Название: Шестерные насосы Раздел: Рефераты по транспорту Тип: реферат Добавлен 12:46:52 08 июня 2011 Похожие работы Просмотров: 1346 Комментариев: 13 Оценило: 4 человек Средний балл: 3.5 Оценка: неизвестно Скачать
2. Шестеренные насосы;
3.Шестеренный насос с шестернями внешнего зацепления;
4.Шестеренный насос с шестернями внутреннего зацепления;
Список используемой литературы;
Насосами называются гидравлические машины, предназначенные для перемещения жидкостей (воды, шлама, масел и др.) под давлением. Насос совершает работу за счет энергии, получаемой от двигателя. Часть этой энергии теряется на преодоление гидравлических и механических сопротивлений, другая ее часть расходуется на создание избыточного давления, благодаря которому и обеспечивается движение жидкости от насоса к месту ее потребления.
Шестеренные насосы применяются для перекачивания масла, нефти, мазута, дизельного топлива, легко застывающих жидкостей (например, битума, парафина или вискозы), но при этом без механических примесей. Они широко распространены в машиностроении, нефтяной и химической промышленности, коммунальном и сельском хозяйстве, строительном комплексе.
Зубчатый (шестеренный) насос состоит из двух шестерен, расположенных в корпусе. Одна из шестерен приводится в движение расположенным на одной оси электродвигателем, а вторая получает вращение от первой благодаря плотному зацеплению зубьев. При работе жидкость захватывается зубьями колес, отжимается к стенкам корпуса и перемещается со стороны всасывания на сторону нагнетания. Переток жидкости в обратном направлении практически отсутствует из-за плотного сцепления зубьев.
Рис. 1. Схема шестеренного насоса
1 — корпус; 2 — шестерня
Число зубьев в пределе может быть уменьшено до двух, при этом вращающиеся элементы будут иметь очертания, напоминающие восьмерку.
Рис. 2. Схема нагнетателя восьмерочного типа
1 — корпус; 2 — рабочее колесо
В таком нагнетателе необходимо обеспечить привод от двигателя обеих «восьмерок», так как в отличие от зубчатых насосов они не имеют зацепления.
К достоинствам нагнетателей данного вида следует отнести компактность, простоту конструкции, отсутствие клапанов, возможность использования для привода высокоскоростных электродвигателей, независимость подачи от противодавления сети, реверсивность, возможность получения высоких давлений (5 МПа для шесте-ренного насоса, 0,5 МПа для насоса «восьмерочного» типа). Основные недостатки состоят в быстром износе рабочих органов, невысокой подаче и сравнительно низком КПД (до 0,75%).
3.Шестеренный насос с шестернями внешнего зацепления:
Шестеренные насосы являются одним из старейших представителей роторных гидромашин с вытеснителями в виде зубчатых колес.
Рис. 3. Схема шестеренного насоса с шестернями внешнего зацепления
По характеру процесса вытеснения эти насосы относятся к классу роторно-вращательных машин, где вытесняемая жидкость, двигаясь в плоскости, перпендикулярной оси вращения, переносится из всасывающей полости в нагнетательную полость насоса. Вытеснители при этом совершают лишь вращательное движение.
Шестеренные насосы выполняются с шестернями внутреннего и внешнего зацепления. Наиболее распространенным типом шестеренного насоса является насос с шестернями внешнего зацепления. Такой насос состоит из пары защемляющихся одинаковых цилиндрических шестерен — ведущей и ведомой, помещенных в плотно охватывающий их корпус, называемый статором. При вращении шестерен в направлении, указанном стрелками, жидкость, заключенная во впадинах зубьев, переносится из полости всасывания в полость нагнетания (отмечена штриховкой), которая образована корпусом насоса и зубьями a1, b1 > b2, a2. Зубья a1 и a2 при вращении шестерен вытесняют большой объем жидкости, чем тот, который может поместиться в пространстве, освобождаемом зубьями b1 и b2, находящимися в зацеплении. Разность объемов жидкости, находящейся под давлением p2, вытесняется в нагнетательную линию насоса.
Шестеренные насосы с шестернями внешнего зацепления просты по конструкции и надежны, имеют малые габариты и массу. Чаще всего применяются насосы, состоящие из пары прямозубых шестерен с одинаковым числом зубьев эвольвентного профиля. Для увеличения подачи иногда употребляются насосы с тремя и более шестернями, размещенными вокруг центральной ведущей шестерни. Для повышения давления жидкости применяют многоступенчатые шестеренные насосы. Подача каждой последующей ступени этих насосов меньше подачи предыдущей. Для отвода излишка жидкости каждая ступень имеет перепускной клапан, отрегулированный на соответствующее максимально допустимое давление. Максимальное давление, развиваемое этими насосами, обычно 10 МПа (100 а) и реже 20 МПа (200 а). Для приближенного расчета минутной подачи насосов с двумя одинаковыми шестернями можно пользоваться формулой
где η0 — объемный КПД насоса, зависящий от конструкции, технологии изготовления и давления насоса и принимаемый равным 0,7-0,95; А — расстояние между центрами шестерен, равное диаметру начальной окружности D; Dг — диаметр окружности головок зубьев; b — ширина шестерен; n — частота вращения ротора, об/мин.
На рисунке в качестве примера приведена характеристика шестеренного насоса марки ШГ 8-25А при n=1430 об/мин.
Рис. 4. Характеристика шестеренного насоса ШГ 5-25А при n = 1430 об/мин
4.Шестеренный насос с шестернями внутреннего зацепления:
Шестеренные насосы с шестернями внутреннего зацепления применяют при небольших давлениях (до 7 МПа).
Рис. 4. Шестеренный насос с шестернями внутреннего зацепления
Они отличаются компактностью и малыми габаритами по сравнению с насосами внешнего зацепления. При той же подаче жидкость, заполняющая межзубовые впадины шестерен, переносится в полость нагнетания, где выдавливается через радиальные сверления в донышках впадин внешней (кольцевой) шестерни. Ведущей шестерней является шестерня с внутренними зубьями, связанная с приводным валом. Эта шестерня посажена на своей внешней поверхности в подшипник скольжения. Для отделения полостей всасывания и нагнетания в насосах, представленных на рисунках, применен серпообразный разделительный элемент с. При развороте этого элемента на 180° (рисунок б ) происходит реверсирование подачи (на рисунке направление движения жидкости указано стрелками).
Износ стенок и дна колодцев корпуса, торцов шестерен и поверхностей цапф, отверстий втулок под цапфу, откалывание кромок буртиков крышки насоса под уплотнительный сальник, износ плоскости крышки.
Ремонт шестеренчатого насоса
Насос разбирают и ремонтируют, если у него объемный К. П.Д. менее 0,6 (после замены уплотнений). Чтобы правильно контролировать этот показатель, необходимо различать обозначения гидравлических насосов. В маркировках НШ-10Д, НШ-32 и НШ-46У цифра соответствует теоретической производительности нового насоса в кубических сантиметрах за один оборот шестерен. Буквы Д, У после цифры означают модель насоса. Направление врашения ведущей шестерни показано на табличке насоса буквой Л (левое) или П(правое, но чаще всего не обозначают )
Размеры корпуса шестеренчатого насоса, мм. Таблица 1
* Размеры для корпусов, восстановленных обжатием
При разборке насосов отвертывают болты, снимают крышку насоса и вынимают детали вручную. Съемник применяют только при снятии из гнезда нижней пары втулок. Втулки крышки и уплотнительного кольца насосов НШ-32 и НШ-46 взаимозаменяемы, но если насос собирают снова из этих деталей, то обезличивание втулок и шестерен не допускается.
Поступившие первый раз в ремонт насосы ремонтируют методом смещения шестерен концентрическими втулками. Этот способ позволяет отремонтировать насос с меньшими затратами, так как восстановление корпуса насоса сводится к одной операции – расточение колодцев на увеличенный размер(табл.1; рис.1). насос собирают с эксцентриковыми втулками, величина смещения оси шестерен должна быть равняя половине разности размеров головок зубьев шестерен и колодцев корпуса.
Рис.1 . Корпус гидравлического насоса
При большем износе поверхностей корпуса насоса (второй и третий ремонт) корпус подвергают пластической деформации – обжатию в горячем состоянии.
Рис. 2. Приспособление для обжатия корпуса насоса: 1-ремонтируемый корпус насоса; 2-выталкиватель; 3-матрица; 4-корпус прессформы; 5-пуасон; 6-верхняя плита.
Для этого корпус помещают в электронагревательную печь с автоматическим регулированием температуры и выдерживают 30 мин. при 500+10 0 С. Затем корпус устанавливают в матрицу 3 (рис.2) приспособления и обжимают под прессом. Обжатие корпуса должно быть завершено при температуре не ниже 4300 С. Обжатый корпус подвергают термической обработке: нагрев и выдержка 30мин. при 5200 С, закалка в воде с температурой 60-1000 С и отпуск (старение) в течении 4-6ч при 170-1800 С. У обжатого корпуса растачивают на токарном станке 1Л62Б или на фрезерных станках 6М82 и 6М12П при помощи приспособления(рис.3).
Рис. 3. Приспособление для расточки корпусов шестеренчатых насосов: а — кондуктор для бесштифтовой установки корпуса; б — приспособление для расточки; в-оправка; 1-корпус приспособления; 2-штифт; 3-ось корпуса; 4-корпус кондуктора; 5-подвижный конус; 6-зажим; 7-резцовая оправка; 8-зажимной винт; 9-резец; 10-штифт; 11-резец.
Эллипсность расточенных колодцев должна быть не более 0,01мм, конусность – не более 0,02мм, непараллельность осей колодцев – не более 0,03мм, а несовпадение плоскостей днищ колодцев корпуса – не более 0,02мм. Глубину колодцев контролируют индикатором.
Для восстановления шестерен насосов шлифуют изношенные поверхности цапф, торцы и поверхности головок зубьев шестерен до ремонтных размеров на круглошлифовальном станке 3Б12. Шлифовальный кругу марки ПП-300х40х127-Эк заправляют для шлифования торцов шестерен, как показано на рисунке 4. Радиус закругления кромок зубьев должен составлять 0,01мм.
Рис. 4. Шлифование торцов шестерен: а-положение кромки круга при шлифовании; б-шлифование торца; в-заправка шлифовального круга.
Биение торцов зубьев шестерен относительно центровой линии допускается не более 0,01мм. Шлифовальный круг следует править после обработки 20-30 шестереню размеры шестерен после шлифования приведены в таблице 2.
Размеры шестерен шестеренчатого насоса после шлифования. Таблица 2
Наружный диаметр головки зуба шестерни, мм
Диаметр цапфы, мм
Длина зуба шестерни, мм
Глубина цементованного слоя шестерни после обработки должна быть не менее 0,8мм (твердость HRC 58-62).
В зависимости от длины зуба отремонтированные шестерни каждого ремонтного размера сортируют по группам с интервалом 0,005мм, пользуясь рычажной скобой.
Втулки насосов ремонтируют способом пластической деформации обжатием(рис.5) в холодном состоянии.
Рис. 5. Приспособление для обжатия втулок: а-приспособление для обжатия втулок; б-втулка; 1-стержень(рабочий инструмент); 2-пуасон; 3-втулка; 4-матрица; 5-вкладыш; 6-выталкиватель; 7-корпус матрицы.
Размеры заготовки втулки после обжатия приведены в таблице 3.
Размеры заготовки втулки после обжатия Таблица 3
У обжатой втулки протачивают торец В, маслянну канавку до диаметра d1 (рис.6) развертывают или растачивают отверстие под цапфу до размера d.
При механической обработке применяют эксцентриковый цанговый патрон(рис.7), который позволяет обрабатывать втулки с эксцентриком.
Для обработки торцевых плоскостей Б и В (см. рис.6) на суппорте при помощи специальной головки устанавливают два резца (рис.8) так, чтобы длина втулки после обработки соответствовала данным таблицы 4.
Рис. 8. Размеры втулки после механической обработки (см. рис.6), мм Таблица 4
* Размеры для корпусов насосов, восстановленных обжатием.
Высота втулок, обработанных одновременно двумя резцами, обычно отличается не более чем на 0,005мм, и втулки соответствуют одной группе. Стыковые плоскости втулок фрезеруют на фрезерном станке при помощи приспособления(рис.9)
Неровности привалочной поверхности крышки 1 (рис.10) насоса устраняют фрезерованием этой поверхности до выведения следов износа. Если у крышки буртик, удерживающий стопорное кольцо сальника, отломан, то на месте буртика делают выточку и в крышку устанавливают стальное кольцо 2, прикрепляемое винтами 3.
Рис. 10. Восстановление стопорного буртика крышки корпуса насоса: 1-крышка; 2-кольцо; 3-винт.
Втулки и шестерни, являются сопряженными деталями, подбирают по размерным группам так, чтобы длина каждой пары нижних втулок, шестерен и верхних втулок отличалась не более чем на 0,005мм. Втулки, установленные в корпус, не должны выступать более чем на на 0,005мм одна относительно другой. Резиновые уплотнительные кольца и манжету, потерявшее первоначальную упругость, заменяют. Подобранные шестерни и втулки перед сборкой насоса смазывают дизельным маслом. При сборке левого вращения корпус устанавливают в приспособление или тиски с медными губками так, чтобы входное отверстие было направленно к рабочему. Подобранную пару (левую и правую) нижних втулок вставляют в колодцы корпуса насоса. Ведущую шестерню устанавливают в правый колодец, а ведомую – в левый. При сборке насоса правого вращения ведущую шестерню устанавливают в левый колодец, а ведомую – в правый. Сальник смазывают тонким слоем графитовой смазки или солидолом и запрессовывают в крышку при помощи оправки. Маслосъемная кромка сальника должна быть обращена к внутренней стороне крышки. Собранный насос обкатывают и испытывают на стенде КИ-4200 или КИ-4815 (рис.11)
Рис. 11. Испытание шестеренчатого насоса: а-установка насоса на стенде КИ-4200; б-схема присоединения насоса к гидравлической системе; 1-штуцера для присодинения гидроагрегатов; 2-нагнетательный шланг; 3-испытуемый насос; 4-шланг всасывающей полости насоса; 5-скоба крепления насоса; 6-расходный бак; 7-фильтр; 8-счетчик расхода жидкости; 9-радиатор системы охлаждения; 10- центробежный фильтр; 11-переливной золотник; 12-тумблер счетчика оборотов; 13-счетчик оборотов; 14-манометр высокого давления; 15-блок низкого давления с манометром; 16-дроссель; 17-трехходовой кран.
Режим обкатки: без давления – 4мин., при давлении 2,0МПа – 7мин., при 4,0МПа – 5мин, при 7,0МПа – 4мин., при 10,0МПа – 12мин., и при 13,5Мпа – пять циклов по 0,5мин. Давление в нагнетательной магистрали регулируют дросселем.
Насосы испытывают на производительность при давлении10Мпа и температуре масла 45-550С. Результаты испытаний должны соответствовать показателям, приведенным в таблице 5.