Ремонт системы регулирования температуры

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМ И УСТРОЙСТВ АВТОМАТИКИ

Системы и устройства автоматики применяются на многих предприятиях разных отраслей народного хозяйства для автоматического управления и контроля за производственными процессами. Производственные процессы в отраслях резко различны по своим параметрам (выходная продукция, температурные режимы, физико-механичё-ские свойства исходного продукта и др.), что обусловило разработку и применение многих сотен различных систем и устройств автоматики. Значительная-часть таких систем и устройств используется в перерабатывающей промышленности, сельском и коммунальном хозяйстве, на предприятиях местной промышленности и в других организациях. Ниже излагается порядок проведения работ по ТО систем и устройств автоматики,-применяемых в перечисленных выше отраслях.

Техническое обслуживание систем и устройств автоматики сводится к следующему:

ежедневно осматривают приборы контроля и средства автоматизации всего обслуживаемого объекта, проверяют правильность их показаний. Очищают корпуса приборов от пыли и грязи;

проверяют состояние импульсных и воздушных трасс, периодически их прокачивают и. осматривают. Ежедневно сливают накопившийся конденсат (с помощью кранов и вентилей) из отстойников, установленных на импульсных линиях перед датчиками расхода давления, а также из отстойников газоанализаторов и фильтров на линиях сжатого воздуха; —

проверяют наличие питания приборов и схем автоматического контроля, регулирования и управления, давления сжатого воздуха как в общем питающем трубопроводе, так и в трубопроводах после редукторов, смонтированных перед каждым прибором или группой приборов;

заменяют использованные диаграммы на самопишущих приборах и заливают перья чернилами, проверяют скорость движения диаграммы, четкость и качество записи (при необходимости перо очищают и промывают теплой водой или бензином);

заливают приборы и разделительные сссуды технической жидкостью;

проверяют приборы по нулевым или контрольным точкам, зоны нечувствительности электронных усилителей;

периодически проверяют и контролируют один раз в неделю (при необходимости чаще) показания приборов по нулевым значениям шкалы расхода и давления;

налаживают автоматические регуляторы в соответствии с требованиями технологического процесса

проверяют (вне плана) щитовые и местные приборы, клапаны, регуляторы и в случае необходимости проводят мелкий ремонт (не требующий демонтажа приборов), при котором устраняют неисправности (при невозможности быстрого устранения неисправности прибор демонтируют и заменяют резервным).

Системы измерения температуры. При ТО логометрических систем осматривают терморезисторы, очищают, проверяют исправность соединительных проводов, защитных труб и металлорукавов. Логометры осматривают, очищают от пыли, проверяют надёжность крепления соединительных проводов я контроль установки стрелки на Емсиую отметку шкалы.

Техническое обслуживание потенциометров и мостовых схем измерения темпера-Ир»* заключается в осмотре, очистке от пыли наружных поверхностей, смазке подвиж-Вяж узлов и деталей, регулировке чувствительности электронного усилителя, чистке Врхорда, заправке самопишущих приборов.

При ТО потенциометрических систем измерения температуры осматривают термопары, очищаюгих от корковых образований, прОверяют’исправность металлору-ННЁгёв, соединительных яроводов и защитных труб.

Системы измерения расхода с дифференциально-трансформаторной передачей Деформации на расстояние. При обслуживании осматривают и очищают от пыли или Марковых образований расходомеры, проверяют рукой Легкость вращения электро-Вмигателя, очищают и осматривают крыльчатую или вибролоткрвую системы, устанавливают наличие трещин, заусениц, проверяют .прочность ее-крепления на валу §Йектродвигателя, очищают от,пыли отсек с диффренциально-трансформаторным ^преобразователем, заливают демпфера маслом, проверяют надежность крепления подвесок, передающих рычагов и соединительных проводов. Системы регулирования. Регуляторы давления прямЬго действия. Для контроля да состоянием регулятора используют приборы давления (например, манометры), установленные до и после регуляторов. При нормальной работе последних давление после них должно находиться в пределах заданного значения, а до регуляторов должно М&ыть несколько большим и соответствовать давлению среды в магистрали. Чтобы убедиться в исправности показывающих приборов, перекрывают с помощью вентилей (доступ среды к месту их установки. При этом стрелки приборов должны устанавливаться на нулевую отметку, а после возобновления подачи среды — на прежние отметки ‘шкалы. Затем, воздействуя на задатчик регулятора, убеждаются в том, что давление после этого изменяется в нужную сторону.

При эксплуатации регуляторов давления прямого действия, особенно в первый период после монтажа трубопроводной арматуры, возможны попадания посторонних предметов (окалины, ржавчины, стружки) между клапаном и седлом регулятора и сбои в его работе. В таких случаях регуляторы разбирают, не прибегая к демонтажу, чистят и промывают клапаны, смазывают подвижные части, вновь собирают и проверяют работоспособность описанным способом.

Об исправности Статических регуляторов температуры прямого действия манометрического типа судят по показаниям термоизмерительных приборов и поведению Сальникового уплотнения регуляторов! В случае просачивания через него конденсата уплотцяющий винт сальника проворачивают по часовой стрелке. При-этом следят, чтобы охватываемый сальником шток не оказался чрезмерно зажатым. Нормальной считается затяжка, при которой шток после принудительного поднятия сам опускается на прежнее место. В календарные сроки (но один раз в год обязательно) снова набивают сальниковое уплотнение. Набивку приготовляют в составе: асбестового шнура 40 % по массе, говяжьего хала 50 % и графитового порошка 10 %

Если в процессе эксплуатации регулятора температура регулируемой среды выхо: дит за допустимые пределы и не удается снизить^ее поворотом гайки задатчика в нужную сторону, значит засорился регулирующий клапан или чрезмерно сжата сальниковая набивка. Возможна также разгерметизация термоманометрической системы регулятора, о чем может свидетельствовать повышение регулируемой температуры против заданного значения. В первых двух случаях сбои регулятора устраняют, в последнем — регулятор заменяют.

Читайте также:  Usb осциллограф для ремонта

Регуляторы давленая непрямого действия. Текущий надзор за регуляторами со стороны обслуживающего персонала (дежурных ремонтников и операторов-технологов) сводится к’ систематическому наблюдению за работой и состоянием отдельных элементов и регуляторов в целом, оценке качества регулирования по показаниям контрольных приборов и поведению сигнальной аппаратуры. При обнаружении неполадок в работе регулятора систему переводят на ручное управление до полного их устранения,

В регламентные сроки обслуживания проверяют и корректируют контрольные точки измерительных приборов, контакты которых используют в системах позиционного регулирования (обычно один раз в сутки),’ проверяют и корректируют нулевые точки регулирующих приборов проверяют при помощи аппаратуры параметры электронными регулирующих приборов (один раз в год), меняют смазку

Сопротивление изоляции должно быть не менее 0,5 МОм. При меньшем значения сопротивления выясняют и устраняют причину.

Проверка контактов. Осматривают контактные соединения выводных проводов, а также перемычек с электронагревательными элементами. При обнаружении «а контактных соединениях следов подгорания, окисления или потемнения от перегревания контакты разбирают, зачищают контактные поверхности напильником с мелкой насечкой или шлифовальной шкуркой до металлического блеска, собирают и затягивают ключами. Проверяют степень затяжки остальных контактов и при необходимости подтягивают. При подтягивании для предохранения нагревательного устройства от повреждения удерживают контактный стержень нагревательного устройства от проворачивания ключом за гайку крепления^изолятора.

Проверка изоляции проводов. Осматривают изоляцию провода. Изоляция проводов не должна иметь механических повреждений и обугленных участков. Места с незначительными повреждениями изолируют изоляционной лентой. Провода с сильно поврежденной изоляцией заменяют новыми.

Проверка бака и трубопроводов водонагревателей и парогенераторов. Осмотрев бак и трубопроводы, убеждаются в отсутствии течи воды. При наличии течи бака или трубопровода через прокладку или уплотнение в местах расположения крепежных подтягивают гайки соединения. Если подтягиванием гаек крепежного сейййения устранить течь не удалось, выясняют и устраняют причину или проводят ремонт.

Проверка уровня воды в водонагревателе и парогенераторе. По водомеру проверяют уровень воды в баке водонагревателя и в котле парогенератора. При отклонении уровня воды от нормального выясняют причину и устраняют.

Проверка работы калорифера или калориферной установки. Включают калорифер (калориферную установку) в сеть. После установившегося режима работы измеряют термометром температуру воздуха на выходе из калорифера (калориферной установки). Температура должна быть в пределах, указанных в паспортных данных калорифера или установки. При другом значении температуры воздуха регулируют шибером поступление воздуха и повторяют измерение. При невозможности установить требуемый тепловой режим работы выясняют причину и устраняют неисправность калорифера или установки.

Проверка работы водонагревателя и парогенератора. Включают водонагреватель ‘в сеть. После отключения водонагревателя регулятором температуры термометром измеряют температуру воды на выходе водонагревателя. Температура воды должна быть в пределах, указанных в паспортных данных водонагревателя. Если температура отличается от паспортных данных, настраивают регулятор температуры»или зачищают-поверхность его контактов (при наличии доступа). Нагревание воды повторяют. Если после настройки или Чистки контактов терморегулятора температура воды отличается от требуемой, выясняют и устраняют причину или проводят текущий ремонт водонагревателя. Амперметром измеряют потребляемый электронагревателем или парогенератором ток. Потребляемый ток при номинальном напряжении не должен превышать значения, указанного в паспортных данных^Гри установившемся режиме работы измеряют температуру и рабочее давление насыщенного пара в котле. Температура пара должна быть в пределах, указанных в паспорте, а давление пара не должно превышать 10.

Источник

Системы автоматического регулирования температуры

По принципу регулирования все системы автоматического регулирования подразделяются на четыре класса.

1. Система автоматической стабилизации — система, в которой регулятор поддерживает постоянным заданное значение регулируемого параметра.

2. Система программного регулирования — система, обеспечивающая изменение регулируемого параметра по заранее заданному закону (во времени).

3. Следящая система — система, обеспечивающая изменение регулируемого параметра в зависимости от какой-либо другой величины.

4. Система экстремального регулирования — система, в которой регулятор поддерживает оптимальное для изменяющихся условий значение регулируемой величины.

Для регулирования температурного режима электронагревательных установок применяются в основном системы двух первых классов.

Системы автоматического регулирования температуры по роду действия можно разделить на две группы: прерывистого и непрерывного регулирования.

Автоматические регуляторы систем автоматического регулирования (САР) по функциональным особенностям разделены на пять типов: позиционные (релейные), пропорциональные (статические), интегральные (астатические), изодромные (пропорционально-интегральные), изодромные с предварением и с первой производной.

Позиционные регуляторы относятся к прерывистым САР, а остальные типы регуляторов — к САР непрерывного действия. Ниже рассмотрены основные особенности позиционных, пропорциональных, интегральных и изодромных регуляторов, имеющих наибольшее применение в системах автоматического регулирования температуры.

Функциональная схема автоматического регулирования температуры (рис. 1) состоит из объекта регулирования 1, датчика температуры 2, программного устройства или задатчика уровня температуры 4, регулятора 5 и исполнительного устройства 8. Во многих случаях между датчиком и программным устройством ставится первичный усилитель 3, а между регулятором и исполнительным устройством — вторичный усилитель 6. Дополнительный датчик 7 применяется в изодромных системах регулирования.

Читайте также:  Окпд2 текущий ремонт санитарных узлов

Рис. 1. Функциональная схема автоматического регулирования температуры

В качестве датчиков температуры применяются термопары, термосопротивления (термисторы) и термометры сопротивления. Наиболее часто используются термопары. Более подробно про них смотрите здесь: Термоэлектрические преобразователи (термопары)

Позиционные (релейные) регуляторы температуры

Позиционными называют такие регуляторы, у которых регулирующий орган может занимать два или три определенных положения. В электронагревательных установках применяются двух- и трехпозиционные регуляторы. Они просты и надежны в эксплуатации.

На рис. 2 показана принципиальная схема двухпозиционного регулирования температуры воздуха.

Рис. 2. Принципиальная схема двухпозиционного регулирования температуры воздуха: 1 — объект регулирования, 2 — измерительный мост, 3 — поляризованное реле, 4 — обмотки возбуждения электродвигателя, 5 — якорь электродвигателя, 6 — редуктор, 7 — калориф.

Для контроля температуры в объекте регулирования служит термосопротивление ТС, включенное в одно из плеч измерительного моста 2. Величины сопротивлений моста подбираются таким образом, чтобы при заданной температуре мост был уравновешен, то есть напряжение в диагонали моста равнялось нулю. При повышении температуры поляризованное реле 3, включенное в диагональ измерительного моста, включает одну из обмоток 4 электродвигателя постоянного тока, который с помощью редуктора 6 закрывает воздушный клапан перед калорифером 7. При понижении температуры воздушный клапан полностью открывается.

При двухпозиционном регулировании температуры количество подаваемого тепла может устанавливаться только на двух уровнях — максимальном и минимальном. Максимальное количество тепла должно быть больше необходимого для поддержания заданной регулируемой температуры, а минимальное — меньше. В этом случае температура воздуха колеблется около заданного значения, то есть устанавливается так называемый автоколебательный режим (рис. 3, а).

Линии, соответствующие температурам τ н и τ в, определяют нижнюю и верхнюю границы зоны нечувствительности. Когда температура регулируемого объекта, уменьшаясь, достигает значения τ н количество подаваемого тепла мгновенно увеличивается и температура объекта начинает возрастать. Достигнув значения τ в, регулятор уменьшает подачу тепла, и температура понижается.

Рис. 3. Временная характеристика двухпозиционного регулирования (а) и статическая характеристика двухпозиционного регулятора (б).

Скорость повышения и понижения температуры зависит от свойств объекта регулирования и от его временной характеристики (кривой разгона). Колебания температуры не выходят за границы зоны нечувствительности, если изменения подачи тепла сразу вызывают изменения температуры, то есть если отсутствует запаздывание регулируемого объекта .

С уменьшением зоны нечувствительности амплитуда колебаний температуры уменьшается вплоть до нуля при τ н = τ в. Однако для этого требуется, чтобы подача тепла изменялась с бесконечно большой частотой, что практически осуществить чрезвычайно трудно. Во всех реальных объектах регулирования имеется запаздывание. Процесс регулирования в них протекает примерно так.

При понижении температуры объекта регулирования до значения τ н мгновенно изменяется подача тепла, однако из-за запаздывания температура некоторое время продолжает снижаться. Затем она повышается до значения τ в, при котором мгновенно уменьшается подача тепла. Температура продолжает еще некоторое время повышаться, затем из-за уменьшенной подачи тепла температура понижается, и процесс повторяется вновь.

На рис. 3, б приведена статическая характеристика двухпозиционного регулятора . Из нее следует, что регулирующее воздействие на объект может принимать только два значения: максимальное и минимальное. В рассмотренном примере максимум соответствует положению, при котором воздушный клапан (см. рис. 2) полностью открыт, минимум — при закрытом клапане.

Знак регулирующего воздействия определяется знаком отклонения регулируемой величины (температуры) от ее заданного значения. Величина регулирующего воздействия постоянна. Все двухпозиционные регуляторы обладают гистерезисной зоной α , которая возникает из-за разности токов срабатывания и отпускания электромагнитного реле.

Пропорциональные (статические) регуляторы температуры

В тех случаях, когда необходима высокая точность регулирования или когда недопустим автоколебательный процесс, применяют регуляторы с непрерывным процессом регулирования . К ним относятся пропорциональные регуляторы (П-регуляторы) , пригодные для регулирования самых разнообразных технологических процессов.

В тех случаях, когда необходима высокая точность регулирования или когда недопустим автоколебательный процесс, применяют регуляторы с непрерывным процессом регулирования. К ним относятся пропорциональные регуляторы (П-регуляторы), пригодные для регулирования самых разнообразных технологических процессов.

В системах автоматического регулирования с П-регуляторами положение регулирующего органа (у) прямо пропорционально значению регулируемого параметра (х):

где k1 — коэффициент пропорциональности (коэффициент усиления регулятора).

Эта пропорциональность имеет место, пока регулирующий орган не достигнет своих крайних положений (конечных выключателей).

Скорость перемещения регулирующего органа прямо пропорциональна скорости изменения регулируемого параметра.

На рис. 4 показана принципиальная схема системы автоматического регулирования температуры воздуха в помещении при помощи пропорционального регулятора. Температура в помещении измеряется термометром сопротивления ТС, включенным в схему измерительного моста 1.

Рис. 4. Схема пропорционального регулирования температуры воздуха: 1 — измерительный мост, 2 — объект регулирования, 3 — теплообменник, 4 — конденсаторный двигатель, 5 — фазочувствительный усилитель.

При заданной температуре мост уравновешен. При отклонении регулируемой температуры от заданного значения в диагонали моста возникает напряжение разбаланса, величина и знак которого зависят от величины и знака отклонения температуры. Это напряжение усиливается фазочувствительным усилителем 5, на выходе которого включена обмотка двухфазного конденсаторного двигателя 4 исполнительного механизма.

Читайте также:  Смета ремонта отопления здания

Исполнительный механизм перемещает регулирующий орган, изменяя поступление теплоносителя в теплообменник 3. Одновременно с перемещением регулирующего органа происходит изменение сопротивления одного из плеч измерительного моста, в результате этого изменяется температура, при которой уравновешивается мост.

Таким образом, каждому положению регулирующего органа из-за жесткой обратной связи соответствует свое равновесное значение регулируемой температуры.

Для пропорционального (статического) регулятора характерна остаточная неравномерность регулирования .

В случае скачкообразного отклонения нагрузки от заданного значения (в момент t1) регулируемый параметр придет по истечении некоторого отрезка времени (момент t2) к новому установившемуся значению (рис. 4). Однако это возможно только при новом положении регулирующего органа, то есть при новом значении регулируемого параметра, отличающегося от заданного на величину δ .

Рис. 5. Временные характеристики пропорционального регулирования

Недостаток пропорциональных регуляторов состоит в том, что каждому значению параметра соответствует только одно определенное положение регулирующего органа. Для поддержания заданного значения параметра (температуры) при изменении нагрузки (расхода тепла) необходимо, чтобы регулирующий орган занял другое положение, соответствующее новому значению нагрузки. В пропорциональном регуляторе этого не происходит, вследствие чего возникает остаточное отклонение регулируемого параметра.

Интегральные (астатические регуляторы)

Интегральными (астатическими) называются такие регуляторы, в которых при отклонении параметра от заданного значения регулирующий орган перемещается более или менее медленно и все время в одном направлении (в пределах рабочего хода) до тех пор, пока параметр снова не примет заданного значения. Направление хода регулирующего органа изменяется лишь тогда, когда параметр переходит через заданное значение.

В интегральных регуляторах электрического действия обычно искусственно создается зона нечувствительности, в пределах которой изменение параметра не вызывает перемещений регулирующего органа.

Скорость перемещения регулирующего органа в интегральном регуляторе может быть постоянной и переменной. Особенностью интегрального регулятора является отсутствие пропорциональной связи между установившимися значениями регулируемого параметра и положением регулирующего органа.

На рис. 6 приведена принципиальная схема системы автоматического регулирования температуры при помощи интегрального регулятора. В ней в отличие от схемы пропорционального регулирования температуры (см. рис. 4) нет жесткой обратной связи.

Рис. 6. Схема интегрального регулирования температуры воздуха

В интегральном регуляторе скорость регулирующего органа прямо пропорциональна величине отклонения регулируемого параметра.

Процесс интегрального регулирования температуры при скачкообразном изменении нагрузки (расхода тепла) отображен на рис. 7 с помощью временных характеристик. Как видно из графика, регулируемый параметр при интегральном регулировании медленно возвращается к заданному значению.

Рис. 7. Временные характеристики интегрального регулирования

Изодромные (пропорционально-интегральные) регуляторы

Изодромное регулирование обладает свойствами как пропорционального, так и интегрального регулирования. Скорость перемещения регулирующего органа зависит от величины и скорости отклонения регулируемого параметра.

При отклонении регулируемого параметра от заданного значения регулирование осуществляется следующим образом. Вначале регулирующий орган перемещается в зависимости от величины отклонения регулируемого параметра, то есть имеет место пропорциональное регулирование. Затем регулирующий орган совершает дополнительное перемещение, которое необходимо для устранения остаточной неравномерности (интегральное регулирование).

Изодромную систему регулирования температуры воздуха (рис. 8) можно получить заменой жесткой обратной связи в схеме пропорционального регулирования (см. рис. 5) упругой обратной связью (от регулирующего органа к движку сопротивления обратной связи). Электрическая обратная связь в изодромной системе осуществляется потенциометром и вводится в систему регулирования через контур, содержащий сопротивление R и емкость С.

В течение переходных процессов сигнал обратной связи вместе с сигналом отклонения параметра воздействует на последующие элементы системы (усилитель, электродвигатель). При неподвижном регулирующем органе, в каком бы положении он ни находился, по мере заряда конденсатора С сигнал обратной связи затухает (в установившемся режиме он равен нулю).

Рис. 8. Схема изодромного регулирования температуры воздуха

Для изодромного регулирования характерно, что неравномерность регулирования (относительная ошибка) с увеличением времени уменьшается, приближаясь к нулю. При этом обратная связь не будет вызывать остаточных отклонений регулируемой величины.

Таким образом, изодромное регулирование приводит к значительно лучшим результатам, чем пропорциональное или интегральное (не говоря уже о позиционном регулировании). Пропорциональное регулирование в связи с наличием жесткой обратной связи происходит практически мгновенно, изодромное — замедленно.

Программные системы автоматического регулирования температуры

Для осуществления программного регулирования необходимо непрерывно воздействовать на настройку (уставку) регулятора так, чтобы регулируемая величина изменялась по заранее заданному закону. С этой целью узел настройки регулятора снабжается программным элементом. Это устройство служащее для установления закона изменения задаваемой величины.

При электронагреве исполнительный механизм САР может воздействовать на включение или отключение секций электронагревательных элементов, изменяя тем самым температуру нагреваемой установки в соответствии с заданной программой. Программное регулирование температуры и влажности воздуха широко применяется в установках искусственного климата.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Оцените статью