Проверка и ремонт топливных насосов и форсунок
От исправной работы топливной аппаратуры во многом зависит экономичность работы дизеля. Возможны следующие неисправности топливных насосов: недостаточная плотность плунжерной пары, поломка пружины плунжера и заедание плунжера в гильзе. Причиной заедания является работа на загрязненном топливе или неправильная сборка. Заедание плунжера и поломку его пружины можно определить по отсутствию подачи топлива в цилиндр при работающем дизеле. При проверке на ощупь такой насос будет холоднее, чем остальные. При заедании плунжера рейка не передвигается. Засорение отверстий в распылителе форсунки может привести к трещинам в гильзе из-за чрезмерного повышения давления.
К числу неисправностей насоса относится также неисправность нагнетательного клапана, а именно: пропуск топлива по цилиндрическому и притирочному пояскам, трещина в клапанеили поломка его пружины. Чтобы убедиться в неисправности нагнетательного клапана, необходимо остановить дизель, повернуть вал, чтобы плунжер проверяемого насоса был внизу (ход всасывания), отсоединить от насоса трубку высокого давления и включить топливоподкачивающий насос. Непрерывное поступление топлива из нажимного штуцера будет признаком неисправности нагнетательного клапана.
Из всех дефектов наиболее характерна потеря плотности плунжерной парой. Пониженная плотность плунжерной пары приводит к тому, что начало впрыскивания топлива запаздывает, т. е. сокращается его продолжительность; утечка топлива через зазор между плунжером и втулкой увеличивается, а следовательно, подача топлива уменьшается. Наибольшему износу в приводе насосов подвергаются зубья поворотной гильзы. Изнашиваются также бронзовые втулки, пальцы и ролики толкателей. Работа изношенных деталей толкателя сопровождается стуком и в свою очередь увеличивает износ кулачков вала и его подшипников.
Состояние форсунок проверяют на специальных приспособлениях и стендах, позволяющих контролировать следующие параметры.
Качество распиливания. Начало и конец распыливания должны быть четкими и резкими; топливо, выходящее из сопла, должно быть туманообраз-ным без заметных отдельных капель и струй.
Давление начала подъема и конца закрытия иглы распылителя. Например, у форсунки дизеля 5Д49 давление начала подъема иглы равно 32 +0’5 МПа, давление закрытия ее не должно быть больше 21 МПа. При трехразовой проверке давления закрытия разность давлений не должна быть больше 1,0 МПа. Увеличенная разность давлений от впрыскивания к вспрыскиванию характеризует подвижность иглы вследствие деформации корпуса распылителя.
Герметичность запорного конуса распылителя. При контроле на стендепосле нескольких вспрыскиваний не допускается появление капли на кончике сопла (допускается только увлажнение). Для работающих распылителей допускается образование капли топлива без ее отрыва.
Плотность распылителя. Определяют после обеспечения требуемого качества уплотнения сопла, корпуса форсунки, распылителя, а также герметичности нагнетательного клапана стенда и запорного конуса распылителя. Плотность оценивается во времени падения давления топлива в системе стенда. Снижение давления топлива на 5 МПа должно происходить не менее чем за 10 с.
Засоренность распиливающих отверстий. Определяют по числу пятен и характеру отпечатков, полученных на листе бумаги, подставленном под сопло форсунки, а также пропускной способности, замеренной на специальном стенде при проливе топлива при давлении 1,0 МПа. Контроль пропускной способности производится путем сравнения с образцовыми насосом и топливопроводом.
Источник
Технология ремонта тепловозов — Ремонт топливной аппаратуры дизелей
Содержание материала
На всех видах деповского ремонта форсунки снимают с тепловоза и испытывают на стенде. Неисправные форсунки заменяют отремонтированными. При М2 и М3 у насосов осматривают рейки, проверяют свободу их перемещения, а также работу топливоподкачивающего насоса. Большой периодический ремонт предусматривает съемку топливных насосов (секции) с двигателя и проверку их на плотность и производительность. В некоторых депо в порядке опыта насосы при этом виде ремонта не снимают. Во время М5 насосы (секции) разбирают, ремонтируют и испытывают на стендах. Медные уплотнительные кольца отжигают. Привод (толкатели) насосов разбирают и ремонтируют. При М4 и М5 топливоподкачивающий насос снимают, разбирают, ремонтируют и испытывают на стенде. На заводе топливоподающую систему разбирают полностью. Плунжерные пары, распылители, сопловые наконечники, заваренные нагнетательные трубки заменяют.
Ненормальный износ, задиры и заедание прецизионных пар вызывают нарушение подачи и распыливания топлива. В эксплуатации, кроме этих неисправностей, возможны: разрушение поверхности плунжерных пар вследствие кавитации и коррозии; износ конусов игл и отдельных мест в корпусах распылителей, что сопровождается нарушением распыливания. Наблюдения показывают, что у дизелей типа Д100 за пробег 60 тыс. км вероятность безотказной работы распылителей форсунки составляет не менее 50 %.
Рис. 107. Стенд для определения герметичности нагнетательного клапана
Исследованиями ЦНИИ по износу деталей топливной аппаратуры и влиянию износа на расход топлива для дизелей 2Д100 установлено, что снижение плотности плунжерных пар до норм, установленных при выпуске из ремонта, почти не отражается на экономичности двигателя, а потеря плотности в зависимости от пробега изменяется по пологой кривой. Так, у дизелей типа Д100 потеря плотности плунжерных пар с 25 сек до 20 сек происходит за пробег 50 тыс. км, у той же плунжерной пары от 20 до 15 сек — за пробег от 50 тыс. до 100 тыс. км. Практически при отсутствии задиров и коррозионных повреждений плунжерные пары служат достаточно длительный срок.
Съемка насосов с двигателя и разборка.
У дизелей типа Д100 выводят поводок тяги управления из зацепления с поводковой втулкой рейки, отсоединяют трубку высокого давления, топливный коллектор, а сам насос — от толкателя. Насос снимают вместе с регулировочными прокладками. На корпусе насоса укрепляют приспособление. Нажимая на плунжер, удаляют стопорное пружинное кольцо, ослабляя нажим, выводят тарелку пружины вместе с плунжером, пружиной и кольцом. Вывертывают стопорный винт, рейку передвигают в сторону делений. Снимают шестерню, а после освобождения упора — рейку. Отвернув гайки, удаляют фланец, штуцер и нагнетательный клапан с пружиной. Сам клапан вместе с медным уплотнительным кольцом выжимают приспособлением.
Топливный насос дизелей типа Д50 блочного типа может быть целиком снят с двигателя или по секциям.
Разборка форсунок.
Перед разборкой форсунки проверяют на стенде для определения качества распыла и затяжки пружины. У дизеля 2Д100 разборку начинают с отвертывания контргайки и пробки, а затем вывертывают из корпуса стакан пружины. Вынимают из стакана пружину и тарелку пружины. Щелевой фильтр выпрессовывают при помощи выжимного приспособления. Далее вынимают из корпуса ограничитель подъема иглы, распылитель, сопловой наконечник и прокладку. Форсунки дизелей типа Д50 и Д70 разбирают в том же порядке.
Притирка нагнетательных клапанов и их проверка.
При эксплуатации нарушается плотность между корпусом нагнетательного клапана и уплотнительным конусом самого клапана, между торцом корпуса и гильзой, а также и у медного уплотнительного кольца. Эти неисправности устраняют притиркой грибка к корпусу клапана и торца корпуса клапана к торцу гильзы плунжера.
Плотность нагнетательного клапана проверяют на стенде, одна из конструкций которого представлена на рис. 107. Нагнетательный клапан 9 с корпусом в перевернутом положении устанавливают в корпусе стенда 10 и сверху прижимают нажимным цилиндром 5 через резиновые прокладки 7 и 8, для чего используют груз 6.
Воздух давлением 3—5 кГ/см 2 у дизеля типа Д50 и 4—6 кГ/см 2 у дизеля типа Д100 подводится через штуцер 1, запираемый вентилем 2, откуда поступает под клапан, неплотность которого легко обнаруживается по воздушным пузырям, выходящим через трубку 4 в стеклянный сосуд 3, наполненный водой. Для испытания клапанов разных типов дизелей используют переходные втулки.
Источник
Маневровые локомотивы
Топливный насос высокого давления
Назначение и устройство. Насос (рис. 43) предназначен для подачи топлива через форсунку в цилиндры дизеля под высоким давлением в определенном количестве и в строго определенный момент. На дизеле установлены шесть одинаковых топливных насосов плунжерного типа, каждый через бобышку прикреплен четырьмя болтами к верхнему горизонтальному листу отсека распределительного вала.
Все детали насоса размещены в пустотелом корпусе 23, отлитом из специального магниевого чугуна. В верхней части корпуса нарезана резьба М48 иод нажимной штуцер //. Ниже сделаны несколько расточек различного диаметра, образующих полость для топлива и кольцевой борт под гильзу 16. В стенке корпуса имеется отверстие г с резьбой М22 под штуцер 25, а в боковом приливе просверлено горизонтальное отверстие д диаметром 16 мм под зубчатую рейку 6. Внизу корпус имеет прямоугольный фланец бс четырьмя отверстиями и цилиндрический выступ а диаметром 85 мм, обеспечивающий центровку насоса с бобышкой 13 (см. рис. 44). Над фланцем б (см. рис. 43) в корпусе насоса расположено контрольное окно в, используемое при ремонте.
Сверху в корпус вставляют стальную гильзу 16, уплотняя ее алюминиевым кольцом 7. От проворота гильзу фиксируют штифтом 18, запрессованным в корпус, для чего на ее наружной поверхности, имеющей диаметр 40 мм, профрезерована канавка р. Верхняя часть гильзы утолщена (наружный диаметр 45 мм, а внутренний 20 мм), так как в ней при работе насоса создается высокое давление топлива. Два радиальных отверстия с диаметром 6 мм с коническими расточками по концам служат для прохода топлива внутрь гильзы.
Сверху на торец гильзы устанавливают с притиркой корпус 8 вместе с притертым к нему нагнетательным клапаном 9. В нижней части нагнетательный клапан имеет четыре направляющих пера е, цилиндрическая поверхность которых притерта к корпусу 8, а в верхней части — два пояска. Конический поясок з притерт к седлу, а цилиндрический ж, являющийся разгрузочным, — к корпусу с? клапана.
Нагнетательный клапан прижат к седлу корпуса # пружиной 14, установленной в расточке нажимного штуцера //, ввернутого в корпус насоса. Между штуцером 11 и корпусом 8 ставят стальное уплотнительное кольцо 15, а относительно корпуса штуцер уплотняют резиновым кольцом 10, установленным в канавке на его наружной поверхности.
Вверху штуцер имеет хвостовик с резьбой М22 под накидную гайку 12 для крепления трубопровода высокого давления 13.
Снизу в гильзу вставлен притертый к ней плунжер 22, который представляет собой цилиндрический стержень, изготовленный из высококачественной стали и термически обработайный. На верхней части плунжера (головке), имеющей диаметр 20 мм, профрезерован вертикальный паз к шириной 4 мм. Сверху от паза к до кольцевой выточки и сделан винтовой вырез, образующий отсечную кромку л. Торцовая и спиральная кромки плунжера должны быть острыми. На направляющей части м плунжера проточена лабиринтная канавка н шириной 2 мм, уменьшающая просачивание топлива по плунжеру. В нижней части плунжер имеет выступы о и заканчивается цилиндрическим хвостовиком п.
Гильза вместе с плунжером образует прецизионную пару, обработанную с высокой степенью точности (зазор между сопрягаемыми деталями 1,5 — 2,5 мкм). В случае неисправности гильзы или плунжера замене подлежит комплект в сборе.
Снизу на гильзу с зазором надевают поворотную втулку 19, в верхней части которой нарезан зубчатый венец т, входящий в зацепление с зубчатой рейкой 6, установленной в корпусе насоса. На цилиндрической поверхности рейки сделан паз ф под стопорный винт 5, ограничивающий продольное перемещение рейки и исключающий ее поворот. Винт 5 ввернут в наклонное отверстие корпуса насоса. Поворотная втулка в нижней части имеет прорези, в которые входят выступы о плунжера. Таким образом, поворотная втулка позволяет плунжеру совершать возвратно-поступательное движение и одновременно поворачивает его при перемещении рейки.
Для перемещения плунжера вниз служит пружина 3, зажатая между двумя тарелками. Верхняя тарелка 20 надета на поворотную втулку 19 и удерживается разрезным стопорным кольцом 4, установленным в проточке корпуса. Нижняя тарелка 2 имеет радиальную прорезь и надевается на нижнюю часть плунжера, упираясь в его хвостовик п.
Снизу в корпус насоса вставляют стальной стакан 21, передающий усилие от толкателя топливного насоса
Рис. 44. Толкатель топливного насоса (а) и положения плунжера при различной подаче топлива (б): / — боковой лист блока; 2 — распределительный вал; і — топливный кулачок; 4 — угольник; 5 — фланец; б — верхний горизонтальный лист; 7 — тарелка; * — стакан; Р — плунжер; 10 — корпус топливного насоса; 11 — пружина; 12 — отражательная гайка; 13 — бобышка; 14 — сливная трубка; 15 ._ сальник Гуферо; 16 — регулировочный болт; 17 — контргайка; 18 — корпус толкателей; 19 — толкатель; 20 — палец; 21 — плаика; 22 — болт; 23 — стопорное кольцо; 24, 25 — наружное и внутреннее кольца ролика; 26 — гильза; а — вертикальный паз; б — шестигранник; в, г, з — канавки; д, ж, и — отверстия; е — выступ бобышки на плунжер. Перемещение стакана ограничивается разрезным стопорным кольцом /, установленным в канавке корпуса насоса. На наружной поверхности стакана сделана кольцевая риска, используемая при проверке момента начала подачи топлива, а в донышке — четыре отверстия у диаметром 10 мм для слива просочившегося топлива.
Толкатель топливного насоса (рис. 44, а) передает усилие от кулачка распределительного вала на плунжер топливного насоса. Толкатель 19 изготовлен из качественной стали и имеет цилиндрическую форму. На его наружной поверхности проточены три кольцевые канавки в, соединенные двумя вертикальными пазами а, что обеспечивает смазывание толкателя при перемещении его в корпусе 18. В нижней части толкателя сделана прорезь под ролик, свободно установленный на пальце 20.
Пустотелый палец 20 по конструкции и установке не отличается от пальца толкателя привода клапанов. Ролик состоит из двух колец — внутреннего 25 и внешнего 24, между которыми имеется зазор 0,02 — 0,06 мм. На внутренней поверхности кольца 25 проточена канавка з, из которой по четырем радиальным отверстиям и диаметром 3,5 мм масло выходит на смазывание контактной поверхности обоих колец. Такая конструкция ролика обеспечивает ему повышенную прочность в условиях высоких скоростей движения толкателя топливного насоса, что обусловлено геометрической формой топливного кулачка распределительного вала.
Сверху в толкатель ввернут регулировочный болт 16. Шестигранник б на цилиндрическом стержне болта позволяет вворачивать или выворачивать болт, регулируя момент начала подачи топлива. После регулировки положение болта фиксируют контргайкой 17. Регулировочный болт проходит через центрального отверстие бобышки 13, отлитой из алюминиевого сплава. Своим цилиндрическим выступом диаметром 80 мм бобышка входит в отверстие верхнего горизонтального листа 6 отсека распределительного вала.
Сверху на регулировочный болт навернута цилиндрическая отражательная гайка 12, образующая вместе с выступом е бобышки лабиринт, предотвращающий попадание топлива в масло. Кроме того, просачиванию топлива по болту препятствует сальник 15, установленный снизу в расточке бобышки и укрепленный в ней стопорным кольцом 23. Для крепления гайки 12 на ее наружной поверхности сделаны четыре глухих отверстия под выступы специального ключа.
Просочившееся в бобышку топливо по отверстию ж и трубке 14 отводится в сливной коллектор чистого топлива. Труба 14 развальцована в планке 21, которая прикреплена к бобышке двумя болтами 22. В случае засорения трубки 14 топливо из бобышки стекает через два боковых отверстия д на верхний лист 6, попадает в канавку г и отводится из нее в гря-зесборник топливного бака.
Работа топливного насоса. Кольцевая полость А (см. рис. 43) между корпусом 23 насоса и гильзой 16 постоянно соединена с топливным коллектором через трубку 24 и штуцер 25, а следовательно, заполнена топливом под давлением 0,20 — 0,25 МПа (2,0 — 2,5 кгс/см2). При движении плунжера вниз под действием возвратной пружины 3 топливо из коллектора через два радиальных отверстия с в гильзе поступает в надплунжерное пространство.
При набегании топливного кулачка 3 (см. рис. 44, а) распределительного вала 2 на ролик толкатель 19 начинает двигаться вверх и своим регулировочным болтом 16 воздействует через стакан 5 на плунжер 9 топливного насоса. Ход плунжера при любой частоте вращения коленчатого вала дизеля одинаков и равен 20 мм, так как зависит только от размеров кулачка 3. Профиль кулачка обеспечивает значительное ускорение движущегося плунжера. Часть хода плунжера (30 — 40 %) затрачивается на его разгон, сопровождающийся вытеснением некоторого количества топлива из надплунжерного пространства обратно в коллектор через отверстия с (см. рис. 43).
При скорости 0,4 — 0,8 м/с плунжер своей торцовой кромкой перекрывает оба отверстия с в гильзе. Так как при дальнейшем движении плунжера объем надплунжерного пространства оыстро уменьшается, то давление топ-лива в нем резко возрастает. Когда усилие, создаваемое давлением топлива над плунжером, становится больше усилий пружины 14 и остаточного давления в нагнетательном трубопроводе, клапан 9 открывается и топливо нагнетается в трубопровод высокого давления 13. Нагнетание топлива происходит до тех пор, пока кромка л плунжера не откроет одно отверстие в гильзе и не сообщит тем самым над-плунжерное пространство с топливным коллектором.
Давление топлива над плунжером резко падает, несмотря на продолжающееся движение плунжера вверх. Нагнетательный клапан 9 закрывается. Как только нижняя кромка цилиндрического разгрузочного пояска ж клапана входит в корпус 8, прекращается сообщение трубопровода высокого давления 13 с камерой над плунжером. При дальнейшей посадке клапана до упора коническим пояском з в седло происходит некоторая разгрузка трубопровода 13 от высокого остаточного давления из-за освобождения небольшого объема при посадке клапана.
Выход топлива из надплунжерного пространства через радиальное отверстие с в полость А в конце хода нагнетания происходит с очень большой скоростью, что приводит к местным кавитационным разрушениям корпуса насоса. Поэтому против отверстия с гильзы в корпус 23 ввертывают стальную сменную пробку’77.
Количество подаваемого насосом топлива зависит от длительности нагнетания его плунжером, что определяется ходом нагнетания, т. е. расстоянием между торцовой и спиральной кромками плунжера, измеряемым по оси отверстия с. Регулирование подачи топлива осуществляется объединенным регулятором дизеля, который, перемещая рейки, заставляет втулки 19 поворачивать плунжеры 22 насосов высокого давления.
На рис. 44, б показаны три различных положения плунжера 9 относительно гильзы 26. В положении / (нулевая подача топлива) ход нагнетания равен нулю, т. е. надплунжерное пространство постоянно соединено с отверстием в гильзе через вертикальный паз на головке плунжера. В положении // (средняя подача топлива) плунжер повернут на некоторый угол и имеет ход нагнетания. В положении /// (максимальная подача топлива) плунжер повернут на наибольший угол, т. е. ход нагнетания максимальный.
Соединение реек топливных насосов с валом управления (рис. 45). Вал управления / рейками топливных насосов состоит из трех частей, жестко соединенных друг с другом. Выступ в на торце одной части вала при сборке
Рис. 45. Соединение реек топливных насосов: / — вал управления топливными насосами; 2 — головка; 3 — топливный насос; 4 — поводок; 5 — фиксатор; 6,9, 17 — стяжные болты; 7 — шариковый подшипник; 8 стопорное кольцо; 10 — шайба; // — хомут; 12 — верхний горизонтальный лист отсека распределительного вала: 13 — стойка; 14, 18 — правый и левый хомутики; 15, 20 — пружины; 16 регулировочный болт; 19 — гайка; 21 .зубчатая рейка: 22 тлен; б, в — выступы; г — паз вставляют в торцовый паз г другой части, после чего обе части вала дополнительно закрепляют хомутом //, стянутым двумя болтами 9. Вал установлен на семи стойках 13, каждая из которых зафиксирована двумя штифтами и закреплена двумя болтами на верхнем горизонтальном листе 12 отсека распределительного вала. В расточки стоек запрессованы шариковые подшипники 7, укрепленные стопорными кольцами 8. Передний конец вала / проскальзывающей тягой соединен с объединенным регулятором дизеля, а с противоположной стороны вал зубчатой муфтой соединен с предельным регулятором.
Против каждого насоса на валу укреплены два хомутика. Правый хомутик 14 пружиной 15, работающей на скручивание, связан с поводком 4, свободно установленным на валу. Отогнутые концы пружины входят в отверстия поводка 4 и хомутика 14. Поводок при помощи пальца 22 шарнир-но соединен с зубчатой рейкой 21 топливного насоса, для чего верхний конец поводка выполнен в виде вилки. Палец 22 вместе с рейкой 21 вставляют сверху в вырезы вилки. Плоские срезы на концах пальца не позволяют ему смещаться вдоль оси. В нижней части поводок имеет выступ а с отверстием под регулировочный болт 16.
Левый хомутик 18, так же как и правый, жестко укреплен на валу при помощи стяжного болта 17. Хомутик 18 имеет цилиндрический выступ б с двумя плоскими срезами на наружной поверхности. В расточку выступа вставляют пружину 20 и фиксатор 5, на резьбовой конец которого навертывают гайку 19 для крепления головки 2. Для удобства пользования цилиндрическая поверхность головки выполнена рифленой.
Под действием пружины 20 фиксатор 5 выходит из хомутика 18 и опирается на торец регулировочного болта 16, который должен быть отрегулирован так, чтобы при неработающем дизеле выход рейки был равен размеру «Стоп», выбитому на корпусе топливного насоса. Пружина 15 при регулировке скручивается. Положение регулировочного болта фиксируют гайкой, после чего пломбируют.
Когда объединенный регулятор дизеля поворачивает вал на увеличение подачи топлива, левый хомутик 18 через фиксатор 5 давит на регулировочный болт 16, поворачивая поводок 4, выдвигающий рейку 21 топливного насоса. При повороте вала в другую сторону правый хомутик 14 через пружину 15 воздействует на поводок 4, передвигая рейку 21 на уменьшение подачи топлива. Затяжка пружины 15 и в том, и в другом случае не меняется, так как пружина поворачивается вместе с укрепленными на валу хомутиками 14 и 18.
Для отключения насоса фиксатор 5 с помощью головки 2 отводят от регулировочного болта 16, преодолевая усилие пружины 20, и поворачивают на угол 90°. В таком положении головка упирается в торец выступа б, удерживая фиксатор. Освобожденный поводок под действием пружины 15 перемещает рейку топливного насоса на нулевую подачу топлива. В дальнейшем поворот вала никакого перемещения рейки не вызывает.
Источник