Ремонт телевизора самсунг шасси ks1a нет

Телевизор Samsung chassis KS1A

Популярные модели телевизоров Samsung с шасси KS1A

CB-14Y52T, CS-1439C, CS-1439R, CS-1448R, CS-1448X, CS-14E3WX, CS-14C8R, CS-14C8TR, CS-14F10R, CS-14F1R, CS-14F1S, CB-14F1T, CS-14H1X, CS-14R1S, CS-14R1X, CS-14V10, CS-14Y52X, CS-15K2Q, CS-15K5S/NWT, CS-15K5WQ, CS-15K8WQ, CS-15M16MJQ

CS-2038R, CS-2039R, CS-2039С, CS-2039X/NWT/VWT/BWT, CS-2073R, CS-2085S, CS-2085TX, CS-20C8X, CS-20E1C, CS-20E3WX, CS-20F1R, CS-20F1S, CZ-20F12ZR, CS-20F2R, CL-20F12ZSR, CS-20F32TSXBWT, CS-20F32ZSXBWT, CS-20H1X, CS-20H4R, CS-20R1R, CS-20R1X

CB-21F12TSXXEC, CI-21F32TSXXEU, CS-2139TR, CS-2139TX, CS-2139X/BWT, CS-2148X/VWT, CS-2173S/BWT, CS-2185R, CS-2185S, CS-21D8R, CS-21F10MJR, CS-21F32TSXBWT, CS-21F32ZSXBWT, CS-21F5R, CS-21H4MLR, CS-21S43NSXBWT, CS-2218, CZ-21D83N, CZ-21F12T, CZ-21F32T, SZ-21F52ZR.

Типовые дефекты

Из наиболее часто встречающихся неисправностей телевизоров Samsung, выполненных на шасси KS1A, можно выделить следующие:

1. Не переключаются каналы.

После нескольких лет эксплуатации начинаются затруднения с переключением каналов.
При переключение меняются только цифры номера индикации канала.
Механическое воздействие на антенный штеккер помогает восстановить нормальную работоспособность ТВ, но ненадолго и ситуация рано или поздно повторится.
Дефект со временем прогрессирует. Владельцы иногда за это время успевают жестоко расшатать или оторвать антенное гнездо.

Причина в качестве изготовления тюнера. Нарушается контакт одного из соединений с массой (общим проводом) тюнера.
Металлические корпусные перегородки внутри, которые служат выводами массы, возможно, недостаточно качественно облужены и со временем происходит их окисление под слоем припоя.
Проблема не новая для тюнеров со времён Sony испанской сборки и некоторых аналоговых тюнеров LG.

2. Сдвинуто изображение.

Изображение сдвигается влево, справа появляется тёмная вертикальная полоса с красноватым оттенком. В некоторых случаях появляется запах гари.

Причина связана с качеством конденсаторов в делителе напряжения импульса обратного хода для формирования 2-й петли ФАПЧ.
Плохой контакт внутри конденсатора 4700 pF окончательно разрушается высоковольтными импульсами, а резистор 15k после этой цепи от завышенного импульсного напряжения и тока сгорает до углей. Стабилитрон защищает процессор по входу ФАПЧ.
По причине замыкания внутри конденсатора 680 pF верхнего плеча делителя так же может выгореть резистор.
После замены неисправных элементов цепи нормальная работоспособность телевизора восстанавливается.

Этот делитель применяется и в других шасси телевизоров Samsung, создавая те же проблемы. В некоторых ТВ больших диагоналей, где установлен более мощный резистор к цепям ФАПЧ, вместе с резистором может выгорать участок платы вместе с соединениями.

Отсутствует звук. УНЧ и динамики исправны. Переключение системы BG/DK не решает проблему.
Необходимо войти в сервисное меню (Servise Mode) в режим установки опций (OPTION TABLE) и переключить восьмую опцию 2ND SIF (ON -OFF).

4. Телевизор не включается.

Модуль питания не запускается. Стабилитрон в первичной цепи по питанию ШИМ-контроллера пробит накоротко.
Причина — завышенное ESR электролитического конденсатора 33uF 50V. Пробой стабилитрона связан с конструктивными особенностями организации питания ШИМ и защиты от превышений.
После замены конденсатора и стабилитрона работоспособность ТВ восстанавливается. В случае варианта исполнения модуля питания без оптрона, устанавливается стабилитрон 33V (1N4752).

Ещё одна неисправность, при которой не включается телевизор — пробой строчного транзистора 2SC2499. Причин может быть несколько.
Сразу условимся, что для замены применяются транзисторы 2SC2499 или их аналоги из проверенной партии. Проблемы, связанные с использованием «левых» транзисторов, здесь не рассматриваем.
В телевизорах с плоским кинескопом 15″ в цепи коллектора HOT установлен конденсатор 5100 pF 1600V в качестве резонансного, который часто обнаруживается при такой аварии несколько вспухшим. В любом случае его нужно проверить и, при необходимости, заменить. С неисправным конденсатором транзистор будет мгновенно пробит завышенным импульсом напряжения сразу при включении из дежурного режима.
Если транзистор пробивается при включении с исправным конденсатором, большая вероятность КЗ в строчных отклоняющих катушках. В телевизорах Samsung 15″ шасси КS1A и KS9A замыкания СОК встречались неоднократно.
Если транзистор при включении быстро разогревается, высокого напряжения нет, питание B+ занижено — неисправен FBT.

Похожие статьи:
Типовые дефекты и ремонт Samsung KS2A — Популярные дефекты телевизоров Samsung шасси KS2A.

Читайте также:  Ремонт суппорта тойота авенсиса

Описание BN44-00192A — Блок питания Samsung BN44-00192A. Основные неисправности.

Состав CRT-телевизоров Samsung — Функциональный состав телевизоров Samsung CRT.

Состав LCD-телевизоров Samsung — Функциональный состав телевизоров Samsung LCD.

Замечания и предложения принимаются и приветствуются!

Источник

Ремонт телевизора самсунг шасси ks1a нет

Особенности шасси KS1A

Базовое шасси KS1A конструктивно состоит из двух печатных плат — основной и кинескопа. В зависимости от модификации базового шасси телевизоры на его основе могут принимать и обрабатывать сигналы вещательного телевидения всех аналоговых стандартов и систем. Шасси выполнено на новой микросхеме семейства Ultimate One Chip (UOC) TDA935x компании Philips Semiconductors. Эта микросхема представляет собой третье поколе ние известных интегральных телевизионных микросхем, семейства One Chip Television. В микросхеме UOC применены совмещенные технологии Bi СMOS и CMOS, что позволило объединить в одном корпусе полный видеопроцессор с видеодетектором и демодулятором звука, декодер телетекста, принимающий все международные стандарты вещания, и микропроцессор на базе кристалла 80С51 с расширенным набором функций.

Описание блок-схемы шасси KS1A

Сигнал ПЧ (осциллограмма TP07) с выхода селектора каналов через ВЧ-усилитель, компенсирующий затухания сигнала в фильтрах на ПАВ, поступает на переключаемые полосовые фильтры ПАВ. Фильтр SF101S выделяет сигнал ПЧ изображения, поступающий далее на выв. 23, 24 микросхемы видеопроцессора IC201S. Демодулированный видеосигнал (осциллограмма TP10) снимается с выв. 38 видеопроцессора на внешнюю схему режекторных фильтров, подавляющих поднесущую звукового сигнала. Видеосигнал, формируемый на выходе схемы режекторных фильтров (осциллограмма TP11), подается на выв. 40 видеопроцессора, а также через узел входов/выходов на внешние устройства. Видеосигнал от внешних устройств поступает на выв. 42 IC201S. Из видеосигнала видеопроцессор формирует сигналы основных цветов, которые с выв. 51, 52, 53 (осциллограммы TP04, TP05, TP06) через соединитель CN501 подаются на микросхему IC501 усилителя RGB сигналов платы кинескопа. В свою очередь, снимаемый с платы кинескопа сигнал стабилизации темнового тока кинескопа (осциллограмма TP12) поступает на выв. 50 видеопроцессора.

Фильтр SF102S выделяет сигнал ПЧ звука, который далее подается на IC101 — микросхему преобразователя ПЧ и ЧМ-демодулятора звука (выв. 1, 2 микросхемы). Применение переключаемых фильтров позволяет осуществлять прием сигналов различных стандартов. Демодулированный звуковой сигнал с выв. 12 микросхемы IC101 подается на выв. 32 видеопроцессора (осциллограмма TP14). С выв. 28 видеопроцессора звуковой сигнал снимается на узел входов/выходов для подачи на внешние устройства. В свою очередь звуковой сигнал от внешних устройств через узел входов/выходов поступает на выв. 35 видеопроцессора (осциллограмма TP15). На внешний УНЧ IC601 регулируемый звуковой сигнал поступает с выв. 44 IC201S. Усиленный звуковой сигнал с выходов УНЧ (осциллограмма TP16) через соединители CN601-CN603 поступает на громкоговорители телевизора.

Для управления электронными лучами кинескопа видеопроцессор формирует сигналы кадровой развертки и импульсы запуска строчной развертки. Кадровые двухполярные импульсы пилообразной формы снимаются с выв. 21, 22 (осциллограмма TP17) микросхемы IC201S и поступают на оконечный каскад кадровой развертки (КР) — микросхему IC301. К ее выходу через соединитель CN603 подключены кадровые катушки отклоняющей системы. Сигнал обратной связи (осциллограмма TP13) для стабилизации размера и формирования сигнала защиты кинескопа поступает от выходного каскада КР на выв. 49 видеопроцессора.

Импульсы запуска (осциллограмма TP09) строчной развертки (СР) с выв. 33 видеопроцессора поступают на схему драйвера и выходного каскада СР (осциллограммы TP18, TP19, TP20). Выходной каскад СР (Q401, Q402, T444S) формирует токи отклонения строчных катушек, напряжения питания видеоусилителей и выходного каскада КР, а также напряжения, определяющие режим работы кинескопа. Импульсы обратного хода (осциллограмма TP08) для синхронизации СР подаются на выв. 34 видеопроцессора.

Микроконтроллер, входящий в состав видеопроцессора IC201S, осуществляет управление всеми функциями телевизора. Управление внешними узлами и микросхемами осуществляется с помощью шины управления I2C — выв. 2, 3 микросхемы видеопроцессора. Сигналы на этих выводах показаны на осциллограммах TP01 и TP02. Параметры настроек и значения оперативных регулировок хранятся в энергонезависимой памяти IC902. К выв. 6, 7 IC201S подключены кнопки управления, а к выв. 62 подключен выход фотоприемника. Внешняя цепь генератора синхронизации микросхемы видеопроцессора подключена к выв. 57, 58, 59. Вид сигнала на выв. 59 показан на осциллограмме TP03.

Читайте также:  Что такое частичный ремонт крыши

Импульсный источник питания шасси реализован на микросхеме IC801S, в состав которой входит мощный полевой транзистор. Сигналы в основных контрольных точках представлены на осциллограммах TP21, TP22. Источник питания формирует напряжение для питания выходного каскада СР и напряжение 13 В, из которого с помощью стабилизатора на IC802 формируется ряд напряжений для питания различных узлов шасси.

Описание принципиальной электрической схемы шасси KS1A

основу узла управления составляет ядро микроконтроллера на базе известного процессора 80C51. Дополнительно к нему в состав узла включены декодирующее устройство сигналов телетекста и энергонезависимая память программ. Ядро микроконтроллера включает четыре порта входов/выходов, конфигурация которых определяется программой, загруженной в микросхему (память программ). Традиционно порт микроконтроллера — это 8 выводов, по количеству бит в байте. Для сокращения числа выводов микросхемы TDA935x используются неполные порты. При этом адресация устройств сохранена, как и у стандартного ядра микроконтроллера. В связи с этим у некоторых портов микросхемы TDA935x отсутствует ряд выводов.
Порт 0 представлен выв. 10 и 11 (P0.5 и P0.6) с повышенной нагрузочной способностью. Эти выводы имеют три стабильных состояния, что позволяет формировать трехуровневые сигналы. В данной программной конфигурации выв. 10 предназначен для переключения внешних устройств в режимы приема сигналов с позитивной или негативной модуляцией, а также управления режимом «монитор», когда внешние сигналы (VIDEO, AUDIO), поступающие на входы телевизора, транслируются на его выходы (VIDEO, AUDIO). Выв. 11 определен для переключения внешних устройств (режекторные фильтры и фильтры на ПАВ) при приеме сигналов PAL или NTSC.
Конфигурация выводов для порта 1 определяется независимо для каждого из них — или непосредственным подключением вывода к интерфейсу входов/выходов, или использованием дополнительного устройства (таймера, детектора прерывания, интерфейса I2C). Прием микроконтроллером сигналов дистанционного управления от фотоприемника осуществляется через выв. 62 (P1.0) и детектор прерываний 1, формирующий флажок прерывания при наличии сигнала дистанционного управления. Управление петлей размагничивания осуществляется сигналом, снимаемым с выв. 63 (P1.1). В момент включения телевизора на этом выводе формируется кратковременный сигнал высокого уровня. Выв. 64 (P1.2) в данной конфигурации используется для контроля напряжения питания основных узлов микроконтроллера. Сигнал, снимаемый с выв. 1 (P1.3), служит для включения и выключения (перевода в дежурный режим) телевизора. Выв. 2 и 3 (P1.6 и P1.7) сконфигурированы для формирования внешней шины управления I2C.
Порт 2 представлен в микросхеме одним выв. 4 (P2.0), сигнал с выхода которого используется для блокировки звука. Блокировка звука осуществляется путем снижения напряжения опорного уровня (около 5,6 В) на выв. 6 микросхемы оконечного УНЧ IC601. Цепи блокировки звука показаны на рис. 4.

Снижение напряжения на выв. 6 IC601 производится в случае отпирания транзистора Q904 (микроконтроллер выдает команду блокировки звука), в случае снижения или пропадания напряжения 13 В и в дежурном режиме (низкий потенциал на выв. 1 TDA935x).
К выв. 5 (P3.0) микросхемы, относящемуся к порту 3 микроконтроллера, подключен транзистор Q901, управляющий светодиодом LD901. Индикация светодиода свидетельствует о функционировании рабочей программы микроконтроллера. Кроме того, этот вывод используется для технологических целей. Для подключения кнопок органов управления используются выв. 6 и 7 (P3.1 и P3.2). Они подключены к входам внутренних АЦП, а цепи кнопок образуют делители (рис. 5).

Распознавание команд управления осуществляется путем измерения напряжения на входе АЦП. Выв. 8 (P3.3) сконфигурирован для распознавания внешнего устройства, подключенного к телевизору через соединитель SCART.
Демодуляция видеосигнала и сигнала звука осуществляется в узле демодуляторов и канала звука микросхемы TDA935x. Функциональная схема узла показана на рис. 6. Сигнал ПЧ с выходов фильтра SF101 подается на выв. 23 и 24, вход усилителя ПЧ. Демодулированный полный видеосигнал формируется на выв. 38. Демодулированный звуковой сигнал выделяется на выв. 28. Этот же вывод используется как вход для звукового сигнала от внешнего дополнительного демодулятора звукового сигнала (микросхема IC101). Звуковой сигнал от внешних устройств поступает на выв. 35 микросхемы. В канале звука микросхемы IC201S осуществляется выбор звукового сигнала, его регулировка (регулировка громкости) и автоматическая регулировка уровня. Регулируемый звуковой сигнал через выв. 44 микросхемы подается на вход УНЧ, выполненного на микросхеме IC601.
Демодулирование сигналов цветности и формирование цвето-разностных сигналов осуществляется в узле демодулятора сигналов цветности микросхемы IC201S (рис. 7).

Читайте также:  Проектирование капитального ремонта электроснабжения

В этом же узле производится выделение из сигнала яркости полного видеосигнала. На выв. 40 микросхемы поступает видеосигнал, снимаемый с выхода схемы режекторных фильтров звуковых сигналов Z201, Z202, Z203 (см. рис. 2). Выв. 42 предназначен для подачи видеосигнала от внешних устройств.
Формирование основных сигналов RGB (выв. 51, 52, 53), регулировка уровня темновых токов, врезка информационных сигналов осуществляется в узле формирования сигналов RGB микросхемы TDA935x. Функциональная схема узла показана на рис. 8.

Сигналы от узла демодулирования сигналов цветности поступают на 1-й селектор сигналов YUV. Сигналы RGB от внешних устройств подаются на выв. 46, 47 и 48 микросхемы. Напряжение переключения сигналов поступает на выв. 45. На выв. 49 поступает сигнал ограничения уровня выходных сигналов (тока лучей кинескопа), а также сигнал защиты от выходного каскада КР IC301. Сигнал, пропорциональный току лучей кинескопа и используемый для регулировки уровня темновых токов, подается на выв. 50.
Узел разверток в функциональной схеме узла разверток микросхемы TDA935x (рис. 9)

формирует двуполярные сигналы КР, импульсы запуска СР, стробирующие импульсы SC и сигнал коррекции геометрических искажений для кинескопов с углом отклонения лучей 110° (с данным шасси применяются кинескопы только с углом отклонения лучей 90°). Выходные каскады строчной и кадровой разверток каких-либо схемотехнических особенностей не имеют (см. рис. 2). Следут отметить, что питание выходного каскада КР (IC301) осуществляется двуполярным напряжением.
Источник питания базового шасси также не имеет никаких схемных особенностей. Основу его составляет микросхема преобразователя со встроенным мощным полевым транзистором IC801S (KA5Q0765). Источник питания формирует два вторичных напряжения 110. 125 В — для питания выходного каскада СР и 13 В — для питания остальных узлов. Стабилизация уровня выходного напряжения осуществляется с помощью оптронной цепи обратной связи (PC801S). Управление петлей размагничивания производится посредством переключения реле RL801S по команде от системы управления.
Узел входов/выходов, в зависимости от модификации телевизоров, может иметь несколько вариантов исполнения (см. рис. 2).

Регулировка и настройка шасси KS1A

Заводские установки, определяющие режимы работы кинескопа, а также значения параметров регулировок хранятся в энергонезависимой памяти IC902. Поэтому в случае ее замены или замены кинескопа требуется провести повторную регулировку параметров и сохранить их. После замены IC902, включение телевизора происходит приблизительно через 10 с (время инициализации микросхемы). В случае замены кинескопа в сервисном режиме необходимо, предварительно отрегулировав чистоту цвета и сведение лучей кинескопа, последовательно произвести настройку следующих параметров: баланс белого, предустановка яркости, центровка по вертикали, размер по вертикали, размер по горизонтали.

Перевод телевизора в сервисный режим осуществляется подачей с ПДУ определенной последовательности команд:
* DISPLAY>FACTORY.
* STAND-BY>DISPLAY>MENU> MUTE>POWER ON.
При переводе телевизора в сервисный режим на экране высвечивается сообщение «SERVICE (FACTORY). В этом режиме доступны опции ADJUST, OPTION и RESET. Выбор параметров в опции ADJUST осуществляется с помощью кнопок «VOLUME» (UP или DOWN) в последовательности:
SCT>SBT>BLR>BLB>RG>GG>BG> VSL>VS>VA>HS>SC>SDL>STT>SSP> PDL>NDL>PSR>NSR>AGC>VOL>LCO >TXP.
Установленные значения параметров при выходе из сервисного режима записываются в энергонезависимую память. Выход из сервисного режима осуществляется нажатием на кнопки «FACTORY» или «POWER OFF». Диапазон регулируемых функций и их значения, устанавливаемые при инициализации, приводятся в табл. 2.

В режиме OPTION устанавливаются параметры шасси для данной модели телевизора. Устанавливаемые опции и режимы опций приведены в табл. 3.

Режим предустановки RESET позволяет осуществляет установку некоторых функций в заведомо определенные состояния (табл. 4).

Источник

Оцените статью