Допуски и посадки
краткая характеристика и примеры применения посадок
Общие допуски ГОСТ 30893.1-2002 Посадки с зазором Переходные посадки Посадки с натягом Посадки с зазором. Переходные посадки. Посадки с натягом. |
Таблица предельных отклонений при размерах от 1 до 500 мм.
Краткая характеристика и примеры применения посадок
кой частоте вращения (в электродвигателях, в механизме передач двигателя внутреннего сгорания), при разнесенных опорах или большой длине сопряжения, например, для блока зубчатых колес в станках. Посадки H8/d9; H9/d9 применяют, например, для поршней в цилиндрах паровых машин и компрессоров, в соединениях клапанных коробок с корпусом компрессора (для их демонтажа необходим большой зазор из-за образования нагара и значительной температуры). Более точные посадки этого типа Н7/d8; H8/d8 применяют -для крупных подшипников при высокой частоте вращения.
Из числа грубых посадок с зазором в 10-12 квалитетов наиболее предпочтительной является посадка Н11/d11, применяемая для подвижных соединений, работающих в условиях пыли и грязи (узлы сельскохозяйственных машин, железнодорожных вагонов), в шарнирных соединениях тяг, рычагов и т. п., для центрирования крышек паровых цилиндров с уплотнением стыка кольцевыми прокладками.
Переходные посадки. Предназначены для неподвижных соединений деталей, подвергающихся при ремонтах пли по условиям эксплуатации сборке и разборке. Взаимная неподвижность деталей обеспечивается шпонками, штифтами, нажимными винтами и т. п. Менее тугие посадки назначают при необходимости в частых разборках соединения, при неудобствах разборки и возможности повреждения соседних деталей; более тугие — если требуется высокая точность центрирования, при ударных нагрузках и вибрациях.
Посадка Н7/п6 (типа глухой) дает наиболее прочные соединения. Примеры применения: а) для зубчатых колес, муфт, кривошипов и других деталей при больших нагрузках, ударах или вибрациях в соединениях, разбираемых обычно только при капитальном ремонте; б) посадка установочных колец на валах малых и средних электромашин; в) посадка кондукторных втулок, установочных пальцев, штифтов. В приборостроении используется для передачи небольших нагрузок без дополнительного крепления (посадки осей, втулок, шкивов и др.)- Сборка производится под прессом.
Посадка H7/m6 (типа тугой) несколько слабее посадки типа глухой.(меньше натяги, повышается вероятность получения зазора), ее применяют при необходимости изредка разбирать соединение. С предельными отклонениями по /m6 выполняют посадочные места под подшипники качения в тяжелом машиностроении, цилиндрические штифты, но поле допуска тб не вошло в число предпочтительных, так как перекрывается соседними полями n6 и k6.
Посадка H7/k6 (типа напряженной) в среднем дает незначительный зазор (1-5 мкм) и обеспечивает хорошее центрирование, не требуя значительных усилий для сборки и разборки. Применяется чаще других переходных посадок: для посадки шкивов, зубчатых колес, муфт, маховиков (на шпонках), для втулок подшипников и вращающихся на валах зубчатых колес и др.
Посадка H7/j6 (типа плотной) имеет большие средние зазоры, чем предыдущая, и применяется взамен ее при необходимости облегчить сборку.
Более точные или грубые переходные посадки имеют примерно тот же характер, что и описанные одноименные посадки, и используются со ответственно при высоких или пониженных требованиях к точности центрирования.
Посадки с натягом. Выбор посадки производится из условия, чтобы при наименьшем натяге была обеспечена прочность соединения и передача нагрузки, а при наибольшем натяге — прочность деталей. Для применения поса док с натягом, особенно в массовом производстве, рекомендуется предварительная опытная проверка.
Посадку H7/р6 применяют при сравнительно небольших нагрузках (например, посадка на вал уплотнительного кольца, фиксирующего положение внутреннего кольца подшипника у крановых и тяговых двигателей).
Посадки H7/г6; H7/sб; H8/s7 используют в соединениях без крепежных деталей при небольших нагрузках (например, втулка в головке шатуна пневматиче- ского двигателя) и с крепежными деталями при больших нагрузках (посадка на шпонке зубчатых колес и муфт в прокатных станах, нефтебуровом оборудовании и др.).
Посадки Н7/u7 и Н8/u8 применяют в соединениях без крепежных деталей при значительных нагрузках, в том числе знакопеременных (например, соединение пальца с эксцентриком в режущем аппарате уборочных сельскохозяйственных машин); с крепежными деталями при очень больших нагрузках (посадка крупных муфт в приводах прокатных станов), при небольших нагрузках, но малой длине сопряжения (седло клапана в головке блока цилиндров грузового автомобиля, втулка в рычаге очистки зерноуборочного комбайна).
Посадки Н8/х8 и Н8/z8 характеризуются относительно большими натягами и допусками натяга, применяются в тяжелонагруженных соединениях или при материалах с относительно небольшим модулем упругости.
Посадки, с натягом высокой точности Hб/p5; H6/г5; Н6/s5 применяют относительно редко и в соединениях, особо чувствительных к колебаниям натягов, например, посадка двухступенчатой втулки на вал якоря тягового электродвигателя.
Допуски несопрягаемых размеров. Для несопрягаемых размеров допуски назначают по табл. 1 в зависимости от функциональных требований. Поля допусков обычно располагают в плюс для отверстий (обозначают буквой Н и номером квалитета, например, H3, H9, H14), в минус для валов (обозначают буквой h и номером квалитета, например, h3, h9, h14) и симметрично относительно нулевой линии (плюс-минус половина допуска обозначают, например, ± IТЗ /2; ± IТ9 /2; ± IT14 / 2. Симметричные поля допусков для отверстии могут быть обозначены буквами J5 (например,Js3, Js9, Js14), а для валов — буквами j (например, Js3; Js9; Js14).
Допуски по 12-17 квалитетам характеризуют несопрягаемые или сопрягаемые размеры относительно низкой точности.
Многократно повторяющиеся предельные отклонения в этих квадитетах разрешается не указывать у размеров, а оговаривать общей записью.
Источник
Восстановление плотной посадки подшипников гальваническим способом
В своей первой статье (см. сборник №64) киевлянин В. И. Лакеев рассказывал о модернизации топливной системы «Вихря», направленной на уменьшение вероятности проливания топлива из карбюратора и входного штуцера. В предлагаемой вниманию читателей заметке В. И. Лакеев знакомит с другими проверенными многолетней эксплуатацией приемами ремонта и усовершенствованиями двигателя, улучшающими его «герметизацию».
На моем моторе, как н на большинстве «Вихрей» и «Вихрей-М», которые я видел, внутренние (а иногда и наружные) обоймы подшипников коренных опор посажены с таким зазором, что могут проворачиваться как на валу, так и в гнездах картера. В результате шейка коленчатого вала и гнездо подшипника получают выработку, суммарный их износ становится таким, что уплотнительная манжета уже не обеспечивает надежной герметизации кривошипных камер. Ухудшается запуск двигателя, нарушается работа магдино из за быстрого замасливания прерывателей и произвольного изменения зазоров в контактах. Не будем уже говорить о том, что изнашиваются дорогостоящие и дефицитные детали — коленчатый вал и картер.
Я пытался подобрать шарикоподшипники с более тугой посадкой, но, во-первых, «тугим» обычно оказывалось только одно из колец, а во-вторых, приходилось перебирать не один десяток подшипников. В конце концов удалось добиться плотной посадки и устранить проворачивание колец другим путем — покрытием их поверхности хромом. Расскажу подробнее о том, как это делается.
В магазине лабораторных химреактивов необходимо приобрести: хромового ангидрида (СгО3) — 100 г; фтористого калия (KF+2Н2О) — 10 г; едкого натра (NaOH) — 20 г; серной и соляной кислот по 200 г.
Для выполнения работы понадобятся пять полулитровых банок: для электролита (это будет собственно гальваническая ванна), для обезжиривающего раствора, для декапирующего раствора и две для промывки водой после обезжиривания и декапирования.
Затем изготавливаются электроды. Анодный электрод ∅12 мм отливается из припоя марки ПОС-60 или ПОС-40. Катодным электродом может служить стержень из любого металла с П-образным держателем для хромируемого изделия.
Электроды закрепляются в пластмассовой крышке гальванической ванны: для покрытия внутреннего кольца — так, как показано иа рис. 1, а, для покрытия наружного кольца — как показано на рис. 1, б.
Для приготовления электролита растворяются в 110 г дистиллированной воды — 50 г хромового ангидрида и в 50 г воды — 1,5 г фтористого калия. Затем растворы сливаются в ванну и перемешиваются.
Обезжиривающий раствор приготавливается растворением в 100 г воды 10—12 г едкого натра.
Декапнруюший раствор получается смешиванием 50 г соляной и 50 г серной кислот.
Для питания гальванической ванны постоянным током можно использовать два 12-вольтовых аккумулятора, включенных последовательно; при питании от сети будут необходимы понижающий трансформатор и однополупериодный выпрямитель (рис. 2).
Внутренняя полость шарикоподшипника и поверхность, не требующая металлизации, предохраняются обмазыванием расплавленной смесью 30% воска, 30% канифоли и 40% парафина; при этом внутренние полости предварительно закрываются с обеих сторон шайбами из жести. Этой же защитной смесью покрываются и поверхности катода, погружаемые в электролит.
Подготовленный к нанесению покрытия подшипник зажимается в держателе катода; при этом необходимо обеспечить электрический контакт зажимного винта держателя с металлизируемым кольцом. Подшипник обезжиривается погружением в ванну едкого натра на 1 мин, промывается в двух водах, декапируется в течение 0,5 мин, затем вновь промывается в двух водах и помещается в электролит.
При помощи реостата сила тока в ванне доводится до 1,0—1,1 А, что соответствует плотности тока примерно 10 А/дм 2 . При такой плотности тока толщина покрытия составит 5—7 мкм/ч, так что для наращивания 0,01 мм будет достаточно 1,2—1,5 ч. При правильном течении процесса хромирования на покрываемой поверхности выделяются пузырьки водорода.
Хромирование наружного кольца производится не по всей поверхности, а примерно по половине его окружности. Кольцеобразная пластина из припоя, равная высоте кольца, вставляется в паз, прорезанный в аноде, и обжимается в тисках.
После покрытия подшипник очищается от защитной смеси и промывается в бензине. Толщина слоя покрытия будет достаточна, если в гнездо картера, нагретого до 60—80°С, и на цапфу кривошипа подшипник входит под легкими ударами киянки.
За неимением подшипника с защитной шайбой № 60205 мне пришлось на своем «Вихре» установить в верхнюю коренную опору обычный подшипник № 205; при этом уплотняющая манжета снаружи стояла пружинкой вниз. Длительная эксплуатация мотора с реконструированной таким образом опорой не выявила каких-либо нежелательных последствий понижения верхнего подшипника на 8 мм. В то же время я получил возможность заменять манжету, не разбирая картер и опору.
К рекомендациям по герметизации карбюратора, приведенным в сборнике №64, хочу добавить, что желательно герметизировать и нижний конец оси дроссельной заслонки. Будет несложно закрыть ее дюралюминиевым колпачком, вклеенным эпоксидным клеем в гнездо поворотной пружины (рис. 3).
Наружный диаметр пружины необходимо при этом уменьшить с 15 до 13 мм перемоткой ее на стержень ∅10,4 мм.
Источник
Глава 1. Технологический процесс ремонта узлов
В процессе ремонта металлургических агрегатов восстановление их работоспособности и соответствующего уровня надежности может осуществляться несколькими методами:
— заменой или восстановлением непосредственно отказавшей детали;
— заменой узла, в состав которого входит поврежденная деталь;
— заменой всего механизма или крупного блока, включающего несколько узлов, содержащих поврежденные детали.
Первый метод применяется, как правило, для быстроизнашивающихся деталей с облегченным доступом и малым временем для их замены (вкладыши подшипников скольжения, вкладыши универсальных шпинделей, втулки, направляющие, фурмы и т.д.).
Второй метод на металлургических предприятиях получил наибольшее распространение. Он позволяет существенно сократить время и снизить трудоёмкость замен. В этом случае восстановление работоспособности узла переносится в специализированные ремонтные цехи или на ремонтные участки цеха. Таким методом ремонтируются редукторы, ролики рольгангов, палеты агломашин, гидроцилиндры, гидроаппаратура и т.д.
Третий метод используется для наиболее сложных и трудоемких в регулировке механизмов, таких как, засыпные устройства доменных печей, роликовые секции, кристаллизаторы МНЛЗ, барабаны моталок широкополосных станов горячей прокатки и др.
Когда ремонт осуществляется в специализированных ремонтных цехах (на участках), технологический процесс ремонта, в общем случае, включает следующие операции:
— восстановление или замена дефектных деталей;
Для реализации последней операции на предприятии должны быть установлены специальные нагрузочные стенды. Осуществление операции приработки позволяет существенно повысить (в 2-10 раз) срок службы узлов трения.
Разборка узла осуществляется с целью выявления дефектных или изношенных деталей. Однако в процессе разборки приходится разъединять соединения (пары трения), которые находятся в работоспособном состоянии и в которых трущиеся поверхности приработаны.
Наличие в узле нескольких однотипных, унифицированных пар трения может в дальнейшем, при сборке, привести к их комплектованию из однотипных деталей, но принадлежащих к разным парам трения. Это ведёт к нарушению приработки трущихся поверхностей и, следовательно, к сокращению срока службы.
С другой стороны, в узле трения нагруженной может являться одна часть детали (например часть поверхности неподвижного кольца подшипника качения) или часть деталей (например часть роликов подшипников качения на цапфе кольца конвертера).
Тогда необходимо повернуть кольцо подшипника на соответствующий угол, чтобы нагрузить другую часть кольца или другую часть роликов подшипника.
То есть для реализации таких возможностей требуется перед разборкой зафиксировать взаиморасположение деталей пар трения. Фиксация может осуществляться кернением или окраской, или иным другим способом.
Наиболее трудоёмкой операцией при разборке является разборка соединений с натягом. Для разборки таких соединеий применяют:
— винтовые и гидравлические съемники;
— гидропрессовый способ (масло под большим давлением подаётся на поверхность контакта и разъединяет контактирующие детали масляной пленкой).
В ряде случаев в соединениях с натягом развивается процесс фреттинг-коррозии, результатом которого является заклинивание. Тогда единственно возможным способом является разрезание охватывающей детали. В этом случае данная деталь восстановлению не подлежит.
После разборки узла детали промываются (керосин, содовый раствор, пар и другие растворители) вручную или в специальных установках, и готовятся к визуальной или инструментальной дефектоскопии.
После промывки детали подвергаются визуальному осмотру и инструментальному контролю с целью выявления дефектов, возникших в процессе эксплуатации узла. Для наиболее ответственных и нагруженных деталей используются спецальные методы дефектоскопии.
Для выявления развившихся трещин применяются:
В магнитной дефектоскопии трещины на поверхности деталей фиксируются по характерному разрыву магнитных силовых линий на дефекте. Направление магнитных силовых линий фиксируется железным порошком, мельчайшие частицы которого перемешаны в керосине. Этой смесью покрывается поверхность детали.
Метод люминесцентной дефектоскопии основан на способности ряда жидкостей светиться под воздействием ультрафиолетовых лучей. Одной из таких жидкостей может являться смесь керосина с трансформаторным маслом (люминофор). Для большей эффективности в растворы добавляются специальные люминесцентные краски. Поверхность детали покрывается люминофором, который проникает в имеющиеся дефекты (трещины). Затем с поверхности удаляется люминофор и поверхность покрывается гигроскопичным порошком, который извлекает люминофор из дефекта. По величине светящихся линий и времени начала их свечения судят о размерах дефектов.
Эффективным методом выявления трещин и дефектов внутри деталей является метод ультразвуковой дефектоскопии. Обнаружение дефектов основано на принципе отражения (или задержания) ультразвуковых волн дефектами. Известно, что ультразвуковые волны отражаются на границах раздела сред, в данном случае металл – воздух.
При использовании этого метода необходимо обеспечить плотный контакт излучателя и приёмника с поверхностью исследуемой детали. В качестве среды, улучшающей контакт, применяется минеральное масло. Кривизна излучателя и поверхности исследуемой детали должна быть одной и той же.
Определение величины износа осуществляется микрометрированием с использованием различных измерительных инструментов (микрометр, индикатор, штангенциркуль, штихмасс, зубомер, нутромер, щуп и др.).
Дата добавления: 2015-12-11 ; просмотров: 10358 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источник