- Техника ремонта источников питания
- ВРемонт.su — ремонт фото видео аппаратуры, бытовой техники, обзор и анализ рынка сферы услуг
- Стабилизированные источники питания ремонт и поиск неисправностей
- Параметрические стабилизаторы напряжения и тока
- Стабилизаторы напряжения и тока компенсационного типа
- Быстрый ремонт импульсного источника питания своими руками
- Как быстро и правильно отремонтировать импульсный источник питания
- Основы поиска и устранения неисправностей блоков питания
- Неисправности современных импульсных блоков питания — возможные причины поломки
- Метод выявления неисправного компонента
- Проверка конденсатора
- Специфика самостоятельного ремонта ИИП
- Как отремонтировать импульсный блок питания
Техника ремонта источников питания
Наиболее вероятные причины неисправностей, которые следует устранять в первую очередь, касаются источника (или источников) питания вышедшей из строя схемы.
После проверки подключения и предохранителей выполняется внешний осмотр, в процессе которого иногда удается выявить неисправность трансформатора по коричневатому цвету его обмотки. Это обычно свидетельствует о перегреве трансформатора, в результате чего могла нарушиться межвитковая изоляция. Залитые модели, рассчитанные обычно для работы на пределе своих возможностей, имеют ограниченный срок службы, что связано с плохими условиями отвода тепла.
Следующий этап поиска касается схем выпрямления и фильтрации. В первую очередь следует проверить, не произошло ли короткое замыкание в конденсаторе, особенно если расплавился предохранитель. Подключение мультиметра в позиции омметра к конденсатору приводит к зарядке или разрядке последнего в зависимости от полярности измерительных щупов. Следовательно, прибор может показать короткое замыкание, которого на самом деле нет. Поэтому тестирование следует проводить достаточно долго, чтобы закончилось протекание тока зарядки. В установившемся режиме (если конденсатор исправен) тестер должен показать практически бесконечное сопротивление.
Затем можно перейти к поиску возможных неисправностей в стабилизаторах. После того как схема будет проверена (при необходимости с использованием технической документации), следует обратить внимание на вход стабилизатора.
Иногда во входной цепи стоит мощный резистор, предназначенный для понижения напряжения до приемлемой величины. Этот резистор может перегреться, что в конце концов приведет к разрыву цепи. В этом случае, прежде чем его заменить, все же рекомендуется тщательно исследовать оставшуюся часть схемы.
Между входами и выходами, а также по отношению к общей точке не должно существовать замыканий. Если про-изошло короткое замыкание, для выяснения его причины необходимо демонтировать стабилизатор. Во время повторной сборки схемы рекомендуется проверить изоляционные прокладки из слюды и других материалов. Если источник питания по-прежнему не функционирует, нужно исследовать другие компоненты схемы. Необходимо искать любые следы нагрева или неисправности как на печатной плате, так и под ней. На проводящих дорожках иногда образуются разрывы, а контактная площадка может отслоиться от платы.
После проверки всех активных и пассивных компонентов наступает очередь интегральных схем. Их проверка облегчается, если они вставлены в специальные панели. В таком случае схемы вынимаются одна за другой, и проверяется наличие замыкания на выходе источника питания до исчезновения дефекта. Для подключения источника питания к логическим ИС обычно служат верхний правый вывод (14 или 16) для положительного полюса и нижний левый (7 или 8) для общей точки. Однако имеются исключения, например ИС типа CD4049 и CD4050. Множество операционных усилителей, например LM324, TL084 и др., также имеют стандартное расположение выводов (+ (плюс) на выводе 4, а «земля» или — (минус) на выводе 11). Иногда обнаруживается неизвестный компонент (модель невозможно идентифицировать или она засекречена во избежание копирования). Впрочем, вполне может оказаться, что расположение выводов соответствует принятым стандартам и данный компонент можно тестировать. Когда причина неисправности найдена, схемы по очереди ставятся на место и каждый раз проверяется работа источника питания.
На практике редко встречаются серийные ИС, вставляемые в панели, за исключением программируемых схем. При этом крайне трудно осуществить поочередную отпайку интегральных схем. Такая операция рискованна как для компонентов (из-за нагрева), так и для печатной платы (из-за отслаивания дорожек) даже при использовании высококачественного отсоса для припоя. Если мы имеем дело с двусторонней платой, результаты могут быть просто катастрофическими.
В качестве возможного варианта решения проблемы допустимо рассечь дорожки металлизации, подводящие напряжение питания, резаком, следя за тем, чтобы не повредить близлежащие соединения. Лак, покрывающий дорожку, должен быть счищен с обеих сторон разреза, чтобы потом удалось выполнить мостик из припоя для восстановления соединения. (Еще раз напоминаем, что необходимо быть особенно внимательными при работе с двусторонними печатными платами.) Затем выполняется тестирование — так, как описано выше.
Соединения выводов неисправного компонента также проверяют перед подключением к источнику питания. Это позволяет выявить другие возможные причины неполадок. Если в результате проверки неисправности не обнаружены (не найдено короткое замыкание и отсутствует напряжение), то следует вновь вернуться к трансформатору, одна из обмоток которого может быть разорвана.
Тестирование при помощи омметра должно показать на вторичной обмотке сопротивление ниже 10 Ом, а на первичной — порядка 100 Ом. Эти величины справедливы только для небольших трансформаторов (мощностью ниже 30 ВА). Желательно сравнить трансформатор с идентичным исправным прибором. Разумеется, между разными обмотками не должно быть никакой электрической связи. Необходимо внимательно проверить отсутствие закороток на печатной плате: их устранение потребует полного демонтажа.
Наконец, отметим, что при многочисленных измерениях, которые обычно проводятся относительно общего (заземляющего) вывода, в качестве базовой точки можно использовать выход стабилизатора (положительный вывод), к которому несложно присоединить зонд осциллографа или мультиметра.
Источник
ВРемонт.su — ремонт фото видео аппаратуры, бытовой техники, обзор и анализ рынка сферы услуг
Home |
Стабилизированные источники питания ремонт и поиск неисправностей
Рис. 1. Рис. 1. Параметрический стабилизатор напряжения а) и тока, б):
Uн — напряжение нестабилизированное; Uстаб — напряжение стабилизированное; Rн — сопротивление нагрузки; Iн — нестабилизированный ток; Iстаб — стабилизированный ток.
Стабилизированные источники питания применяются в аппаратуре в тех случаях, когда в условиях переменной нагрузки требуется повышенная стабильность напряжения или тока. Их разделяют на два типа: параметрические и компенсационные.
Параметрические стабилизаторы напряжения и тока
Параметрические стабилизаторы используют нелинейность вольт-амперной характеристики полупроводниковых диодов, варисторов, газонаполненных электровакуумных приборов. В современной аппаратуре, выполненной на транзисторах и интегральных микросхемах, функции стабилизатора напряжения выполняют специализированные диоды — стабилитроны или как их еще называют – диоды Зенера (zener diode, по имени первооткрывателя туннельного пробоя Кларенса Зенера). Варисторы и газовые стабилитроны рассчитаны на стабилизацию относительно высокого напряжения — выше 100 Вольт.
На рис. 1, а приведена принципиальная схема параметрического стабилизатора напряжения. Резистор R1 определяет режим работы стабилитрона.
Параметрические стабилизаторы тока выполнялись преимущественно на бареттерах (электронные компоненты с нелинейными сопротивлениями). В современных схемных решениях используются полевые или биполярные транзисторы (рис. 1, б). Резистор R1 задает рабочую точку транзистора. В основном параметрические стабилизаторы применяют в качестве эталона напряжения или тока в других типах стабилизаторов.
Стабилизаторы напряжения и тока компенсационного типа
Рис. 2. Структурная схема стабилизатора компенсационного типа.
Более высокие параметры обеспечивают стабилизаторы компенсационного типа (рис. 2). Принцип работы такого стабилизатора состоит в автоматическом поддержании постоянного выходного напряжения с помощью регулирующего элемента, управляемого по цепи обратной связи. Практические схемы стабилизированных источников питания различаются по способам включения регулирующего элемента и получения опорного напряжения Uоп, а также по схемному решению цепи обратной связи.
Типовая схема компенсационного стабилизатора напряжения с последовательным регулирующим транзистором и источником опорного напряжения на стабилитроне приведена на рис. 3, а. Здесь транзистор VT1 — регулирующий элемент, транзистор VT2 — усилитель постоянного тока (усилитель обратной связи). Схема сравнения выходного напряжения с опорным реализована на транзисторе VT3. Источник опорного напряжения собран на VD1 и R3.
Поиск неисправностей в схемах стабилизированных источников питания начинают с проверки выходного напряжения. При его отсутствии определяют напряжение на входе стабилизатора. Наличие напряжения свидетельствует о дефекте в стабилизаторе. При его отсутствии поиск неисправностей необходимо перенести на выпрямитель и трансформатор.
В стабилизаторе проверяют сначала регулирующий транзистор VT1 (см. рис. 3.), затем управляющий VT2, транзистор схемы сравнения VT3 и источник опорного напряжения VD1. Один из возможных алгоритмов поиска неисправности стабилизатора напряжения показан на рис. 3, б. В основу алгоритма положен способ последовательных промежуточных измерений.
Зарубежная и отечественная промышленность выпускает интегральные микросхемы – например, стабилизаторы напряжения AN77L03 — AN8005, МС7705 — MC7924, LM7805 — LM7915, из отечественных можно выделить — К142ЕН1 — К142ЕН9.
Рис. 3. Принципиальная схема (а) и алгоритм диагностики (б) стабилизатора.
Диагностика электронных стабилизаторов на микросхемах сводится к проверке возможных замыканий в нагрузке и контролю напряжений на выводах. После сравнения измеренных величин с табличными или полученными на исправном блоке, делается вывод о состоянии стабилизатора. Отметим, что в современных модификациях интегральных микросхем стабилизаторов напряжения не требует внешних дополнительных элементов (трехвыводные стабилизаторы).
Источник
Быстрый ремонт импульсного источника питания своими руками
Чтобы, отремонтировать импульсный источник питания, вначале выявляется неисправность, приведшая к поломке БП. В статье представлены практические советы как быстро восстановить работоспособность источника напряжения собственными руками.
Когда часть оборудования оказывается полностью мертвой, первое, на что следует обратить внимание, — это источник напряжения. Если для поиска неисправностей используется осциллограф, это должен быть портативный прибор с батарейным питанием, изолированный от земли. Причина в том, что велика вероятность существования внутреннего напряжения, которое может создавать опасные токи короткого замыкания при подключении к настольному осциллографу.
Как быстро и правильно отремонтировать импульсный источник питания
Всем радиолюбителям хорошо известно, что импульсные источники питания созданы, как правило, для выпрямления переменное напряжение электросети в постоянное с последующим понижением его номинального значения. Поэтому, во включенном состоянии такое устройство всегда находится под высоким напряжением. Следовательно, установленные в блоке питания компоненты часто подвержены выходу из строя в силу разных причин.
В связи с этим, мы здесь подготовили для вас практические советы как грамотно и не затратно восстановить работоспособность сгоревшего импульсного источника питания в домашних условиях. Поделимся методом как быстро находить в устройстве неисправный компонент ставший причиной поломки оборудования.
Основы поиска и устранения неисправностей блоков питания
Импульсный источник питания может быть выполнен в различных конфигурациях, например: в виде печатной платы в составе устройства или отдельного модульного прибора. Тем не менее, его основная задача, как писалось выше, — выпрямление с одновременным уменьшением напряжения сети до необходимого значения. Такая потребность в использовании этого электрооборудования вызвана тем, что домашние электрические сети имеют стандартизированное напряжение 220 вольт.
Однако, не все устройства и инструменты используемые нами в быту могут работать на напряжении 220 вольт, то-есть для некоторых из них требуется значительно меньшее напряжение. Сейчас современная аппаратура использует импульсные источники напряжения, которые постепенно приходят на смену блокам изготовленным по схеме мостового выпрямителя с фильтром и мощного силового трансформатора.
Примечание! Вопреки бытующему мнению о высокой надежности ИИП, компоненты, установленные в импульсных блоках напряжения, частенько выходят из строя. Как говорят: «ничто не вечно…». Вот почему, пока будет существовать такое оборудование, всегда будет востребована необходимость в их ремонте.
Импульсный источник питания на печатной плате
В общем пойдем дальше. Для общего понятия разделим устройство на ключевые модули, которые имеются практически в любом импульсном источнике электропитания. Стандартный вариант импульсного блока питания относительно можно разграничить на три составные части по функциям.
- Узел широтно-импульсной модуляции (ШИМ-контроллер), на основе которого выполняется построение задающего генератора электрических колебаний, как правило с частотой примерно 35…65 кГц;
- Линейка мощных силовых ключей, функции которых могут осуществлять как биполярные так и полевые либо трехэлектродные IGBT транзисторы имеющие изолированный затвор; кроме того, эта часть схемы может состоять из дополнительных управляющих ключами элементов, собранных на транзисторах малой мощности;
- Импульсный трансформатор с одной или несколькими первичными и вторичными обмотками, а также выпрямительными диодами, конденсаторами для фильтрации выпрямленного напряжения, стабилизаторами в выходной цепи; в качестве магнитопровода как правило, применяется сердечник на основе феррита или альсифера;
Вот, в общем это и есть основные понятия, которые требуется для изготовления или ремонта импульсного источника питания. На представленном выше снимке основные узлы ИИП выделены цветом. Для лучшего наглядного восприятия, также эти узлы отмечены цветом и на принципиальной схеме. Ниже в качестве примера:
Принципиальная схема ИИП. Кстати, на этой схеме силовой узел выполнен со средней точкой.
Внимание! Начиная выполнять поиск неисправности в устройствах такого типа, не забывайте, что на электронных компонентах может сохранятся напряжение, поэтому, перед началом работы, обязательно разряжайте цепь высокого напряжения.
Неисправности современных импульсных блоков питания — возможные причины поломки
Проблемы, возникающие с блоками напряжения, когда они отказываются работать, в основном могут образоваться по следующим причинам:
- броски напряжения в электрической сети. Именно такие броски напряжения с высокой амплитудой во многих случаях приводят к поломке устройства, которое не рассчитано на такие всплески;
- работа источника питания с максимальной нагрузкой длительное время;
- в схеме не предусмотрена защита. Некоторые изготовители такого типа оборудования, просто-напросто экономят на дополнительных компонентах, поэтому пренебрегают установкой защиты в приборе. Если в ремонтируемом вами блоке отсутствует защита, то лучшим вариантом будет добавить ее в схему;
- невыполнение инструкции по эксплуатации изделия, приложенной изготовителем для определенной модели.
Кроме этого, частые поломки у преобразователей напряжения возникают из-за некачественных деталей устанавливаемых производителем. Так например сейчас, все российские рынки и не только российские, заполонили изделия сомнительного качества от китайских «товарищей». Поэтому, в такой ситуации, когда больше не из чего выбирать, остается надеяться на удачу, что попадется качественный прибор.
Во время проверки импульсного блока часто обнаруживаются следующие проблемы:
- 40 процентов поломок происходят в цепи высокого напряжения. Так например: часто выходят из строя диодный мост или электролитический фильтрующий конденсатор в силовом тракте выпрямителя;
- 30 процентов неисправностей образуются также в силовой части устройства из-за пробоя мощных ключей переключения MOSFET;
- 15 процентов составляет токовый пробой переходов диодного моста в цепи вторичной обмотки выпрямителя;
Диодная мостовая сборка
Выше мы обозначили основные неисправности, которые могут возникнуть в процессе эксплуатации прибора, а вот другие поломки выявляются только с использованием более точных устройств диагностики и измерений. Чтобы выполнить корректный поиск причины, приведшей к неработоспособности оборудования, для этого используют осциллограф и как минимум — мультиметр. В следствие этого, если возникшая проблема не соответствует трем, обозначенным выше параграфам, то собственноручно отремонтировать импульсный источник питания будет несколько проблематично, не имея специальных приборов и опыта в электронике.
Исходя из этого, можно сделать определенный вывод: если ваш персональный компьютер или телевизор перестал подавать признаки жизни, сразу же начинайте искать причину начиная с БП. Другой вопрос в этой ситуации: если, все-же у вас не хватает знаний в ремонте такой сложном оборудовании как ИИП, тогда все-таки лучшим вариантом будет обратится к специалистам.
Метод выявления неисправного компонента
Примечание! Чтобы быстро отыскать неисправность, приведшей импульсный источник питания в нерабочее состояние, вам, как минимум, потребуется цифровой мультиметр.
Мультиметр
Для выявления проблемы, возникшей в устройстве, нужно выполнить последовательные шаги:
- вскрываем источник питания;
- вольтметром замеряем напряжение на электролитическом конденсаторе установленном в цепи выпрямителя;
Замер напряжение на электролите
Проверка конденсатора
- в случае определения прибором напряжения 300v на конденсаторе, то это будет означать, что этот участок силовой цепи находится в полном порядке;
- в схемах, использующих два малогабаритных конденсатора, напряжение определенное вольтметром в 150 вольт на каждом из них, соответствует исправности силового тракта;
- если в этой точке нет напряжения, то в первую очередь необходимо проверить состояние выпрямительных диодов, цепь фильтрующего конденсатора и предохранитель;
Плавкий предохранитель в схеме импульсного блока напряжения
- при обнаружении сгоревшего предохранителя, кроме его замены, также нужно прозвонить и другие компоненты схемы. Чтобы обнаружить причину, которая привела к выходу из строя предохранителя;
- проблемные электролитические конденсаторы обнаружить довольно просто. Из них либо вытекает электролит, либо они становятся «беременными», поэтому они не подлежат ремонту — только замена;
- в обязательном порядке проверяется вся цепь выпрямителя, включая диодный мост;
Диодный мост импульсного источника питания
- сглаживающий конденсатор в цепи фильтра, может быть установлен в виде одиночной емкости или набора линейки, составленной из нескольких емкостей, включенных по схеме последовательного или параллельного соединения;
- силовые транзисторные ключи, как правило, устанавливаются на теплоотводах.
Примечание! Приступая к ремонту, старайтесь сразу выявить все неисправные элементы устройства, и в последовательном порядке заменить их. Нельзя, заменяя одну деталь, оставлять в схеме сгоревшую деталь, а затем включать прибор для проверки. Такие действия могут привести к более тяжелым последствиям!
Специфика самостоятельного ремонта ИИП
Для выполнения диагностики и ремонта стандартных блоков питания импульсного типа, просто нужно придерживаться советов, которые мы предложили выше. А конструктивное исполнения такого оборудования, мало чем отличается друг от друга, хотя они могут быть от разных производителей.
Проверка электронных элементов печатной плате
Для качественного ремонта импульсного источника напряжения своими руками, нужно иметь в своем распоряжении соответствующие приборы и инструменты, а именно: хороший паяльник, припой, растворитель для смывки излишков флюса на плате и основные инструменты:
- комплект разных отверток;
- пинцет;
- цифровой мультиметр;
- обычная лампочка на 150 Вт /220 вольт. Хороший вариант для подключения ее как нагрузки.
Общий вид платы блока питания
Грамотно выполненная диагностика устройства, является гарантией успешного ремонта. Проблемы, связанные с выходом из строя какого либо элемента в высоковольтном тракте, найти не составит никакого труда. Их легко выявить, как при визуальном осмотре, так и с использованием мультиметра.
Процесс работы
После устранения выявленных неисправностей и замене всех сгоревших при этом деталей, импульсный источник питания, при включении начинает сразу работать без всякой предварительной настройки. Так, что если вы обладаете хотя бы первоначальными знаниями в электронике и имея хоть какой-то опыт в ремонте подобных устройств, то вы наверняка справитесь самостоятельно с восстановлением ИБП.
Как отремонтировать импульсный блок питания
Источник