Ремонт электродвигателя постоянного тока
Электродвигатель — важный элемент производства любого товара вне зависимости от назначения. Двигатель — надежная составная производства, но иногда он ломается! Мы не рекомендуем самостоятельно производить ремонт.
Двигатель постоянного тока — это механизм, который преобразует электроэнергию в механическую. Существует два принципа работы электродвигателя постоянного тока (ЭТП):
- Рамка, состоящая из двух стержней, с током в магнитном поле статора.
- Взаимодействие статора и ротора посредством их магнитных полей.
ЭТП представляет собой сложный электрический механизм, который требует квалифицированного и вдумчивого подхода к эксплуатации и его ремонту. Существует огромное число модификаций электродвигателей, которые определяются по серии, в зависимости от применения и назначения. Существуют следующие серии: П, ДП, ДПТ, ДПМ, 4ПБ, 4ПФМ, 4ПО и другие.
Существует еще огромное множество типов электродвигателей от импортного до отечественного производства. Сложности в эксплуатации часто вызывают преждевременный износ деталей двигателя. С целью уменьшить затраты на производство необходимо часто осуществлять диагностику электродвигателя с целью выявить проблемы.
Ремонт электродвигателя
- Выявление дефектов электродвигателя
- Замена старой обмотки на статоре
- Пропитка лаком, который соответствует техническим условиям данного ЭТП по эксплуатации
- Замены выводных концов статора
- Замена подшипников и их посадочных мест на валу и щитах
- Балансировка ротора
- Тестирование работы электродвигателя
- Покраска, по желанию
Мелкий ремонт отличается от капитального тем, что в него входят: замена поврежденных деталей или узлов, устранение отдельных неисправностей. Например, замена обмоток или ротора двигателя.
Ремонтное обслуживание электродвигателя постоянного тока занимает двое суток и более, но если в наличии имеется хорошее оборудование и квалифицированный персонал, то на данный процесс тратится меньше времени.
В целом ремонт электродвигателя постоянного тока не отличается сложностью от ремонтов остальных двигателей. А если к этому делу подключены внимательные и квалифицированные люди, то ремонт не займет большого количества времени и поможет избежать повторных поломок. Которые зачастую возникают после неправильной эксплуатации.
Источник
Ремонт электродвигателей постоянного тока
Текущий ремонт генераторов и двигателей постоянного тока сводится к следующему:
− изношенные щетки заменяют новыми и притирают по месту;
− проверяют и регулируют, траверсу щеткодержателя, устанавливая щетки в шахматном порядке;
− шлифуют и продороживают коллектор;
− проверяют изоляцию обмоток и восстанавливают ее в местах повреждения;
− подшипники разбирают, очищают, производят шабрение (подшипников скольжения) или заменяют (подшипники качения);
− подтягивают болты крепления деталей.
Работы, выполняемые при капитальном ремонте электродвигателей:
− ремонт коллектора с заменой пластин;
− ремонт или замена щеточного механизма;
− замена подшипниковых щитов;
− перезаливка подшипников скольжения;
− ремонт контактных колец и изолирующих их от вала прокладок;
− рихтовка листов активного железа;
− ремонт вала и балансировка ротора;
− заварка трещин корпуса;
− частичная или полная смена обмоток;
− пропитка обмотки лаками и сушка;
− переделка машин на другое напряжение и частоту вращения.
При периодических осмотрах и плановых ремонтах машин постоянного тока основное внимание обращают на состояние коллектора, щеток, щеткодержателя, подшипниковых узлов и изоляции обмоток.
На поверхности коллектора может появиться шероховатость вследствие попадания твердых частиц под щетки, нагар от искрения или окись после длительного хранения машины во влажных местах. Шероховатость коллектора устраняют шлифовкой мелкой стеклянной бумагой марки 000, прижимаемой деревянной колодкой с вырезом по форме коллектора. Применение наждачной бумаги нежелательно, так как крупинки наждака проводят электрический ток и могут замкнуть пластины коллектора. Не рекомендуется опиливать коллекторные пластины напильником или прижатием стеклянной бумаги рукой, так как получается неровная поверхность.
Неровную поверхность коллектора протачивают резцом, предварительно тщательно отцентрировав его.
После, проточки или длительной работы коллектор продороживают, так как миканитовые прокладки тверже медных пластин и при работе постепенно выступают над ними. Продороживание выполняют выпиливанием миканита специальной пилкой на глубину 0,5—1,0 мм вдоль приложенной к коллектору линейки без повреждения медных пластин. Можно продороживать коллектор и на токарном станке при неподвижном шпинделе и продольном движении суппорта с отрезным резцом, повернутым на 90° относительно своего нормального положения. Ширина режущей части резца равна ширине канавки между пластинами, а угол заточки равен 40°.
После продороживания все канавки между пластинами коллектора прочищают волосяной щеткой и шабером снимают фаски с краев коллекторных пластин, а затем коллектор шлифуют и продувают сжатым воздухом.
При выходе из строя подшипников качения пли при большом износе подшипников скольжения ротор может задевать за статор, что вызывает повреждение активной стали, а иногда и обмотки. Неисправные подшипники качения заменяют новыми, а загрязненные снимают, очищают от грязи, промывают в керосине, а затем набивают смазку и устанавливают на место.
Перегрев подшипников скольжения приводит к расплавлению заливки или задирам шейки вала. Он происходит из-за недостаточного поступления масла вследствие погнутости масляных колец, недостаточного уровня, загрязнения или, уменьшения зазора между шейкой вала и вкладышем из-за перекоса вкладыша.
При недостаточном количестве масла его добавляют, а при загрязнении или чрезмерной вязкости — сливают, тщательно промывают подшипник керосином и заливают свежее масло требуемого качества. Для подшипников качения применяют смазки типа УТ и солидолы, для подшипников скольжения — веретенное, машинное или турбинное масло. При перекосе вкладыша подшипник разбирают, устанавливают вкладыш правильно и фиксируют его для предупреждения повторного перекоса.
В процессе эксплуатации не допускают загрязнения электродвигателей: это способствует перегреву обмоток и может привести к короткому их замыканию. Пыль систематически удаляют пылеотсасывающим устройством или продувкой сжатым воздухом. В процессе работы происходит стирание изоляции, что может привести к межвитковому замыканию или пробою на корпус.
Это может произойти и вследствие механических повреждений или отсырения изоляции. Эти неисправности определяют внешним осмотром или измерением сопротивления изоляции обмоток, которое должно быть не ниже 1,0 МОм на 1000 В рабочего напряжения, а магнитным или другим методом уточняют место пробоя изоляции.
Приступая к частичной или полной перемотке якоря, маркируют пазы, составляют схему обмотки, эскизируют лобовые части обмотки, бандажи и другие узлы, а затем снимают старые бандажи, распаивают коллектор и снимают старые обмотки. Перед укладкой новой обмотки якорь тщательно очищают, пазы опиливают и красят их стенки. Коллектор проверяют на отсутствие замыканий между пластинами, обмоткодержатель изолируют.
В зависимости от формы паза, напряжения тока и мощности машины обмотки выполняют в виде жестких или мягких секций, а также протяжкой вручную обмоточного провода в закрытые или полузакрытые пазы. Большинство якорей имеет открытые пазы, в которые укладывают заранее отформованные секции. При закладке следят за длиной выступающих из паза прямолинейных участков секций, добиваясь равности их. В машинах мощностью до 5 кВт применен полузакрытый паз. В этом случае секции укладывают через прорез и обращают внимание на формовку лобовых частей, так как неправильная формовка приводит к невозможности укладки последних сторон секций. При намотке жестких секций пользуются металлическим шаблоном.
Катушки полюсов и стержни компенсационной обмотки наматывают на каркасах или деревянных разъемных оправках. Для малых машин применяют каркасы из электрокартона или бакализированной резины.
При нанесении изоляции секций следует обращать внимание на отсутствие сгустков лака, так как они обычно долго не высыхают и при вращении якоря лак будет разбрызгиваться.
После укладки всех секций проверяют соответствие их выводов коллекторным пластинам, испытывают на межвитковое замыкание и при положительных результатах производят запайку проводников в коллектор.
Источник
Техническая эксплуатация и ремонт двигателей постоянного тока
1. Принцип действия и область применения
1.1 Общие сведения
1.2 Реакция якоря машины постоянного тока
1.3 Момент двигателя постоянного тока
1.4 Регулирование частоты
2. Допустимые режимы работы двигателей постоянного тока
2.1 Допустимые режимы при изменении напряжения
2.2 Допустимые режимы при изменении температуры входящего воздуха
2.3 Допустимые температуры подшипников
3. Обслуживание двигателей постоянного тока, надзор и уход за ними
3.1 Надзор за нагрузкой и подшипниками двигателей
3.2 Надзор и уход за охлаждением двигателя
4. Ремонт двигателя постоянного тока
4.1 Организация ремонта
4.2 Текущий ремонт двигателя
4.3 Капитальный ремонт двигателей
5. Межотраслевые правила по технике безопасности
6. Правила безопасности при эксплуатации электроустановок
Двигатели постоянного тока используются в прецизионных приводах, требующих плавного регулирования частоты вращения в широком диапазоне. Свойства двигателя постоянного тока, так же как и генераторов, определяются способом возбуждения и схемой включения обмоток возбуждения. По способу возбуждения можно разделить двигатели постоянного тока на двигатели с электромагнитным и магнитоэлектрическим возбуждением.
Двигатели с электромагнитным возбуждением подразделяются на двигатели с параллельным, последовательным, смешанным и независимым возбуждением. Электрические машины постоянного тока обратимы, то есть, возможна их работа в качестве двигателей или генераторов. Например, если в системе управления с использованием генератора в обратной связи отсоединить генератор от первичного двигателя и подвести напряжение к обмоткам якоря и возбуждения, то якорь начнет вращаться и машина будет работать как двигатель постоянного тока, преобразуя электрическую энергию в механическую.
Двигатели независимого возбуждения наиболее полно удовлетворяют основным требованиям к исполнительным двигателям самоторможение двигателя при снятии сигнала управления, широкий диапазон регулирования частоты вращения, линейность механических и регулировочных характеристик, устойчивость работы во всем диапазоне вращения, малая мощность управления, высокое быстродействие, малые габариты и масса. Однако двигатели постоянного тока имеют существенные недостатки, накладывающие ограничение на область их применения малый срок службы щеточного устройства из-за наличия скользящего контакта между щетками и коллектором, скользящий контакт является источником радиопомех.
1. Принцип действия и область применения
1.1 Общие сведения
Двигатель постоянного тока — электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.
Двигатели постоянного тока находят широкое применение в промышленных, транспортных и других установках, где требуется широкое и плавное регулирование скорости вращения (прокатные станы, мощные металлорежущие станки, электрическая тяга на транспорте и т. д.).
В разных по мощности двигателях применяется различная обмотка возбуждения:
1) Простая волновая обмотка применяется для машин малой и средней мощности (до 500 кВт) при напряжении 110 В и выше.
2) Простая петлевая обмотка применяется для двухполюсных машин малой мощности (до 1 кВт) и машин свыше 500 кВт.
При вращении обмотки якоря в неподвижном магнитном поле, в ней индуктируется переменная ЭДС, изменяющаяся с частотой:
,
При вращении якоря между любыми двумя точками обмотки якоря действует переменная ЭДС. Однако между неподвижными контактными щетками действует постоянная по величине и направлению ЭДС E, равная сумме мгновенных значений ЭДС e1, e2, e3 и т.д. (рисунок 1), индуктированных во всех последовательно соединенных витках якоря, расположенных между этими щетками. [5]
Рисунок 1.1 — векторная диаграмма, индуктируемых в якорной обмотке ЭДС (e1, e2, e3 — мгновенные значения ЭДС, AB – сумма мгновенных значений ЭДС)
Зависимость ЭДС Е от магнитного потока машины и скорости вращения якоря имеет вид:
;
.
При подключении обмотки якоря к сети с напряжением U, ЭДС Е будет приблизительно равна напряжению U, и скорость вращения ротора:
.
Следовательно, благодаря наличию коллектора при работе машины постоянного тока в двигательном режиме скорость вращения ротора не связана жестко с частотой сети, как в асинхронных и синхронных машинах, а может изменяться в широких пределах путем изменения напряжения U и магнитного потока Ф. Ось симметрии, разделяющая полюса машины постоянного тока, называется ее геометрической нейтралью.
При разомкнутой внешней цепи ток в обмотке якоря не будет протекать, т. к. ЭДС, индуктированные в двух частях обмотки якоря, расположенных по обе стороны геометрической нейтрали, направлены встречно и взаимно компенсируются. Для того чтобы подать от обмотки якоря во внешнюю цепь максимальное напряжение, эту цепь нужно присоединить к двум точкам обмотки якоря, между которыми действует наибольшая разность потенциалов, где и следует устанавливать щетки. При вращении якоря точки смещаются с геометрической нейтрали, но к щеткам будут подходить все новые и новые точки обмотки, между которыми действует ЭДС Е, поэтому ЭДС во внешней цепи будет неизменна по величине и направлению. Для уменьшения пульсаций ЭДС при переходе щеток с одной коллекторной пластины на другую в каждую параллельную ветвь обмотки якоря обычно включается не менее 16 активных проводников.
На якорь, по обмотке которого протекает ток I, действует электромагнитный момент:
.
При работе машины в двигательном режиме электромагнитный момент является вращающим, а в генераторном режиме — тормозным.[1]
Источник