Наиболее часто встречающиеся неисправности и ремонт синхронных машин
Повышенный нагрев активной стали статора. Нагрев активной стали статора может возникнуть из-за перегрузки синхронной машины, а также от замыкания в листах шихтовки сердечника при слабой прессовке на заводе-изготовителе. При слабой прессовке сердечника происходят микроподвижка листов шихтовки с частотой перемагничивания 100 Гц/с, а также повышенная вибрация активной стали.
В процессе вибрации активной стали происходит истирание изоляции листов. Листы с поврежденной изоляцией контактируют между собой и в образовавшемся стальном неизолированном пакете вихревые токи нагревают сердечник. При этом может произойти расширенное замыкание по всей расточке статора или местное.
В зависимости от площади замыкания в листах может возникнуть так называемый «пожар в железе», сильно перегревающий изоляцию и приводящий к ее повреждению. Это явление опасно в крупных синхронных машинах, особенно в турбогенераторах.
Избавляются от такого опасного явления в активной стали следующим образом:
• крупные синхронные машины имеют измерительные средства по току и мощности (амперметры и ваттметры), поэтому уровень нагрузки легко контролируется, и меры по снижению нагрузки можно принять быстро. Нагрев обмотки и активной стали контролируется с помощью термопар, заложенных в статор для замера температуры обмотки и сердечника;
• в случае замыкания активной стали, особенно местного характера, это явление обнаруживается в работающей машине только на слух. Возникает зудящая вибрация, и ее слышно приблизительно в том месте статора, где замкнута активная сталь. Для устранения этого явления машину следует разобрать. Обычно крупные синхронные двигатели изготовляют с удлиненными валами, что дает возможность снять щиты и сдвинуть статор, в котором можно работать.
Затем для уплотнения стали в зубцы забивают клинья из текстолита, промазанные одним из клеящих лаков (№ 88, МЛ-92 и др.). Перед расклиновкой зубцов активную сталь тщательно продувают сухим компрессорным воздухом.
Если по какой-либо причине возникло замыкание и оплавление железа в зубцах, поврежденные участки тщательно вырубают, зачищают, между листами заливают лак воздушной сушки и листы расклинивают. Если после этого зудящая вибрация не исчезает, следует повторить расклиновку до полного исчезновения вибрации активной стали.
В высоковольтных крупных машинах проверку качества ремонта и шихтовки листов проводят индукционным способом.
Перегрев обмотки статора. Наиболее частой причиной местных перегревов обмоток статоров синхронных машин являются витковые замыкания. При возникновении виткового замыкания в обмотке статора, компаундированной битумом, машина отключится максимальной защитой в связи с повышением тока в поврежденной фазе. В месте виткового замыкания битум расплавится, затечет между витки и изолирует их. Примерно через 30— 40 мин после того, как застынет битум, следует запустить синхронную машину. Многолетний опыт подтверждает благоприятный исход изложенного порядка ликвидации повреждения обмотки.
Однако такое восстановление изоляции статора нельзя считать надежным, хотя и восстановленная изоляция может длительное время надежно работать до остановки двигателя на плановый ремонт.
В статорных обмотках синхронных машин возможны неисправности, аналогичные неисправностям в обмотках асинхронных двигателей, как например, перегрузка по току при снижении напряжения в сети. В этом случае требуется повысить напряжение сети до номинального.
Перегрев обмотки возбуждения. В отличие от статорной обмотки синхронных машин обмотки возбуждения питаются постоянным током. Изменяя ток возбуждения в синхронной машине, можно регулировать коэффициент мощности. Ток возбуждения регулируют в пределах номинальных значений для каждого типа синхронных машин.
С увеличением тока возбуждения повышается перегрузочная способность синхронных двигателей, улучшается коэффициент мощности благодаря высоким компенсирующим способностям таких машин, повышается уровень напряжения в зоне их действия. Однако с увеличением тока в обмотке возбуждения повышается нагрев этой обмотки, а также увеличивается ток в статорной обмотке. Поэтому ток в обмотке возбуждения регулируют до такого уровня, при котором ток в обмотке статора становится минимальным, коэффициент мощности равным единице, а ток возбуждения находится в пределах номинального значения.
При замыкании в цепи обмотки возбуждения повышается температура обмотки, перегрев может оказаться недопустимым; возникает вибрация ротора, которая может оказаться тем сильнее, чем большая часть витков обмотки окажется замкнутой.
Возможность возникновения замыкания в обмотке возбуждения объясняется следующим. В результате усыхания и усадки изоляции катушек полюсов появляется подвижка катушек, в связи с этим корпусная и витковая изоляция истирается, что в свою очередь создает условия для возникновения замыкания между витками и на корпус полюса.
Повреждения обмотки возбуждения во время запуска синхронных двигателей. Иногда возникают повреждения изоляции обмотки возбуждения синхронных двигателей в начальный момент пуска. При замыкании обмотки возбуждения на корпус работа синхронного двигателя недопустима.
Для того чтобы понять причины появления неисправностей в процессе пуска синхронных двигателей, необходимо знать их устройство.
Статор и обмотки синхронного двигателя по конструкции аналогичны статору асинхронного двигателя. Синхронный двигатель отличается от асинхронного конструкцией ротора.
Ротор синхронного двигателя с частотой вращения до 1500 об/мин имеет явнополюсное исполнение, т. е. полюсы укрепляют на роторной звезде (ободе). Роторы быстроходных машин изготовляют неявнополюсными. В полюсных наконечниках в выштампованные отверстия вставлены медные или латунные стержни пусковой обмотки. На полюса (на корпусную изоляцию) насажены катушки обмотки возбуждения, соединенные последовательно между собой.
Обычно запуск синхронного двигателя с пусковой обмоткой производят в асинхронном режиме. Если обмотка возбуждения синхронного двигателя глухо соединена с возбудителем, то промежуточный аппарат для подачи возбуждения не требуется; машина входит в синхронизм, будучи возбужденной от постоянно подключенного возбудителя к обмотке возбуждения.
Однако есть схемы, особенно крупных машин, когда возбуждение подается от отдельно установленного возбудителя через коммутирующий аппарат-контактор, обычно трехполюсный. Такой контактор имеет следующую кинематику: два полюса с нормально открытыми контактами, а третий — с нормально закрытым контактом. Нормально закрытый контакт при включении контактора размыкается лишь тогда, когда замыкаются контакты нормально открытые, и наоборот, разомкнутся они тогда, когда замкнется нормально закрытый контакт. Во время регулировки контактов следует строго соблюдать порядок их замыкания и размыкания.
Такие требования к контактору подачи возбуждения вызваны тем, что если при пуске двигателя нормально открытый контакт контактора, через который обмотка возбуждения замкнута на сопротивление, окажется разомкнутым, изоляция катушек будет повреждена на корпус. Объясняется это следующим образом.
В момент включения ротор неподвижен и машина представляет собой трансформатор, вторичной обмоткой которого является обмотка возбуждения, на концах которой напряжение, пропорциональное числу витков, может достигнуть нескольких тысяч вольт и пробить изоляцию на корпус. В этом случае машину разбирают.
Если синхронный двигатель выполнен с удлиненным валом, статор сдвигают, поврежденный полюс снимают и ремонтируют поврежденную корпусную изоляцию. Затем полюс устанавливают на место, после чего проверяют мегомметром сопротивление изоляции относительно корпуса; отсутствие виткового замыкания остальной части обмотки возбуждения подачей переменного напряжения на контактные кольца. В случае возникновения виткового замыкания эта часть обмотки будет греться. Место замыкания можно легко обнаружить.
Неисправности в щеточном аппарате и контактных кольцах. В процессе эксплуатации синхронных двигателей в щеточном аппарате и контактных кольцах по различным причинам возникают неисправности. Основные из них следующие.
Интенсивный износ кольца на отрицательном полюсе объясняется переносом частиц металла на щетку. При износе контактного кольца на его поверхности появляются глубокие борозды щетки быстро изнашиваются; при замене новую щетку правильно по кольцу подогнать невозможно. Для ограничения износа кольца следует изменять полярность (т. е. менять местами подключение кабеля к траверсе щеткодержателя) с периодичностью один раз в 3 мес.
В результате электрохимических явлений под действием тока от гальванической пары при контакте щетки с неподвижным кольцом во влажной атмосфере на поверхности колец появляются шероховатые пятна, вследствие чего во время работы машины щетки интенсивно срабатываются и искрят. Способ устранения: кольца прошлифовать и отполировать.
Во избежание в дальнейшем появления пятен на поверхности колец, под щетки заводят (при длительной стоянке машины) прокладку из прессшпана.
При проверке щеточного аппарата выясняется, что часть щеток в обоймах щеткодержателей туго ходит, не касаясь контактных колец, и в работе не участвует. Оставшиеся в работе щетки, будучи перегружены, искрят и греются, т. е. интенсивно изнашиваются. Возможной причиной может быть следующее: щетки установлены в обоймы щеткодержателей плотно, без допусков; грязь, расклинивающая щетки, из-за чего они зависают в обоймах; слабое нажатие на щетки; плохая вентиляция щеточного аппарата; установлены щетки с высокой твердостью и большим коэффициентом трения.
Способы устранения: щетки должны соответствовать рекомендациям завода — изготовителя машины; новые щетки должны входить в обойму щеткодержателей с зазором 0,15—0,3 мм; давление на щетку регулируют в пределах 0,0175—0,02МПа/см2 (175—200 г/см2) с допустимой разницей давлений в пределах 10%; щеточный аппарат, изоляцию колец следует содержать в чистоте, периодически продувая сухим компрессорным воздухом; допустимое биение поверхности контактных колец должно быть в пределах 0,03—0,05 мм.
Неисправности в пусковой клетке ротора.
Пусковая клетка (обмотка) ротора (аналогичная беличьей клетке асинхронных двигателей) является неотъемлемой частью синхронных двигателей и предназначена для пуска их в асинхронном режиме.
Пусковая клетка находится в тяжелом пусковом режиме, нагреваясь до температуры 250 °С. При достижении частоты вращения 95 % пн в обмотку возбуждения подается постоянный ток, ротор полностью входит в синхронизм с вращающимся полом статора и частотой сети. В этом случае в пусковой клетке ток снижается до 0. Таким образом, за время разгона ротора синхронного двигателя в пусковой клетке, кроме указанной выше температуры, возникают электродинамические, а также центробежные силы, деформирующие стержни клетки и их соединения с короткозамкнутыми кольцами.
В ряде случаев при внимательном осмотре пусковых клеток обнаруживаются обрывы стержней, полные или начинающиеся, разрушение короткозамыкающих колец. Такие повреждения пусковой клетки отрицательно сказываются на пуске двигателя, который либо совсем невозможно пустить, либо он не разворачивается до номинальных оборотов. При этом сила тока во всех трех фазах одинакова.
Возникшие в пусковой клетке неисправности устраняют запайкой твердым припоем. Все места, подлежащие запайке, следует тщательно осмотреть, с противоположной стороны соединительной шины, проверить качество пайки стержней с помощью зеркала. Затем все повреждения тщательно расчистить и запаять.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Ремонт электрических машин — Синхронные машины
Содержание материала
2.3. Синхронные машины
Синхронные машины широко применяются в качестве генераторов электрической энергии, например на электрических станциях. Синхронные двигатели используются для привода компрессоров, насосов, преобразовательных агрегатов и т. д. Двигатели, которые работают без нагрузки на валу, применяют в качестве источника реактивной мощности и называют синхронными компенсаторами.
В автоматике используют синхронные микродвигатели мощностью от долей ватта до нескольких сотен ватт.
Характерной особенностью синхронных машин является то, что в установившемся режиме работы скорость ротора равна угловой скорости магнитного поля.
Синхронная машина имеет две обмотки. Одна из них (обмотка возбуждения) подключается к источнику постоянного тока и создает основное магнитное поле машины. Вторая является обмоткой якоря и состоит из одной, двух или трех фаз. Наиболее распространены трехфазные обмотки якоря. В обмотке якоря индуцируется основная электродвижущая сила (ЭДС) машины.
Обычно в синхронных машинах обмотка якоря расположена на статоре, а обмотка возбуждения — на роторе. Иногда в машинах небольшой мощности обмотка якоря находится на роторе, а обмотка возбуждения — на полюсах статора. На практике преобладает первая конструкция, поскольку в этом случае к скользящему контакту ротора подводится мощность возбуждения, которая составляет лишь 0,3 — 3 % номинальной мощности машины.
Сердечник статора синхронной машины состоит из отдельных пластин электротехнической стали толщиной 0,5 мм (рис. 2.7). На внутренней поверхности статора имеются пазы для укладки обмотки якоря. При внешнем диаметре менее 1 м сердечник собирается из цельных кольцевых пластин (рис. 2 7, а) и при большем диаметре каждое кольцо составляют из отдельных пластин, которые называют сегментами (рис. 2.7, б). Сердечник закрепляется в станине (корпусе) статора. В пазы статора, которые обычно имеют прямоугольное сечение, укладывают двухслойные петлевые обмотки, а в крупных машинах — одно-витковые стержневые волновые обмотки.
Рис. 2.7. Листы сердечника статора синхронной машины: а — штампованные листы статорной стали небольших машин, б — штампованные листы (сегменты) статорной стали крупных машин; 1 — электротехническая сталь; 2 — лак или бумага
По исполнению ротора синхронные машины разделяют на явнополюсные и неявнополюсные.
Явнополюсный ротор синхронной машины (рис. 2.8) имеет выступающие полюса, сердечник которых в машинах большой мощности набирают из пластин конструкционной стали толщиной 0,5 — 1 мм.
В машинах небольшой мощности полюса крепятся болтами к валу, а в тихоходных — к ободу ротора.
В крупных и относительно быстроходных машинах полюса крепят к ободу ротора с помощью Т-образных или ласточкиных хвостов.
Обмотки возбуждения располагают на полюсах. В полюсных наконечниках размещают пусковую (демпферную) обмотку, изготовленную из крупных прутков латуни. Стержни этой обмотки по торцам замыкают пластинами или кольцами, образуя короткозамкнутые клетки.
Явнополюсные роторы применяют в машинах большой мощности с относительно низкой частотой вращения, а значит с большим числом полюсов.
Неявнополюсные роторы используют в синхронных машинах большой мощности с высокой частотой вращения (3000, 1500об/мин), например в синхронных турбогенераторах, а также быстроходных синхронных двигателях, которые применяются, в частности, для привода турбокомпрессоров.
Рис. 2.8. Явнополюсный ротор синхронной машины:
1 — ротор с полюсами и катушками; 2 — полюс с пусковой (демпферной) обмоткой; 3 — обмотка возбуждения полюса
Большинство синхронных машин имеет электромагнитное возбуждение. Источником постоянного тока для обмотки возбуждения являются специальные системы возбуждения: электромашинная и вентильная. В системе возбуждения используется специальный генератор постоянного тока (возбудитель), мощность которого составляет 0,3 -3 % мощности синхронной машины. Возбудитель обычно соединяется с валом синхронной машины. Величина тока возбуждения регулируется в цепи возбуждения возбудителя.
Вентильные системы возбуждения имеют три разновидности: с самовозбуждением, с независимым возбуждением, с бесщеточным возбуждением.
В настоящее время широко применяются синхронные машины с постоянными магнитами: микродвигатели, генераторы и двигатели малой мощности, тахогенераторы. В этих машинах вместо обмотки возбуждения используют постоянные магниты, которые в большинстве случаев располагают на роторе. Конструкция статора остается неизменной.
В синхронных двигателях, кроме постоянных магнитов, на роторе размещают пусковую короткозамкнутую обмотку.
Синхронные машины, как и асинхронные, изготовляют сериями. Для автономных установок, где в качестве первичного двигателя применяют двигатели внутреннего сгорания, выпускают синхронные генераторы серий ЕСС, СГД, СГН мощностью 6,25 — 156кВ-А при напряжении 400 В и 500 — 4000кВ-А при напряжении 6,3 кВ.
Номинальные частоты вращения генераторов 500, 1000, 1500 об/мин.
В синхронных электроприводах используют синхронные двигатели серий СД и СДН мощностью 75 — 125 кВт при напряжении 380 В и 400 — 10 000 кВт при напряжении 6кВ.
Синхронные двигатели серий СДН, СДНЗ (315 — 4000 кВт, 6кВ) предназначены для привода насосов, мельниц, дымососов и других механизмов с небольшими маховыми массами, которые не требуют регулирования частоты вращения. Обычно двигатели работают в закрытых помещениях с регулируемыми климатическими условиями. Степень защиты двигателей серии СДН — IP00, серии СДНЗ — IP44.
Двигатели этих серий изготавливают со станиной на лапах, с двумя стояковыми подшипниками скольжения, с горизонтальным размещением вала и одним свободным цилиндрическим концом. Корпус статора сварной, из листовой стали. Между пакетами сердечника статора имеются радиальные каналы для циркуляции охлаждающего воздуха. Температура подшипников контролируется с помощью термометров сопротивления.
Двигатели серий СДН, СДНЗ допускают прямой асинхронный пуск при номинальном напряжении сети. Из холодного состояния с интервалами не менее 5 мин возможны два пуска, из горячего состояния допускается только один пуск. При этом средний статический момент сопротивления не должен быть больше 0,4 номинального момента. Общее число пусков не может превышать 500 в год.
Возбуждение, управление пуском и остановом двигателей осуществляется от тиристорных возбудителей типа ТЕ8-320. Синхронные двигатели серий СДК, СДКП, СДКМ (315 — 800 кВт, 6 — 10 кВ) предназначены для привода компрессоров. Двигатели серии СДКП применяют во взрывоопасных помещениях. Для привода аммиачных поршневых компрессоров предназначены двигатели серии СДКМ.
Исполнение двигателей — горизонтальное, консольное (ротор насаживается на консольный конец вала компрессора).
Изоляция обмоток статора и ротора по нагревостойкости соответствует классу В.
Возбуждение двигателей осуществляется от тиристорных возбудителей на напряжение 380 В, которое получают от согласующего трансформатора.
Пуск двигателей асинхронный, непосредственно от сети при полном напряжении с разгруженным компрессором.
Синхронные явнополюсные двигатели серии СДМЗ (1600 -4000 КВт, 6кВ) предназначены для привода шаровых и стержневых мельниц в продолжительном режиме работы в закрытых помещениях с регулируемыми климатическими условиями. Двигатели имеют степень защиты IP44, горизонтальный вал, два стояковых подшипника скольжения с комбинированной смазкой.
Вентиляция принудительная по замкнутому циклу через воздухоохладители, установленные на фундаментной плите.
Возбуждение двигателей осуществляется от тиристорных возбудителей типа ТЕ8-320/150 и ТЕ8-320-230. Возможны два пуска подряд из холодного состояния или один пуск из горячего состояния при среднем статическом моменте 0,8 номинального. Следующий цикл возможен только через 2 ч. В год допускается до 500 пусков.
Синхронные двигатели серии СДМП2 (400 — 800 кВт, 6кВ) используются для привода шаровых и стержневых мельниц, установленных в помещениях со взрывоопасной средой. Режим работы S1, климатическое исполнение и категория размещения УХЛ4, степень защиты IP43. Система вентиляции включает отдельный вентилятор. Возбуждение от тиристорного возбудителя типа ТВ300Р-УХЛ4. Подшипники скольжения имеют кольцевую смазку.
Синхронные явнополюсные двигатели серии ДСЗ (12 500 -22 000 кВт, 6 — 10 кВ) предназначены для привода преобразовательных агрегатов. Они имеют закрытое исполнение с самовентиляцией по замкнутому циклу через воздухоохладители, которые устанавливают в фундаментной яме; степень защиты IP43. Конструкция двигателей позволяет сдвигать статор на полную длину ротора для профилактических осмотров и ремонтов, включая замену элементов обмотки статора и ротора без разборки двигателей. Возбуждение двигателей тиристорное.
Синхронные явнополюсные вертикальные двигатели серии ВДС (4000 — 16000 кВт, 6 — 10 кВ) применяются для привода насосов на крупных оросительных системах и магистральных каналах при подаче воды до 40м3/с и напоре 25 — 65 м.
Синхронные неявнополюсные двигатели серий СТД и ТДС (630 -31500 кВт, 6-10 кВ) используются для электроприводов нефтяных насосов и газовых компрессоров на компрессорных станциях магистральных нефте- и газопроводов, газовых компрессоров химического производства, водяных насосов при добыче нефти и др.
Двигатели выполняют с замкнутыми и разомкнутыми циклами вентиляции, на фундаментных плитах с двумя стояковыми подшипниками и одним рабочим концом вала, с массивной бочкой ротора, в пазы которой заложена обмотка возбуждения. Изоляция обмотки возбуждения — класса нагревостойкости В. Вентиляторы расположены с обеих сторон бочки ротора.
Подшипники скольжения смазываются под давлением. Двигатели этой серии могут запускаться непосредственно от сети. В случае больших моментов инерции пуск производят при пониженном напряжении с помощью пускового тиристорного устройства. Для питания обмотки возбуждения синхронных двигателей серии СТД применяют тиристорные возбудители серии ВТЕ 320-6. Возбудители подсоединяют к сети через трансформатор.
1. Как устроен синхронный двигатель?
2. Виды возбуждения синхронных машин.
3. Какие бывают серии синхронных машин и их особенности.
4. Чем различаются явнополюсные и неявнополюсные синхронные машины?
5. Где располагается пусковая обмотка синхронного двигателя? Как она выполняется?
6. Какие типы тиристорных возбудителей применяются в синхронных машинах?
7. Чему равна скорость ротора синхронной машины в установившемся режиме работы?
8. Как выполняется обмотка возбуждения синхронного двигателя?
9. В каких синхронных машинах применяют постоянные магниты?
10. Для привода каких промышленных механизмов используют синхронные двигатели?
Источник