- Контроллер для электровелосипеда: схема, особенности подключения, советы при выборе
- Что такое контроллер для электровелосипеда?
- Параметры блока управления
- Схема контроллера электровелосипеда
- Как подключить контроллер к электровелосипеду?
- Виды контроллеров для электровелосипедов
- Как выбрать контроллер для электровелосипеда – советы
- Схема регулятора скорости бесколлекторного двигателя (ESC)
- Схема регулятора
- Питание
- ШИМ и сигналы для ключей
- Обратная связь (контроль напряжения фаз двигателя)
- Датчики Холла
- Измерения аналоговых сигналов
- Задающие сигналы
- UART интерфейс
- Прочее
- Силовая часть
- Возможности прошивки
- Работа регулятора
- Включение
- Запуск
- Настройка регулятора
Контроллер для электровелосипеда: схема, особенности подключения, советы при выборе
Все конструкции электровелосипедов включают в себя не только электродвигатель, но и отдельную систему управления — контроллер. Он необходим для обеспечения работы электромотора в велосипеде. Контроллер выполняет важную функцию в транспорте и считается «головным мозгом» конструкции.
Что такое контроллер для электровелосипеда?
Контроллеры приводят в действие моторные колеса, регулирует скорость и вращение, а также обеспечивает правильную остановку
Контроллер считает одной из главных частей электровелосипеда, так как отвечает за совершенные действия. Он обеспечивает переход тока к электродвигателю.
Такая конструкция позволяет:
- включать и выключать электронику;
- регулировать работу мотор-колес;
- позволяет устанавливать ограничитель скорости;
- осуществляет круиз-контроль;
- ускоряет двигатель до трехскоростного режима;
- отвечает за рекуперативное торможение;
- позволяет всем параметрам отображаться на панели управления;
- осуществление обратного хода.
Главные функции контроллера делят на:
- регулировку движения велосипеда;
- осуществление крутящего момента;
- защищает электродвигатель.
Параметры блока управления
Контроллеры обеспечены основными параметрами, благодаря которым электромоторы и батареи могут работать:
- Максимальный постоянный ток. Значение, которое отвечает за максимальный ток, который держит контроллер в течение установленного времени.
- Максимальный пиковый ток. Значение, которое выдерживается на минимальном отрезке времени. Данное число обычно гораздо больше, чем значение постоянного тока. Пиковый ток наблюдается при резком старте, когда в транспорте развивается большой крутящий момент.
- Максимальное напряжение аккумуляторов. Значение максимального количества используемых аккумуляторных банок. Если происходит повышение напряжения, контроллер может сгореть или выйти из строя. Разные модели имеют свой показатель напряженности. В основном они рассчитаны на 24, 48 и 60V.
- Внутреннее сопротивление. Данный параметр не является важным. Чем больше мощность контроллера, тем меньше сопротивление.
- Частота подачи импульсов. Значения данного параметра зависят от вида мотор-колес.
Схема контроллера электровелосипеда
Контроллер внешне выглядит, как коробка, выполненная из алюминия. Внутри неё содержится много цветных проводов. В некоторых моделях конструкцию устанавливают в отдельном боксе, для защиты от загрязнений и повреждения.
Схема контроллера включает в себя:
- Сердце в виде микроконтроллера, расположенное в центре конструкции.
- Преобразователи напряженностью 12 и 5 В.
- Периферия (ручки, датчики).
- Силовые компоненты.
Как подключить контроллер к электровелосипеду?
- Необходимо подключить питание мотор-колес к силовым проводам такого же цвета.
- К датчикам мотор-колес подключить главные провода. Если в комплекте есть велокомпьютер, его подключают к пульту управления.
- Если пульта управления нет, то замок зажигания подключают к красному и синему разъему.
- Затем ручку «газа» подключают к разъему.
- Тормоз подключают к отверстию ручки. Там содержится два разъема, поэтому во второй можно подключить стоп сигнал при желании.
- В ограничителе максимальной скорости можно установить данную функцию. Для этого замыкают два белых провода. Для того чтобы функция работала постоянно, следует контакты соединить между собой.
- При наличии системы ассистирования, ее можно подключить в специальном отделе.
- Следует подключиться к отделу аккумуляторной батареи.
- Необходимо помнить, что нельзя замыть контакты черного и красного цвета питания.При самостоятельной сборке рекомендуется следить за соответствием цветов и не соединять разъемы без надобности.
Виды контроллеров для электровелосипедов
По типу связи с двигателем:
- Для работы с установленным датчиком.
- Работающие без датчика.
- Универсального типа.
По форме получаемого сигнала:
- Подают прямоугольный сигнал. Зачастую такие виды дешевле. Использование позволяет получать высокие скорости вращения, но из-за этого возникает шум при работе ввиду микровибраций.
- Форма синусоиды — обеспечивают бесшумную работу, но на более низких скоростях.
Как выбрать контроллер для электровелосипеда – советы
Контроллер выбирают исходя из вида двигателя и аккумулятора. Основными параметрами считаются: напряжение и величина максимального тока.
Двигатель мощностью 350 Вт нуждается в контроллере 36 В 15 А.
Мощность 100 Вт — контроллер 48 В, силой тока не меньше 25 А. Для лучших показателей выбирают модели со значением тока 30, 35, 40 ампер.
Мощность 1000 Вт- контроллер 48 В 30 А. Существуют программируемые конструкции, где можно настраивать ток под собственные потребности.
Оптимальное соотношение скорости колес к напряжению -1 к 0,9. Исходя из этого, можно рассчитать скорость движения: при 36 В передвигаться следует при 32 км/ч, при 48 В — 45 км/ч.
Увеличение скорости изменяет и соотношение, так как имеют место существенные затраты энергии на борьбу с сопротивлением воздуха.
Контроллер является незаменимой частью электровелосипеда. Он отвечает за все главные функции передвижения. Современный рынок предоставляет большой выбор исходя из мощности, напряжения, вида и способа работы.
Для того чтобы выбрать правильную оснастку электровелосипеда, необходимо изучить основные нюансы и возможности каждой модели. Выбор хорошей модели подразумевает большой спектр функций, например, отдельных выход для питания фар, задний ход, различные режимы скорости и мощности.
Источник
Схема регулятора скорости бесколлекторного двигателя (ESC)
Схема условно разделена на две части: левая — микроконтроллер с логикой, правая — силовая часть. Силовую часть можно модифицировать для работы с двигателями другой мощности или с другим питающим напряжением.
Контроллер — ATMEGA168. Гурманы могут сказать, что хватило бы и ATMEGA88, а AT90PWM3 — это было бы «вааще по феншую». Первый регулятор я как раз делал «по феншую». Если у Вас есть возможность применять AT90PWM3 — это будет наиболее подходящий выбор. Но для моих задумок решительно не хватало 8 килобайт памяти. Поэтому я применил микроконтроллер ATMEGA168.
Эта схема задумывалась как испытательный стенд. На котором предполагалось создать универсальный настраиваемый регулятор для работы с различными «калибрами» бесколлекторных двигателей: как с датчиками, так и без датчиков положения. В этой статье я опишу схему и принцип работы прошивки регулятора для управления бесколлекторными двигателями с датчиками Холла и без датчиков.
Схема регулятора
Питание
ШИМ и сигналы для ключей
Обратная связь (контроль напряжения фаз двигателя)
Датчики Холла
Измерения аналоговых сигналов
На вход ADC3(PC3) поступает аналоговый сигнал от датчика тока. Датчик тока ACS756SA. Это датчик тока на основе эффекта Холла. Преимущество этого датчика в том, что он не использует шунт, а значит, имеет внутреннее сопротивление близкое к нулю, поэтому на нем не происходит тепловыделения. Кроме того, выход датчика аналоговый в пределах 5В, поэтому без каких-либо преобразований подается на вход АЦП микроконтроллера, что упрощает схему. Если потребуется датчик с большим диапазоном измерения тока, Вы просто заменяете существующий датчик новым, абсолютно не изменяя схему.
Если Вам хочется использовать шунт с последующей схемой усиления, согласования — пожалуйста.
Задающие сигналы
Кроме того, есть вход RC сигнала, который повсеместно используется в дистанционно управляемых моделях. Выбор управляющего входа и его калибровка выполняется в программных настройках регулятора.
UART интерфейс
Прочее
Светодиод, сигнализирующий о состоянии регулятора, подключен к выводу PD4.
Силовая часть
Ключи нужно выбирать в зависимости от максимального тока и напряжения питания двигателя (выбору ключей и драйверов будет посвящена отдельная статья). На схеме обозначены IR540, в реальности использовались K3069. K3069 рассчитаны на напряжение 60В и ток 75А. Это явный перебор, но мне они достались даром в большом количестве (желаю и Вам такого счастья).
Конденсатор С19 включается параллельно питающей батареи. Чем больше его емкость — тем лучше. Этот конденсатор защищает батарею от бросков тока и ключи от значительной просадки напряжения. При отсутствии этого конденсатора Вам обеспечены как минимум проблемы с ключами. Если подключать батарею сразу к VD — может проскакивать искра. Искрогасящий резистор R32 используется в момент подключения к питающей батарее. Сразу подключаем «—» батареи, затем подаем «+» на контакт Antispark. Ток течет через резистор и плавно заряжает конденсатор С19. Через несколько секунд, подключаем контакт батареи к VD. При питании 12В можно Antispark не делать.
Возможности прошивки
- возможность управлять двигателями с датчиками и без;
- для бездатчикового двигателя три вида старта: без определения первоначального положения; с определением первоначального положения; комбинированный;
- настройка угла опережения фазы для бездатчикового двигателя с шагом 1 градус;
- возможность использовать один из двух задающих входов: 1-аналоговый, 2-RC;
- калибровка входных сигналов;
- реверс двигателя;
- настройка регулятора по порту UART и получение данных от регулятора во время работы (обороты, ток, напряжение батареи);
- частота ШИМ 16, 32 КГц.
- настройка уровня ШИМ сигнала для старта двигателя;
- контроль напряжения батарей. Два порога: ограничение и отсечка. При снижении напряжения батареи до порога ограничения обороты двигателя понижаются. При снижении ниже порога отсечки происходит полная остановка;
- контроль тока двигателя. Два порога: ограничение и отсечка;
- настраиваемый демпфер задающего сигнала;
- настройка Dead time для ключей
Работа регулятора
Включение
После включения двигатель издает 1 короткий сигнал (если звук не отключен), включается и постоянно светится светодиод. Регулятор готов к работе.
Для запуска двигателя следует увеличивать величину задающего сигнала. В случае использования задающего потенциометра, запуск двигателя начнется при достижении задающего напряжения уровня примерно 0.14 В. При необходимости можно выполнить калибровку входного сигнала, что позволяет использовать раные диапазоны управляющих напряжений. По умолчанию настроен демпфер задающего сигнала. При резком скачке задающего сигнала обороты двигателя будут расти плавно. Демпфер имеет несимметричную характеристику. Сброс оборотов происходит без задержки. При необходимости демпфер можно настроить или вовсе отключить.
Запуск
При опрокидывании двигателя или механическом заклинивании ротора срабатывает защита, и регулятор пытается перезапустить двигатель.
Запуск двигателя с датчиками Холла также выполняется с применением настроек для старта двигателя. Т.е. если для запуска двигателя с датчиками дать полный газ, то регулятор подаст напряжение, которое указано в настройках для старта. И только после того, как двигатель начнет вращаться, будет подано полное напряжение. Это несколько нестандартно для двигателя с датчиками, поскольку такие двигатели в основном применяются как тяговые, а в данном случае достичь максимального крутящего момента на старте, возможно, будет сложно. Тем не менее, в данном регуляторе присутствует такая особенность, которая защищает двигатель и регулятор от выхода со строя при механическом заклинивании двигателя.
Во время работы регулятор выдает данные об оборотах двигателя, токе, напряжении батарей через порт UART в формате:
Данные выдаются с периодичностью примерно 1 секунда. Скорость передачи по порту 9600.
Настройка регулятора
Переход регулятора в режим настройки происходит при включении регулятора, когда задающий сигнал потенциометра больше нуля. Т.е. Для перевода регулятора в режим настройки следует повернуть ручку задающего потенциометра, после чего включить регулятор. В терминале появится приглашение в виде символа «>«. После чего можно вводить команды.
Регулятор воспринимает следующие команды (в разных версиях прошивки набор настроек и команд может отличаться):
h — вывод списка команд; ? — вывод настроек; c — калибровка задающего сигнала; d — сброс настроек к заводским настройкам.
команда «?» выводит в терминал список всех доступных настроек и их значение. Например: Изменить нужную настройку можно командой следующего формата:
pwm.start=15
Если команда была дана корректно, настройка будет применена и сохранена. Проверить текущие настройки после их изменения можно командой «?«.
Измерения аналоговых сигналов (напряжение, ток) выполняются с помощью АЦП микроконтроллера. АЦП работает в 8-ми битном режиме. Точность измерения занижена намеренно для обеспечения приемлемой скорости преобразования аналогового сигнала. Соответственно, все аналоговые величины регулятор выдает в виде 8-ми битного числа, т.е. от 0 до 255.
Список настроек, их описание:
Параметр | Описание | Значение |
---|---|---|
motor.type | Тип мотора | 0-Sensorless; 1-Sensored |
motor.magnets | Кол.во магнитов в роторе двигателя. Изпользуется только для расчета оборотов двигателя. | 0..255, шт. |
motor.angle | Угол опережения фазы. Используется только для Sensorless двигателей. | 0..30, градусов |
motor.start.type | Тип старта. Используется только для Sensorless двигателей. | 0-без определения положения ротора; 1-с определением положения ротора; 2-комбинированный; |
motor.start.time | Время старта. | 0..255, мс |
pwm | Частота PWM | 16, 32, КГц |
pwm.start | Значение PWM (%) для старта двигателя. | 0..50 % |
pwm.min | Значение минимального значения PWM (%), при котором двигатель вращается. | 0..30 % |
voltage.limit | Напряжение батареи, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. | 0..255* |
voltage.cutoff | Напряжение батареи, при котором следует выключать двигатель. Указывается в показаниях ADC. | 0..255* |
current.limit | Ток, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. | 0..255** |
current.cutoff | Ток, при котором следует выключать двигатель. Указывается в показаниях ADC. | 0..255** |
system.sound | Включить/выключить звуковой сигнал, издаваемый двигателем | 0-выключен; 1-включен; |
system.input | Задающий сигнал | 0-потенциометр; 1-RC сигнал; |
system.damper | Демпфирование входного сигнала | 0..255, условные единицы |
system.deadtime | Значение Dead Time для ключей в микросекундах | 0..2, мкс |
* — числовое значение 8-ми битного аналого цифрового преобразователя. Рассчитывается по формуле: ADC = (U*R6/(R5+R6))*255/5 Где: U — напряжение в Вольтах; R5, R6 — сопротивление резисторов делителя в Омах.
** — числовое значение 8-ми битного аналого цифрового преобразователя. Рассчитывается по формуле: ADC = U*255/5 Где: U — напряжение датчика тока в Вольтах, соответствующее требуемому току.
Фьюзы микроконтроллера должны быть выставлены на работу с внешним кварцем. Строка для программирования фьюзов с помощью AVRDUDE:
-U lfuse:w:0xFF:m -U hfuse:w:0xDC:m
Источник