Ремонт тягового двигателя эдп 810

Технология ремонта тягового электродвигателя

Автор работы: Пользователь скрыл имя, 26 Февраля 2015 в 14:05, курсовая работа

Описание работы

При ремонте работ в электропроцессах, а к таким относятся цех по ремонту ТЭД, в целях предупреждения травматизма, очень важно строго выполнять и соблюдать организационные мероприятия. На каждом предприятии при отсутствии должности главного энергетика, администрация назначает лицо, ответственное за электрохозяйство, в обязанность которого входят обучение, инструктирование и периодическая проверка знаний персонала предприятия.

Содержание работы

Введение………………………………………………………………………. 3
Конструкция и условия работы тягового электродвигателя…….……5
Конструкция и условия работы…………………………..………..……5
Методы ремонта и повышения надежности………………….…….…10
Периодичность и сроки плановых технических осмотров и ремонтов…………………………………………………………..……………11

Технология выполнения операций по ремонту тягового электродвигателя …………………………………………………………. …13
Основные неисправности тягового электродвигателя, их причины и способы предупреждения………………………………….………………….13
Способы очистки, осмотра и контроля деталей………..……………..16
Приспособления, технологическая оснастка, средства механизации и оборудование, применяемое при ремонте тягового электродвигателя………………………………………………………………18

Технология ремонта тягового электродвигателя ……. …..…………22
Технология ремонта тягового электродвигателя …………. ………22
Особенности сборки и проведения испытаний…………..…………. 27
Техника безопасности при ремонте и испытаниях………..………….27

Файлы: 1 файл

kursovaya_rabota_1_polugodie.doc

  1. Конструкция и условия работы тягового электродвигателя…….……5
    1. Конструкция и условия работы…………………………..………..……5
    2. Методы ремонта и повышения надежности………………….…….…10
    3. Периодичность и сроки плановых технических осмотров и ремонтов………………………………………………………… ..……………11
  1. Технология выполнения операций по ремонту тягового электродвигателя …………………………………………………………. …13
    1. Основные неисправности тягового электродвигателя, их причины и способы предупреждения………………………………….…… …………….13
    2. Способы очистки, осмотра и контроля деталей………..……………..16
    3. Приспособления, технологическая оснастка, средства механизации и оборудование, применяемое при ремонте тягового электродвигателя…………………………………… …………………………18
  1. Технология ремонта тягового электродвигателя ……. …..…………22
    1. Технология ремонта тягового электродвигателя …………. ………22
    2. Особенности сборки и проведения испытаний…………..…………. 27
    3. Техника безопасности при ремонте и испытаниях………..………….27

В настоящее время на железнодорожном транспорте все большее внимание уделяется развитию новых технологий, внедряемых в инфраструктуру железнодорожного транспорта. Применяются инновационные технологии эксплуатации и технического обслуживания подвижного состава. Рассматривая этапы модернизации подвижного состава и его узлов можно увидеть, что много внимания уделяется совершенствованию их формы и других качеств, направленных на повышение надежности эксплуатации современных поездов, которые постепенно внедряются на железнодорожном транспорте в настоящее время.

Тяговые двигатели электропоезда служат для преобразования электрической энергии в механическую, необходимую для вращения колесных пар моторного вагона. Современные тенденции увеличения межремонтных пробегов подвижного состава требуют совершенствования технологии ремонта, в том числе и тяговых двигателей электропоездов.

Целью данной курсовой работы является описание современных методов ремонта тяговых электродвигателей электропоездов. Задачей являются рассмотрение технологий технического обслуживания, ремонта и составление маршрутной карты. В качестве предложений рассматриваются современные методы ремонта и диагностики тяговых электродвигателей.

В качестве объекта исследования выбраны методы технологического процесса ремонта тяговых электродвигателей, а предметом исследования является сам тяговый электродвигатель. Исследования и выводы приведенные в курсовой работе основываются на данных, полученных из литературы и иных источников.

  1. Конструкция, условия работы и ремонта тягового электродвигателя
    1. Конструкция и условия работы тягового электродвигателя.

Тяговый двигатель электропоезда подвешен жестко к раме тележки, а корпус редуктора опирается на подшипники на оси колесной пары и подвешивается к раме тележки (Рис. 1).

Привод имеет одностороннюю зубчатую передачу( шестерня 5 и колесо 8). Тяговый момент передается от вала якоря тягового электродвигателя через упругую муфту 3, шестерню 5 и колесо 7 колесной пары 6. К раме тележки тяговый двигатель 1 жестко подвешивается лапами 2.

Двумя лапами тяговый двигатель установлен на опорные поверхности поперечной балки рамы тележки. Опорные поверхности имеют выступы, на которые устанавливают клинья. В клинья ввернут распорный вал с левой и правой резьбой, благодаря чему клинья перемещаются и притягивают тяговый двигатель к верхним опорным площадкам поперечных балок. Нижние опорные площадки тягового электродвигателя имеют резьбовые отверстия под болты крепления двигателя на поддерживающих кронштейнах средней части поперечной балки.

На электропоезда серии ЭТ2М устанавливают тяговые двигатели ТЭД-2У1.

Технические характеристики тягового двигателя

Номинальное напряжение, В. . . 750

Минимальная степень возбуждения, %. . 20

Мощность, кВт. . . . 235

Сила тока, А. . . . 345

Частота вращения, мин 1 . . . 1250

Масса, кг. . . . 2240

Марка щеток . . . ..ЭГ-2А

Высота щетки, мм:

Величина усилия нажатия на щетку, Н (кгс)……. 22,5 — 24,0 (2,2 — 2,4)

Количество щеток . . . ..8

Рис.2. Тяговый двигатель:

1 — вентилятор: 2 — задний подшипниковый щит; 3 — задняя крышка подшипника; 4 — подшипник; 5 — вал якоря; 6 — трубка смазки подшипника; 7 — вентиляционная решетка; 8 — остов (станина); 9 — якорь; 10 — кронштейн щеткодержателя; 11 — щеткодержатель; 12 — передняя крышка подшипника; 13 — передний подшипниковый щит; 14 — катушка главного полюса; 15 — сердечник главного полюса; 16 — сердечник дополнительного полюса; 17 — катушка дополнительного полюса

Рис.3. Якорь двигателя:

I — обмоткодержатель с вентилятором; 2 — втулка якоря; 3 — вал; 4 — бандаж; 5 — коллектор; 6 — нажимной конус коллектора: 7 — изоляционные манжеты; 8 — пластина коллектора; 9 — втулка коллектора; 10 — клин; 11 — обмотка якоря; 12 — сердечник якоря

Основными частями тягового двигателя являются станина 8 (рис. 2) и якорь 9.Станина имеет кронштейны для закрепления двигателя на тележке вагона и люки для входа и выхода охлаждающего воздуха, а также для осмотра и профилактики щеточно-коллекторного узла. В станине установлены главные полюсы 15 для создания основного магнитного потока и дополнительные полюсы 16 для создания магнитного поля в коммутационной зоне с целью улучшения коммутации тягового двигателя. Сердечники 15 главных полюсов собраны из фасонных листов, отштампованных из электротехнической стали, катушки 14 полюсов двухслойные, с обмотками из медной ленты. Сердечники 16 дополнительных полюсов отлиты из стали с последующей механической обработкой, а обмотки 17 катушек выполнены из медной проволоки и установлены на специальных планках. Изоляцией катушек главных и дополнительных полюсов служат стеклослюдинитовая лента и стеклолента. Катушки в сборе с полюсами пропитаны эпоксидным компаундом и образуют монолитную конструкцию. Устанавливают дополнительные полюсы в нейтральных плоскостях между главными полюсами.

Все основные детали якоря собраны на втулке 2 (рис.3), напрессованной на вал 3. Благодаря этому в случае необходимости можно заменить вал без нарушения целостности других элементов якоря. Сердечник 12 якоря набран из лакированных листов электротехнической стали, спрессованных между обмоткодержателем 1 и втулкой 9 коллектора. Обмоткодержатель 1 отлит из стали совместно с крыльчаткой вентилятора. Катушка 11 якоря состоит из семи одновитковых секций. Катушки и уравнители изолированы стеклослюдинитовой и стеклянной лентами. В пазовой части якоря обмотка удерживается клиньями 10, в лобовых частях — бандажом 4 из стеклобандажной ленты. Коллектор 5 имеет арочную конструкцию. Нажимной конус 6 армирован стеклобандажной лентой для создания необходимой изолирующей поверхности между токоведущими и заземленными частями. Изоляционные манжеты 7 выполнены из стеклослюдопласта. Якорь 9 (см. рис.1) вращается в роликовых подшипниках 4, наружные кольца которых запрессованы в отлитые из стали подшипниковые щиты 2 и 13. Эти щиты монтируют в горловину станины 8 при сборке двигателя. Для добавления смазки в подшипники служат маслоподводящие трубки 6 в крышках 3 и 12 подшипников. Щеткодержатели 11 изготовлены из латуни. Регулируют усилие нажатия пружины на щетку поворотом регулировочного винта нажимного устройства. Кронштейны 10 щеткодержателя выполнены из пластмассы, армированной в резьбовой и контактной частях кронштейнов металлическими деталями. Кабели для подключения электродвигателя изготовлены из многожильного провода с резиновой изоляцией, снаружи двигателя они защищены рукавами. Маркировка проводов выполнена на станине и наконечниках следующим образом: Я1 и Я2 — соответственно начало и конец обмоток якоря и дополнительных полюсов; С1 и С2 — начало и конец обмотки возбуждения.

Читайте также:  Ремонт автотранспортных средств курсовой

Ненормальными условиями эксплуатации являются перегрузка двигателей по току, допущение боксования колесных пар и юза при электродинамическом торможении, неправильное применение рекуперативного и реостатного торможения. Во всех этих случаях, а также при несвоевременной подготовке к работе в зимних условиях возможно повреждение тяговых двигателей.

Тяговые двигатели, во время работы подвергаются воздействию динамических сил, возникающих при движении колес по неровностям пути, и вибрациям, которые особенно велики в зимних условиях, когда верхнее строение пути обладает повышенной жесткостью. Двигатели подвержены и атмосферным воздействиям, в них попадает влажный воздух и пыль. На зажимах двигателей возникают перенапряжения, вызванные атмосферными разрядами, а также резкими изменениями тока.

На ТПС двигатель расположен в пространстве, ограниченном габаритами приближения подвижного состава к пути, расстоянием между колесными центрами, зависящим от ширины колеи, между другими частями экипажа. Поэтому двигатель должен иметь наименьшие, согласующиеся с общей конструкцией экипажа габаритные размеры и быть доступным для обслуживания. Резкие изменения температуры от —50 до +40 °С и влажности воздуха способствуют отсырению изоляции и конденсации влаги на коллекторе, щеткодержателях и поверхности изоляции. Иногда это сопровождается обледенением, коллектор покрывается инеем, что затем вызывает сильное искрение при работе двигателя. Пыль, поднимающаяся с пути при движении, угольная пыль от истирающихся щеток, влажный воздух и снег приводят к загрязнению изоляции и снижению ее диэлектрической прочности.

1.2 Методы ремонта и повышения надежности

Надёжность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

Для количественной оценки надёжности используют так называемые единичные показатели надёжности (характеризуют только одно свойство надёжности) и комплексные показатели надёжности (характеризуют несколько свойств надёжности):

  • Безотказность — свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.
  • Ремонтопригодность — свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.
  • Долговечность — свойство объекта непрерывно сохранять работоспособность от начала эксплуатации до наступления предельного состояния, то есть такого состояния, когда объект изымается из эксплуатации.
  • Живучесть — свойство объекта сохранять работоспособность при отказе отдельных функциональных узлов.

Индивидуальный метод ремонта основан на возвращении снятых и отремонтированных деталей, агрегатов и узлов на тот же локомотив, с которого их снимали.

При агрегатном методе на ремонтируемый электропоезд устанавливают заранее отремонтированные или новые детали из технологического запаса. В этом случае ремонтные цеха работают не на конкретный электропоезд а на пополнение технологического запаса депо. Агрегатный метод дает существенное сокращение простоя электропоездов в ремонте, причем особую эффективность обеспечивает крупноагрегатный метод, при котором просматривается замена таких крупных узлов как тележки в сборе. Непременным условием агрегатного или крупноагрегатного метода является взаимозаменяемость деталей, агрегатов и узлов. В моторвагонных депо агрегатный метод применяется при выполнении ТР. Внедрение этих методов приводит к значительному повышению производительности труда ремонтных бригад, улучшению качества работ, снижению себестоимости ремонта и исключает непредвиденные задержки, что обеспечивает выпуск из ремонта точно по графику.

При стационарной форме организации ремонтных работ электропоезд в течении всего периода ремонта находиться на одном рабочем месте, оборудованном в соответствии с объемом и характером ремонтных работ, и обслуживается комплексной бригадой рабочих по установленной технологии.

Источник

Электровоз грузовой 2эс6 синара технология ремонта. Тяговый электродвигатель ЭДП810 электровоза

2ЭС6 «Синара» — грузовой двухсекционный восьмиосный магистральный электровоз постоянного тока с коллекторными тяговыми двигателями. Электровоз выпускается в городе Верхняя Пышма Уральским заводом железнодорожного машиностроения.

На 2ЭС6 применён реостатный пуск тяговых электродвигателей (ТЭД), реостатное торможение мощностью 6600 кВт и рекуперативное мощностью 5500 кВт, независимое возбуждение от полупроводниковых преобразователей в режимах торможения и тяги. Независимое возбуждение в тяге — главное преимущество «Синары» перед ВЛ10 и ВЛ11, оно повышает противобоксовочные свойства и экономичность машины, позволяет более широко регулировать мощность.

Двигатель электровоза с последовательным возбуждением имеет склонность к разносному боксованию: при росте частоты вращения падает ток якоря, а с ним и ток возбуждения — происходит самоослабление возбуждения, приводящее к дальнейшему росту частоты. При независимом возбуждении магнитный поток сохраняется, с ростом частоты резко возрастает противо ЭДС и падает сила тяги, что не позволяет двигателю уходить в разносное боксование, микропроцессорная система управления и диагностики (МПСУиД) 2ЭС6 при боксовании подаёт на двигатель дополнительное возбуждение и подсыпает под колёсную пару песок, сводя боксование к минимуму.

Секции пуско-тормозного реостата переключаются обычными электропневматическими контакторами серии ПК, переключение соединений тяговых двигателей также производится контакторами с применением запирающих диодов (так называемый вентильный переход, уменьшающий скачки силы тяги), всего соединений три:

Сериесное (последовательное) — 8 двигателей двухсекционного электровоза либо 12 двигателей трёхсекционного электровоза последовательно, при этом в схему введён только реостат ведущей секции, на 23-й позиции реостат выводится полностью;

Сериес-параллельное (СП, последовательно-параллельное) — 4 двигателя каждой секции соединены последовательно, пуск производится на каждой секции своим реостатом, на 44-й позиции реостат закорачивается;

Параллельное — каждая пара двигателей работает под напряжением контактной сети, пуск производится отдельной группой реостата для каждой пары двигателей, на 65-й позиции реостат выводится.

Кузов электровоза цельнометаллический, имеет плоскую поверхность обшивки.

Подвешивание ТЭД — типичное для грузовых электровозов опорно-осевое, но с прогрессивными моторно-осевыми подшипниками качения. Буксы бесчелюстные, горизонтальные силы передаются с каждой буксы на раму тележки одним длинным резинометаллическим поводком.

Номинальное напряжение на токоприемнике, кВ 3,0

Осевая формула 2 (2 0 — 2 0)

Нагрузка от колесной пары на рельсы, кН 245± 4,9

Передаточное отношение зубчатой передачи 3,44

Масса служебная с 0,7 запаса песка, т 200±2

Разность поколесной нагрузки кН (тс), не более 4,9 (0,5)

Разность нагрузок по колесам колесной пары, %, не более4

Высота оси автосцепки от головки рельса, мм1040 — 1080

Тип подвески тягового электродвигателяОпорно-осевая

Длина электровоза по осям автосцепок, мм, не более 34 000

Высота от головки рельса до рабочей поверхности полоза токоприемника:

в опущенном / рабочем положении, мм, не более 5100/(5500-7000)

Конструкционная скорость электровоза, км/ч 120

Читайте также:  Гусми 131 ремонт схема

Скорость прохождения кривых с радиусом 400 м, предусмотренная для железнодорожного пути на деревянных шпалах, км/ч, не более 60

Мощность на валах тяговых двигателей, не менее кВт 6440

Сила тяги, кН 464

Мощность на валах тяговых двигателей, не менее кВт 6000

Сила тяги, кН 418

Скорость, км/ч 51,0

2ЭС10 «Гранит»

2ЭС10 «Гранит» — грузовой двухсекционный восьмиосный магистральный электровоз постоянного тока с асинхронным тяговым приводом.

На момент создания электровоз является самым мощным выпускаемым локомотивом для колеи 1520 мм. При стандартных весовых параметрах он способен водить поезда весом примерно на 40-50 % больше, чем электровозы серии ВЛ11. Планируется, что при применении «Гранита» на участках Свердловской железной дороги с тяжелым горным профилем появится возможность пропуска транзитных поездов весом от 6300-7000 тонн без разделения состава и отцепки локомотива. 4 августа 2011 года была продемонстрирована работа 2ЭС10 в трехсекционном исполнении, с заданной нагрузкой составом 9000 тонн. Доказана эффективность такой компоновки для работы на сложных участках в уральских горах (на перевалах).

Номинальное напряжение на токоприёмнике, кВ 3

Осевая формула 2(2 О -2 О)

Номинальная нагрузка от колёсной пары на рельсы, кН 249

Длина электровоза по осям автосцепок, мм., не более 34000

Конструкционная скорость электровоза км/ч. 120

Мощность на валах тяговых двигателей:

В часовом режиме, кВт., не менее 8800

В продолжительном режиме, кВт., не менее 8400

В часовом режиме, кН 784

В продолжительном режиме, кН 538

Мощность электрического тормоза на валах тяговых двигателей:

Рекуперативного, кВт., не менее 8400

Реостатного, кВт., не менее 5600

марка характеристика электровоз локомотив

ЗАПАДНО-СИБИРСКАЯ ЖЕЛЕЗНАЯ ДОРОГА

ОМСКАЯ ТЕХНИЧЕСКАЯ ШКОЛА

Механическое оборудование грузового электровоза 2ЭС6.

Механическая часть предназначена для реализации тяговых и тормозных усилий, развиваемых электровозом, размещения электрического и пневматического оборудования, обеспечения заданного уровня комфорта, удобных и безопасных условий работы локомотивных бригад.

Механическая (экипажная) часть электровоза состоит из двух секций соединенных между собой автосцепкой. Каждая секция включает в себя две двухосные тележки и кузов, связанных между собой наклонными тягами, рессорным пружинным подвешиванием типа «флейсикойл», гидродемпферами и ограничителями перемещения кузова.

На механическую часть электровоза действует нагрузка, создаваемая весом механического, электрического и пневматического оборудования. Кроме того, механическая часть передает тяговые усилия от электровоза к поезду и воспринимает динамические нагрузки, возникающие при движении электровоза по кривым и прямым участкам пути. Механическая часть должна быть достаточно прочной, а также отвечать требованиям безопасности движения и правилам технической эксплуатации железных дорог. Для обеспечения нормальной и безаварийной работы необходимо, чтобы все механическое оборудование находилось в полной исправности и отвечало нормам безопасности, прочности и правилам ремонта (См. Рис.1).

Рис.1. — Механическая (экипажная) часть одной секции.

1 — автосцепка; 2 — кабина; 3 — колесная пара; 4 — букса; 5 — буксовый поводок; 6 — рама тележки; 7 — перегородка; 8 — кронштейн; 9 — наклонная тяга;10 — крыша кузова; 11 — амортизатор; 12 — рама кузова; 13 — буксовая пружина; 14 — кузовная пружина; 15 — страховочный шкворень; 16 — кронштейн;17 – боковая стенка; 18 — задняя стенка; 19 — переходная площадка

Кузов секции электровоза однокабинный, вагонного типа, предназначен для размещения силового и вспомогательного электрооборудования, пневматического оборудования локомотива, систем вентиляции, размещения рабочих мест локомотивной бригады, а также для восприятия и передачи нагрузок:

Силы тяжести от массы внутрикузовного оборудования и запаса песка;

Силы тяжести от массы крышевого и подкузовного оборудования;

Статических и динамических, возникающих при взаимодействии с ва-гонами поезда и тележками локомотива в режиме тяги, выбега и торможения и ударных воздействий в автосцепку. Кузов представляет собой цельнометаллическую сварную конструкцию с несущей рамой (См.Рис.2).

1 – прожектор; 2 – установка кондиционирования воздуха 3 – антенна КЛУБ; 4 – антенна GPS; 5 – токоприемник; 6 – помехоподавляющий дроссель; 7 – разъединитель; 8 – антенна радиостанции; 9 — токоведущая шина; 10 – блок пуско-тормозных резисторов; 11 – вспомогательный компрессор; 12 — компрессорный агрегат; 13 – антенна ТЭТРА; 14 – переходная площадка; 15 – обносной лист; 16 – токоотводящее устройство; 17 – тяговый электродвигатель; 18 – блок аккумуляторной батареи; 19 – наклонная тяга; 20 – блок электрооборудования ВВК; 21 — датчик ДПС-У; 22 – тифон, свисток; 23 – антенна САУТ, приёмные катушки АЛСН; 24 – метельник.

Кузов электровоза состоит из двух секций, одинаковых по основным узлам, за исключением места постановки санузла, установлен только на первой секции. Кузов локомотива и состоит из остова кузова, крыши кузова и наружной обшивки, выполненной из гладкого стального листа толщиной 2,5 мм. и песочных бункеров. На первом конце каждой секции оставлено место для установки блочной кабины. Внутри кузова сформировано помещение для установки оборудования – машинное отделение, отгороженное поперечной стенкой, образующей тамбур, от кабины управления. В тамбуре имеются двери для входа в локомотив и проходов в кабину и машинное отделение.

На торцевых стенках кузова предусмотрено место для установки главных резервуаров.

Ударно-тяговые приборы установлены на раме кузова электровоза.

Кузов секции электровоза разделен на отсеки в вертикальной, и в горизонтальной плоскости:

Крыша электровоза представлена на рис. 3 и состоит из основной части (высотой 935 мм и шириной 3060 мм) и трех съемных частей. . Задняя часть выполнена заодно с остовом кузова. Съемные секции представляют собой каркас из прокатных и гнутых профилей обшитых листовой сталью. Средняя съемная крыша состоит из двух секций, в каждой секции монтируется модуль охлаждения тормозных резисторов. Места соединения съемных частей с каркасом остова кузова имеют уплотнения, исключающие попадание влаги в кузов. В задней части секции имеется люк с крышкой для выхода из кузова на крышу.

Форкамера с мультициклонными фильтрами

Корпус модуля пуско-тормозных резисторов

ЭЛЕКТРОВОЗ 2ЭС6 — Синара

История

В декабре 2006 года на Уральском заводе железнодорожного машиностроения был построен опытный образец грузового электровоза с коллекторным тяговым приводом 2ЭС6. Летом 2007 года опытный образец 2ЭС6 вышел в самостоятельный рейс с составом из 70 вагонов. Маршрут движения: станция «Свердловск-Сортировочный» — станция «Каменск-Уральский» и обратно (в общей сложности – 190 километров). Локомотив прошел весь маршрут в установленном на магистрали скоростном режиме, на отдельных участках достигая скорости 80 км/час. Также 2ЭС6 прошел высоковольтное опробование на Свердловской железной дороге, по результатам которого специалисты УЗЖМ совместно с работниками депо Свердловск-Cортировочный провели доработку машины. По итогам этих испытаний ОАО «Синара — Транспортные машины» и ОАО «РЖД» подписали контракт на поставку 25 грузовых электровозов.
В 2008 году были завершены сертификационные испытания и электровоз 2ЭС6 получил сертификат соответствия Российского регистра сертификации на федеральном железнодорожном транспорте (РС ФЖТ).
В апреле 2009 года на УЗЖМ запущен первый производственный комплекс, позволяющий выпускать 60 двухсекционных локомотивов нового поколения в год. Электровозы 2ЭС6 производства УЗЖМ эксплуатируются на Свердловской железной дороге.

Читайте также:  Уполномоченные банки капитальный ремонт

Технические данные

Грузовой электровоз 2ЭС6 отличается повышенной экономичностью, высокими потребительскими, эксплуатационными и экологическими свойствами. В нем используется целый ряд инженерных решений, которые ранее не применялись в отечественном локомотивостроении, к ним можно отнести микропроцессорные системы управления и безопасности.
Локомотив оснащён кабиной модульной конструкции, современным пультом управления, системой климат-контроля. 2ЭС6 оборудован компьютером, который позволяет оперативно получать необходимую информацию о параметрах движения поезда.
2ЭС6 оборудован комплексной системой диагностики, позволяющей постоянно контролировать работу машины. Локомотив может водить составы повышенного веса (до 8500 тонн), что на 30% больше грузоподъемности ВЛ11), приэто расход электроэнергии снижен по сравнению с ВЛ11 на 10%.
На электровозе снижена трудоемкость ремонта на 15%, а межремонтный пробег увеличен на 50%. Улучшены тяговые и тормозные характеристики электровоза и условия работы локомотивных бригад.

  • 2ЭС6 — грузовой магистральный электровоз постоянного тока
  • Технические характеристики
  • Годы постройки — 2006 — по н.в.
  • Страна постройки — Россия (ОАО «Синара — Транспортные машины», ОАО «Уральский завод железнодорожного машиностроения»)
  • Страна эксплуатации — Россия
  • Осевая формула — 2(2о-2о)
  • Система тока — постоянный, 3 кВ
  • Часовая мощность ТЭД — 6440 кВт
  • Длительная мощность ТЭД — 6000 кВт
  • Конструкционная скорость — 120 км/ч
  • Сцепной вес — 192 т

Краткое описание конструкции электровоза

Создание электровозов нового поколения предполагает использование экипажной части с унифицированными двухосными тележками, в которых колесные пары имеют возможность радиальной установки при прохождении кривых участков пути. Новые локомотивы, наряду с коллекторными тяговыми двигателями (ТД), должны оснащаться унифицированным бесколлекторным поосно-регулируемым тяговым, а также вспомогательным приводами с экономичными и надежными полупроводниковыми преобразова­телями, созданными на современной электронной базе.
Повышение потребительских свойств перспективного подвижного состава должно достигаться обеспечением современных требований в области эргономики, санитарно-гигиенических и экологических условий. Важную роль играют также значительное увеличение межремонтного пробега, применение надежных неремонтируемых узлов и агрегатов, организация ремонта с учетом фактического технического состояния по результатам диагностики и др.
Примером такого подхода к проектированию новых машин могут служить магистральные грузовые электровозы 2ЭС4К производства ОАО «Новочеркасский электровозостроительный завод» (НЭВЗ) и 2ЭС6, выпущенные ОАО «Уральский завод железнодорожного машиностроения» (УЗЖМ). Они предназначены для эксплуатации на участках, электрифицированных на постоянном токе напряжением 3000 В, со скоростями движения до 120 км/ч. Эти локомотивы заменят грузовые электровозы серий ВЛ10 и ВЛ11 (всех индексов). Новые локомотивы способны работать в составе одной, двух, трех или четырех секций по системе многих единиц. Электровоз постоянного тока, построенный на УЗЖМ, первоначально получил название 2ЭС4К. В 2007 г. для отличия от машин, выпускаемых НЭВЗом, ему была присвоена серия 2ЭС6 .

Новый двухсекционный электровоз формируют из двух одинаковых головных секций, трехсекционный — из двух головных и прицепной секции. Третья, средняя секция, не оборудована кабиной управления и имеет двери по торцам кузова. Четырехсекционный локомотив может формироваться из двух двухсекционных электровозов или из двух головных и двух прицепных средних секций без кабин управления.

Тележки электровозов НЭВЗа и УЗЖМ — двухосные, бесчелюстные. Рессорное подвешивание — двухступенчатое из спиральных цилиндрических пружин с суммарным статическим прогибом на 130 мм и демпфированием колебаний каждой ступени гидравлическими амортизаторами.

Кузов и тележки связаны между собой в вертикальном и поперечном направлениях упругими и демпфирующими элементами. Во второй ступени рессорного подвешивания применены пружины типа «Флексикойл». Поперечное и продольное усилия от букс колесных пар передаются через упругие связи. Рама кузова воспринимает тяговое усилие от тележки через наклонную тягу.
Тяговая передача электровоза 2ЭС6 № 001 (УЗЖМ) — двухсторонняя косозубая, с моторно-осевыми подшипниками качения.
Независимое питание обмоток возбуждения ТД обеспечивает управляемый статический преобразователь с мощностью в часовом режиме 25 кВт на два ТД. Применение статического преобразователя на электровозе постоянного тока позволяет использовать схему силовых цепей с независимым питанием обмоток возбуждения двигателей во всех режимах (тяга, рекуперация и реостатное торможение). Становится возможным существенно улучшить тяговые свойства локомотива, повысив жесткость характеристик. Одновременно уменьшается число аппаратов в силовых цепях, упрощается переход электровоза из моторного режима в тормозной и обратно.
В качестве реверсоров использованы трехпозиционные переключатели, позволяющие наряду с реверсированием отключать неисправные ТД. При повреждении статического преобразователя и на маневровых передвижениях ТД можно переключать на последовательное возбуждение.
После того как э.д.с. ТД станет выше напряжения в контактной сети, обеспечивается автоматический переход в режим рекуперативно-реостатного или реостатного торможения при помощи блока полупроводниковых вентилей. Достоинством электрической схемы является возможность плавного регулирования тока возбуждения в режимах тяги, рекуперации и электрического торможения, что позволяет в значительной степени улучшить динамику при движении поезда.
В контур каждой пары обмоток возбуждения ТД введены быстродействующий контактор и реактор, которые также включены и в цепь обмоток якоря. Использование реактора в цепях якорей и возбуждения является принципиальной особенностью электрической схемы электровоза 2ЭС6. Это решение обеспечивает обратную динамическую связь по току якоря для магнитного потока ТД. Кроме того, существенно улучшаются качество переходных процессов при колебаниях напряжения и аварийных режимах, а также эффективность защиты двигателей при коротких замыканиях.
Перегруппировка ТД осуществляется при помощи электропневматических контакторов и полупроводниковых вентилей без разрыва силовой цепи и провала силы тяги. Реверсирование тяговых двигателей достигается переключением обмоток якорей.
На электровозе 2ЭС6 применена микропроцессорная система управления (МСУЛ), которая управляет тяговым приводом, вспомогательными машинами и другими системами, обеспечивающими безопасное и экономичное ведение поезда. На новых локомотивах предусмотрены режимы ручного и автоматического пуска до ходовых позиций последовательного и параллельного соединений ТД в зависимости от тока с уставкой, выбираемой машинистом.
Система МСУЛ обеспечивает защиту двигателей от перегрузки, боксования и юза, автоматическое включение реостатного торможения после превышения заданного уровня напряжения в контактной сети в режиме рекуперативного торможения и отображает на пульте машиниста информацию о работе электрического оборудования всех секций.
Электровоз оснащается аппаратурой бортовой диагностики, объединенной с МСУЛ и контролирующей состояние электрического оборудования. Электронное оборудование имеет свою встроенную систему контроля и диагностики.


Локомотив 2ЭС6 оборудовали трехфазными асинхронными вспомогательными двигателями с короткозамкнутым ротором, которые получают питание от одного из статических преобразователей. От второго преобразователя питаются цепи управления и другие низко­вольтные потребители, а также заряжается аккумуляторная батарея.
Для охлаждения ТД применили осевые вентиляторы (один на тележку), для отвода тепла от пуско-тормозных резисторов — вентиляторы с автоматическим регулированием частоты вращения в зависимости от тока в цепи ТД. На каждой секции установлен компрессор винтового типа.

Тяговый электродвигатель ЭДП810 электровоза 2ЭС6

Электродвигатель ЭДП810 постоянного тока независимого возбуждения устанавливается на тележках электровоза 2ЭС6 и предназначен для тягового привода колесных пар.

Технические характеристики электродвигателя ЭДП810

Основные параметры для часового, продолжительного и предельного режимов работы тягового электродвигателя приведены в таблице 1.1.

Источник

Оцените статью