооборудование электроустановок проходит проверку, испытания и наладку.
При транспортировке и монтаже электрооборудование может быть повреждено. Во время эксплуатации возможно его повреждение вследствие естественного износа, а также конструктивных дефектов.
К наладке электрооборудования предъявляют регламентированные требования, для соблюдения которых проводят следующие испытания:
типовые в соответствии с действующими ГОСТами;
приемосдаточные в соответствии с ПУЭ, а в отдельных случаях с указаниями Минэнерго;
профилактические и другие в соответствии с Правилами технической эксплуатации электрических станций и сетей (ПТЭ), объемом и нормами испытаний электрооборудования и инструкциями на отдельные элементы электрооборудования.
Типовые испытания проводят на заводах-изготовителях по программам и с объемами, указанными в стандартах и технических условиях, но частично их можно проводить на месте монтажа электроустановок. При типовых испытаниях проверяют соответствие электрооборудования тем требованиям, которые предъявляются к нему стандартами.
Приемосдаточные испытания проводят во вновь сооружаемых и реконструируемых установках до 500 кВ.
При испытаниях выявляют соответствие смонтированного оборудования проекту, снимают необходимые характеристики и выполняют определенный объем измерений. После рассмотрения результатов испытаний дают заключение о пригодности оборудования к эксплуатации.
Профилактические испытания проводят в процессе эксплуатации оборудования, что позволяет расширить возможности обнаружения дефектов с целью своевременного ремонта или замены оборудования.

ПРОВЕРКА СХЕМ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ

Проверка схем соединений включает первичные (силовые) и вторичные цепи (как внутренние, так и внешние) и требует особого внимания и строгой последовательности операций с условной отметкой проверенных участков в принципиальной схеме электроустановки. Эта проверка состоит из внешнего осмотра, прозвонки цепей, определения полярностей выводов обмоток, измерения сопротивления изоляции и ее испытания, контроля работы схемы от временного источника напряжения.
При внешнем осмотре проверяют соответствие монтажа проекту, состояние контактных соединений, соблюдение расстояний между токоведущими и между токоведущими и заземленными частями, маркировку и расцветку шин, кабелей и их жил, проводов, аппаратов и оборудования, соблюдение необходимого чередования фаз, правильности технологического монтажа и т. д.
Дальнейшую проверку осуществляют прозвонкой, которую выполняют с помощью различных вспомогательных устройств. Наибольшее распространение получило элементарное устройство — пробник, состоящий из батарейки типа 3336, лампочки для карманного фонаря 3,5 В, гибких медных изолированных проводников и зажимов «Крокодил» (рис. 23).
Рис 23 Схема пробника
Выпускаются специальные устройства (пробники) УП-71 и ПУ-82, полупроводниковые схемы которых позволяют проверять (прозванивать) цепи, имеющие сопротивление до 10 Ом и 10 кОм Эти пробники сигнализируют о наличии напряжения на элементах схемы, к которым прикасаются щупами устройств. Кроме того, устройство ПУ-82 имеет встроенную лампочку для подсветки места, куда направляется щуп. Оба устройства получают питание от элементов типа 332.
Для проверки внешних связей (силовых и контрольных кабелей) используют телефонные трубки, телефонные гарнитуры, переговорные устройства (ПУ-82), портативные радиостанции (например, «Кактус»), с помощью которых два человека поддерживают постоянную связь друг с другом; жилы кабеля прозванивают приборами и приспособлениями, указанными выше. Прозвонка с помощью телефонных трубок жил кабеля, концы которого расположены в разных помещениях, показана на рис. 24. Жилы кабеля отсоединяют от клеммных зажимов. Один провод от телефонных трубок подсоединяют к «Земле» (металлической оболочке кабеля), а другим проводом «прощупывают» все жилы кабеля поочередно, пока не услышат сигнал в трубке, сверяют маркировку жил кабеля, по которым устанавливается связь, и переходят к поиску следующей жилы кабеля.
Необходимость проверки полярности выводов может возникнуть при контроле подключения: трансформаторов тока и напряжения (когда к ним подключают счетчики, фазометры, реле мощности),
Рис 24 Проверка маркировки жил кабеля «прозвонкой»
1—6 маркировка жил кабеля, МТ — телефонные трубки, HL — лампочка 2,5 В.
GB — батарея 3336
электродвигателей, имеющих много выводов (многоскоростные двигатели)
Полярность выводов трехфазной машины (двигателя, генератора) определяют по схеме, показанной на рис. 25, предварительно установив прозвонкой выводы каждой из обмоток. Так как обмотки трехфазной машины сдвинуты в пространстве на 120 эл. град, по отношению друг к другу, то при подключении «-)-» батарейки к началу первой обмотки и «+»гальванометра поочередно к началам второй и третьей обмоток батареи стрелка гальванометра в момент замыкания цепи должна отклоняться влево.
Рис 25 Схема проверки полярности обмоток трехфазного электродвигателя
Измерение сопротивления изоляции полностью собранной схемы со всеми присоединенными аппаратами (реле, катушки и контакты контакторов и электромагнитов, зажимы, провода и кабели) выполняют относительно «земли» (оболочек кабелей, корпусов панелей, шкафов, щитов). С помощью мегаомметра проверяют сопротивления изоляции цепей управления, учета, защиты, сигнализации.
После этого испытывают изоляцию повышенным напряжением промышленной частоты. Испытательное напряжение для вторичных цепей схем защиты, управления, сигнализации и измерения со всеми присоединенными аппаратами (автоматические выключатели, магнитные пускатели, контакторы, реле, приборы и т. п.) составляет 1 кВ, продолжительность его приложения — 1 мин. Источником для него может быть специальный аппарат для испытания повышенным напряжением вторичных цепей. При отсутствии необходимого оборудования испытание повышенным напряжением промышленной частоты осуществляется мегаомметром на 2500 В в течение I мин.
После выполнения перечисленных операций на схему можно подавать рабочее напряжение от временного источника для проверки взаимодействия всех ее элементов, но предварительно надо проверить и настроить все аппараты, входящие в данную схему.

Методы технологической наладки и эксплуатации электрооборудования

Самый простой и надежный метод – это метод наблюдения. Он основан на наблюдении электрооборудования в потактовой работе, поскольку в одном такте, как правило, участвуют не более пяти агрегатов. В этом случае наладка электрооборудования упрощается: достаточно найти тот такт, где происходит сбой. Общее количество электроаппаратов в данном случае значения не имеет, а их расположение помогает установить потактность работы.

Второй метод – это метод локализации, иногда его еще называют «методом исключения». Этот метод заключается в последовательном отключении работающих участков, начиная от самых крупных секторов, и продолжая по сокращению до того узла, где и обнаруживается неполадка. Наладка электрооборудования в данном случае включает проверку и электрической, и механической составляющей, ведь двигатель, в котором обнаружена неисправность, может запускаться и в рабочем режиме для проверки электрики, и на холостом ходу – для проверки механики. Все виды связей, участвующие в эксплуатации электрооборудования, можно легко проверить с помощью этого метода.

Третий метод называется «методом сравнения», когда узлы, элементы и детали последовательно заменяются исправными. Он применяется после предварительной диагностики и локализации, однако при использовании этого метода при наладке электрооборудования необходимо удостовериться в том, что заменяемые новые детали являются рабочими: как правило, в практике электромонтеров использовать детали, бывшие в употреблении, в качестве тестовых, что довольно часто приводит к неверным результатам – замена неработающей детали на неработающую заставляет делать ошибочные выводы в целом.

Метод обратной последовательности применяют при проверке схемы, состоящей из нескольких звеньев, связанных функциональной зависимостью. Проверка начинается от последнего звена и проходит до момента обрыва связи или нарушения функционирования всей цепи. Если звено, от последнего до первого, проверено на нормальный функциональный выход, то это значительно сократит время наладки электрооборудования в целом, поскольку позволит избежать дополнительных контрольных измерений. Если проверка касается серийного производства и эксплуатации электрооборудования, то метод обратной последовательности официально признан самым экономичным.

Во всех видах измерений и проверок применяют одинаковые универсальные измерительные приборы, например, при измерении сопротивления изоляции – стандартные мегаоомметры. Наладка электрооборудования высокого класса требует использования многошкальных приборов, поскольку в нем содержатся элементы как постоянного, так и переменного тока. Часто необходимо использование осциллографов, частотомеров, пульсаторов, логических пробников и генераторами периодических и гармонических сигналов, а также многоканальных анализаторов.

Наличие большого количества сложной аппаратуры обусловило появлением в Нормативных документах следующей рекомендации: «Во избежание неправильных включений, приводящих к выходу из строя приборов, особенно электронных, проверка работоспособности электрических схем и их наладка должны осуществляться наладчиками, имеющими определенные навыки и квалификацию. Оснащение участка наладки приборами, инструментом и соответствующими приспособлениями должно быть таким, чтобы способствовать обеспечению быстрого отыскания возможных неисправностей в схемах». Опыт работы нашей электролаборатории показывает, что только качественное и добросовестное выполнение работ по наладке и монтажу оборудования и электроустановок до и выше 1000В дает отличный результат, надежную и долгую работу оборудования и доверие Заказчика.

ИЗМЕРЕНИЯ И ИСПЫТАНИЯ, ОПРЕДЕЛЯЮЩИЕ СОСТОЯНИЕ ТОКОВЕДУЩИХ ЧАСТЕЙ И КОНТАКТНЫХ СОЕДИНЕНИЙ ЭЛЕКТРООБОРУДОВАНИЯ

Состояние токоведущих частей и их контактных соединений кроме визуального контроля проверяют измерением сопротивления постоянному току обмоток, отдельных контактов, токоведущих участков в местах их соединений (сборных шин и шинопроводов). При наличии короткозамкнутых витков измеренное сопротивление постоянному току, как правило, меньше, а при обрыве, неудовлетворительном соединении или нарушении контактных соединений оно превышает паспортные значения или нормируемые величины. Отклонение одного из измерений от заводских данных является признаком того, что дефект находится в соединении обмотки с переключателем или в пайке обмоток.
При плохой регулировке контактов выключателей значительно увеличиваются переходное сопротивление постоянному току силовых контактов по сравнению с нормативными значениями и расхождение сопротивлений по фазам.
Состояние заземляющих проводок и качество их контактных соединений определяют внешним осмотром и по результатам специальных измерений, выполняемых с помощью измерителей заземления. Диапазон сопротивлений, который приходится измерять, очень велик — от 10+5 (переходные сопротивления контактов) до 105 Ом (сопротивления обмоток реле, резисторов). Следовательно, методы и приборный парк, необходимые при выполнении этих работ, разнообразны.
Результаты измерений сопротивления постоянному току не являются единственным критерием состояния токоведущих частей. Качество ответственных контактных соединений может проверяться специальными испытаниями.

ПРОВЕРКА СОСТОЯНИЯ МЕХАНИЧЕСКОЙ ЧАСТИ И МАГНИТНОЙ СИСТЕМЫ ЭЛЕКТРООБОРУДОВАНИЯ

Для контроля состояния механической части электрооборудования необходим его осмотр, в процессе которого выявляют общее состояние оборудования, все наружные дефекты, проверяют раствор и провал контактов аппаратов, взаимодействие отдельных механических частей оборудования (одновременность замыкания контактов и правильность действия блок-контактов автоматического выключателя, пускателей, контакторов и реле; работу механизма свободного расцепления у автоматических выключателей, выключателей нагрузки и масляных выключателей с ручным приводом и т. д.), т. е. работоспособность оборудования без подачи на него напряжения (опробование от руки).
Механическое состояние электрических машин проверяют внешним осмотром, проворачиванием вала вручную (малых машин), затем после соответствующих испытаний опробованием на холостом ходу или на холостом ходу с механизмом (если невозможно разъединить приводную машину с механизмом, например вентилятор на оси электродвигателя) и под нагрузкой с проверкой нагрева, вибрации и тока, потребляемого машиной, работы системы охлаждения.
Механическое состояние измерительных трансформаторов, реакторов, комплектных распределительных устройств, различных шкафов, щитов и т. д. определяется только внешним осмотром и поведением уже после включения оборудования в работу.
Состояние магнитопроводов оценивается в результате проверки тока и потерь холостого хода, снятия характеристик намагничивания, замеров напряжения срабатывания и времени отпадания.
У измерительных трансформаторов тока и дросселей снимают характеристики зависимости тока намагничивания I ном в обмотке от приложенного к ней напряжения U, по которым можно обнаружить витковые замыкания. Эти характеристики необходимы для проверки погрешности трансформаторов тока для их использования в схемах релейной защиты при данных нагрузках. Резкое снижение кривой намагничивания (рис. 22) в начальной ее части (до перегиба) свидетельствует о наличии в трансформаторе между- витковых повреждений. При малом количестве замкнутых витков кривая изменяется в начальной части, при большом количестве — в области насыщения.
Состояние магнитопроводов реле проверяют при подаче рабочего напряжения и замерах напряжения втягивания, времени отпадания. Вибрация магнитопровода контактора или реле переменного тока говорит о его неисправности (отсутствие короткозамкнутого
Рис. 22 Характеристики намагничивания при исправном трансформаторе тока (/), замыкании двух (2) и девяти 13) витков
витка, загрязнение или перекос прилегающих плоскостей электромагнитов). Поэтому иногда приходится менять контактор или реле.
Состояние магнитопроводов электрических машин определяют измерением токов холостого хода (у электродвигателей переменного тока), снятием нагрузочных характеристик (у машин постоянного тока) и сравнением полученных характеристик с заводскими.

Ремонт электрооборудования и его обслуживание

Ремонт электрооборудования, его обслуживание и наладка – комплекс операций, который рекомендуется доверить специалистам. Как правило, Предприятия, имеющие собственное электрическое хозяйство, относятся к организациям высокой электроопасности: этому может способствовать высокая влажность в помещениях, проводка, расположенная вовне зданий, агрессивная среда, расположенность в слишком сухом, влажном, жарком, холодном климате, высокая запыленность. Все это при эксплуатации электрооборудования может привести к повреждениям защитных покрытий и поражению током. В частности, несчастный случай может произойти при касании металлической конструкции, попадании под шаговое напряжение или при поражении статическим электричеством. Вне зависимости от того, было ли отмечено при эксплуатации электрооборудования наличие несчастных случаев или нет, электрооборудование должно быть защищено от воздействий настолько хорошо, чтобы не стать причиной несчастного случая.

Тем не менее, для снижения вероятности возникновения непосредственной угрозы человеку, при монтаже и эксплуатации электрооборудования токоведущие части располагают в местах, трудных для доступа персонала в обычном режиме функционирования предприятия, устанавливают ограждения и предупреждающие надписи, системы механических и электрических блокировок, проводят профилактические разъяснительные мероприятия среди персонала. Все это входит в комплекс монтажа электрооборудования и его эксплуатации.

В частности, согласно требованиям нормативных документов по эксплуатации электрооборудования: «Электрические заряды, появляющиеся на поверхности ди­электриков и удерживающиеся на них в течение длительного времени, получили название статического электричества. Ди­электрики могут оставаться заряженными долгое время. На пред­приятиях заряды статического электричества чаще всего образуют­ся при движении ремней по шкивам, волокнистых материалов по металлическим частям машины; при перекачке по трубам неко­торых жидкостей; перемещении по трубам газов; измельчении некоторых твердых веществ в мельницах, дробилках, дезинтегра­торах, когда выделяется большое количество пыли; при движе­нии порошков или пыли по воздуховодам (трубам). Возникнове­ние и накапливание статического электричества при эксплуатации электрооборудования может явиться причиной взрывов, пожаров или несчастных случаев. Заряды ста­тического электричества удаляют с металлических частей обору­дования, аппаратов, трубопроводов и других конструкций при помощи заземляющих устройств. Фильтры со встряхивающимися матерчатыми рукавами прошивают мелкими металлическими, хорошо заземленными сетками

Таким образом, при эксплуатации электрооборудования важно соблюдение норм и правил, утвержденных и действующих на территории конкретно взятого Предприятия или электроустановки

Наладка электрооборудования

Трудоемкость, сложность и временные затраты на наладку электрооборудования зависят от многих факторов и процессов. Правильность выполнения проекта, качество производимого оборудования, соответствие монтажа требованиям инструкций Заводов- изготовителей и Нормативных документов, качество монтажа, опыт и квалификация работников и специалистов. Все это в совокупности определяет сроки и сложность выполнения пусконаладочных работ электроустановок и электрооборудования после монтажа. Сложные электрические устройства, в первую очередь, должны соответствовать выданной на них технической документации, быть исправными и правильно спроектированными и смонтированными. В случае, если одно из этих правил не соблюдено, наладка электрооборудования не производится, и специалистами электролаборатории составляется акт, в котором указывают несоответствия в документации, факты неисправностей или несоответствия оборудования. При наладке требуется соблюдать также требования техники безопасности и требования, предъявляемые к квалификации специалистов, производящих работы. Как правило, при измерении сопротивления изоляции, например, требуются специалисты IVи III класса, работающие в бригаде, прошедшие недавнее переобучение и обязательный инструктаж

Также важно, чтобы до начала работ в электроустановке персонал электролаборатории или наладочной организации четко знал и соблюдал требования инструкций и руководств по эксплуатации на испытательное оборудование и средства измерений. Безопасность при работах с повышенным напряжением от постороннего источника включает в себя, помимо прочего, ограждение рабочего места и объекта испытаний ограждениями, ограждающими лентами и предупреждающими надписями

В комплекс наладки электрооборудования и приведения его к эксплуатационной готовности относятся:

  • проверка качества электромонтажных работ и соответствие их рабочим чертежам проекта;
  • проверка установленной аппаратуры, ее настройка и регулировка; проверка состояния изоляции и заземляющих устройств;
  • испытание электрооборудования и устройств управления в комплексе с другими системами в различных режимах работы, в том числе и под нагрузкой.

Процедура наладки сложна и вариативна: действия наладчика нельзя назвать строго определенными, поскольку количество и технические характеристики оборудования весьма различны. Однако существуют некоторые последовательности действий, которые упрощают работу – они называются методами наладки и эксплуатации электрооборудования.

Источник

Читайте также:  Связной гарантийный ремонт сервисный центр
Оцените статью