Шуруповерт интерскол ремонт зарядного устройства

Шуруповерт интерскол ремонт зарядного устройства

Ток заряда аккумуляторов 1,5 а

На плате CDQ-F06K1 имеются:
Микросхема HCF4060BE,
Диодный мост из четырёх диодов 1N5408,
Биполярный транзистор S9012,
Реле S3-12A,
Сетевой трансформатор — GS-1415 (25ватт) на выходе 18 вольт переменки.
Предохранитель 5A типа T5AL250V.

Принципиальная схема зарядного устройства:
Доступно только для пользователей

Трансформатор GS-1415, 25 ватт 18 вольт выходное напряжение

Стабилитрон VD6 (1N4742A)

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов
VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3
ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.
Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.
Микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет
биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован просто таймер, который включает реле на время заряда – 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.
Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.
Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки
«Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника
питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя
поступает на стабилитрон 1N4742A через резистор R6.
Далее пониженное и стабилизированное напряжение поступает на 16 вывод
микросхемы U1. Микросхема начинает работать, а также открывается
транзистор S9012, которым она управляет.
Напряжение питания через открытый транзистор S9012 поступает на
обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на
аккумулятор поступает напряжение питания. Начинается заряд аккумулятора.
Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.
Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.
Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По
схеме видно, что при замкнутых контактах электромагнитного реле плюсовое
напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся
подключенной к источнику питания даже после того, как контакты кнопки
будут разомкнуты.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом
аккумуляторной батареи. Второй вывод подключен к отдельному, третьему
разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При
подключении сменного аккумулятора загорается зелёный светодиод, который
свидетельствует о том, что зарядник готов к работе.
При нажатии кнопки «Пуск» электромагнитное реле замыкает свои
контакты, и аккумулятор подключается к выходу сетевого выпрямителя,
начинается процесс заряда аккумулятора. Загорается красный светодиод, а
зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда
аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет.
Зарядка завершена.
После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.
Такой алгоритм работы примитивен и со временем приводит к так
называемому «эффекту памяти» у аккумулятора. То есть ёмкость
аккумулятора снижается.
Если следовать правильному алгоритму заряда аккумулятора для начала
каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12
аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта
такой режим не реализован.
Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).
Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение
напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для
Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился
ли элемент.
Так же во время зарядки происходит контроль температуры элемента с
помощью термодатчика. Тут же на графике видно, что температура
зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно,
что термовыключатель JDD-45 отслеживает температуру аккумуляторного
блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме
HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за
«эффекта памяти». При этом полная зарядка такого аккумулятора
происходит чуть быстрее, чем за 60 минут.
Как видим из схемотехники, алгоритм заряда не самый оптимальный и со
временем приводит к потере электроёмкости аккумулятора. Поэтому для
зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства:

Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.
Для поиска неисправностей нужно, для начала проверить ВСЕ напряжения согласно схеме:
«+» 12 вольт на 16 ножке микросхемы относительно 8 ножки;
«-» 12 вольт на коллекторе транзистора Q1 относительно 16 ножки микросхемы.
Для проверки реле — замкнуть перемычкой коллектор и эмиттер Q1, одновременно контролируя, любым удобным способом, напряжение или ток заряда АКБ.
Если все напряжения в норме — проверяем прозвонкой исправность деталей. Микросхему. — заменой на оригинальную.. Ломаться то, по большому счёту, нечему, главное — ТРАНСФОРМАТОР.
Начинать проверку деталей, нужно с кнопки «старт» которая со временем просто закисает.

Микросхема HCF4060BE (datasheet — http://www.st.com/st-web-. 386.pdf) Эта микросхема – таймер. Кнопкой мы, просто, запускаем его. Таймер, тупо, отсчитывает 1 час и отключает ЗУ! Ни за током заряда, ни за напряжением на АКБ, он, естественно, не следит. Главная задача – включить реле (S3-12A – обмотка 400 ом, питание 12 вольт). Реле же, своими контактами, подключает АКБ к простейшему ЗУ – трансформатор (220/20 при токе нагрузки 1,5 Ампера); диодный мост (4 х IN5408 /400 вольт х 3 Ампера) ; предохранитель; диод FR304( хотя на плате надпись — IN5408) — импульсный /3Ампера х 400В, ну и, собственно – сама АКБ!
Зарядка происходит в жёстком режиме – без ограничения тока.

Если, по каким либо причинам, Вам необходимо СРОЧНО зарядить АКБ шуруповёрта, то единственное условие быстрого восстановления ЗУ до работоспособного состояния– исправность того самого «простейшего ЗУ», о котором говорилось ранее – «трансформатор; диодный мост; предохранитель; импульсный диод; разъём подключения АКБ, ну и собственно сама АКБ! Смотрим схему ( переделка отмечена красным) и отпаиваем любой из выводов резистора R6(отключаем питание таймера), впаиваем перемычку параллельно выводам контактов реле, собираем всё в корпус, втыкаем ЗУ в розетку, АКБ в гнездо зарядного, ждём час — АКБ подключаем к «шурупику»

Источник

Не Работает Зарядка Шуруповерта Интерскол

Зарядное устройство аккумулятора шуруповерта

Зарядное устройство для шуруповерта Интерскол

Силовую часть зарядного устройства шуроповерта представляет силовой трансформатор типа GS-1415 рассчитанный на мощность 25 Ватт.

Со вторичной обмотки трансформатора снимается пониженное переменное напряжение номиналом 18В оно следует на диодный мост из 4 диодов VD1-VD4 типа 1N5408, через плавкий предохранитель. Диодный мост. Кто полупроводниковый элемент 1N5408 рассчитан на прямой ток до 3-х ампер. Электролитическая емкость C1 сглаживает пульсации появляющиеся в схеме после диодного моста.

Управление реализовано на микросборке HCF4060BE, которая совмещает одновременно 14-разрядным счетчиком с компонентами задающего генератора. Она управляет биполярным транзистором типа S9012. Он нагружен на реле типа S3-12A. Таким макаром схемотехнически реализован таймер, включающий реле на некоторое время заряда батареи аккумуляторной около часа. При включении ЗУ и подсоединения аккума контакты реле находятся в нормально разомкнутом положении. HCF4060BE получает питание через стабилитрон 1N4742A на 12 вольт, т.к с выхода выпрямителя идет около 24 вольт.

При замыкании кнопки Запуск напряжение с выпрямителя начинает следовать на стабилитрон через сопротивление R6, потом стабилизированное напряжение идет на 16 вывод U1. Раскрывается транзистор S9012, которым управляет HCF4060BE. Напряжение через открытые переходы транзистора S9012 следует на обмотку реле. Контакты последнего замыкаются, и аккумулятор начинает заряжаться. Защитный диодик VD8 (1N4007) шунтирует реле и защищает VT от скачка оборотного напряжения, которое возникнет в момент обесточивания обмотки реле. VD5 не дает разряжаться аккуму при выключении сетевого напряжения. С размыканием контактов кнопки Запуск ничего не произойдет т.к питание идет через диодик VD7 (1N4007), стабилитрон VD6 и гасящий резистор R6. Потому микросхема будет получать питание даже после отпускания кнопки.

Сменный обычный аккумулятор от электроинструмента собран из отдельных поочередно соединенных никель-кадмиевых Ni-Cd аккумов, кто по 1,3.5 вольта, т.о их 12 штук. Суммарное напряжение таковой батареи будет около 14,4 вольта. Сегодня в блок аккумов добавлен датчик температуры. SA1 он приклеен к одной из Ni-Cd батарей и плотно прилегает к ней. Один из выводов терморегулятора подключен к минусу батареи аккумуляторной. 2-ой вывод подсоединен к отдельному, третьему разъему.

Шуруповерт зарядка. Ремонт зарядного устройства шуруповерта Интерскол 18 В. Своими руками.

Ремонт зарядного устройства Интерскол 18 В. Шуруповерт зарядка. Не заряжается аккумулятор.

Блок питания 18 в шуруповерта ИНТЕРСКОЛ Секрет неисправности

Ремонт неисправного трансформатора блока питания Интерскол 18в.Установка кулера для охлаждения блока пита.

При нажатии кнопки Пуск реле замыкает свои контакты, и начинается процесс заряда батареи. Загорается красный светодиод. Через час, реле своими контактами рвет цепь заряда аккумулятора шуроповерта. Загорается зеленый светодиод, а красный тухнет.

Термоконтакт отслеживает температуру батареи и разрывает цепь заряда, если температура выше 45°. Если такое случается раньше чем схема таймера отработает, это говорит об присутствии эффекта памяти.

Типовые неисправности зарядного устройства шуруповерта

Со временем из-за износа кнопка Пуск глюченно срабатывает, а иногда и не работает совсем. Также в моей практике вылетал стабилитрон 1N4742A и микросхемы HCF4060BE. Если схема ЗУ исправна и не вызывают подозрения, а заряда не начинается, то необходимо проверить термовыключатель в аккумуляторном блоке, аккуратно разобрав его.

Основой конструкции является регулируемый стабилизатор положительного напряжения. Он допускает работу с током нагрузки до 1,5А, которого вполне достаточно для заряда аккумуляторов.

Переменное напряжение величиной 13В, снимается с вторичной обмотки трансформатора, выпрямляется диодным мостом D3SBA40. На его выходе стоит фильтрующий конденсатор С1, который снижает пульсации выпрямленного напряжения. С выпрямителя постоянное напряжение поступает на интегральный стабилизатор, выходное напряжение, которого задается сопротивлением резистора R4 на уровне 14,1В (Зависит от типа АКБ шуруповерта). Датчиком тока зарядки является сопротивление R3, параллельно которому подсоединено подстроечное сопротивление R2, с помощью этого сопротивления задается уровень зарядного тока, который соответствует 0,1 от емкости аккумулятора. На первом этапе батарея заряжается стабильным током, затем, когда зарядный ток станет меньше величины тока ограничения, АКБ будет заряжаться более низким током до напряжения стабилизации DA1.

Датчиком зарядного тока для светодиода HL1 является VD2. В этом случае HL1 будет индицировать ток номиналом до 50 миллиампер. Если в качестве датчика тока использовать R3, то светодиод погаснет при токе 0,6А, что было бы слишком рано. Аккумулятор не успел бы зарядиться. Это устройство можно использовать и для шестивольтовых аккумуляторов.

Радиолюбительская конструкция используется для разряда и заряда NiCd аккумуляторов емкостью 1,2 Ач. По своей сути. это усовершенствованное типовое ЗУ шуруповерта, в которое внедрена схема контролирующая доразряд и последующий заряд батареи. После подключения батареи к ЗУ стартует процесс разряд батареи током 120 мА до напряжения 10 В, затем аккумулятор начинает заряжаться, током400 мА. Прекращается заряд по достижении напряжения на аккумуляторе шуроповерта 15.2 В или по таймеру через 3.5 ч. (запрограмировано в прошивке МК).

При разряде постоянно светится HL1. В процессе заряда горит светодиод HL2 и мигает с интервалом раз в 5 секунд HL1. После окончания заряда АКБ по достижению верхнего уровня напряжения начинает часто мигать HL1 (2 мигания с паузой 600 мс). Если заряд прекратился по таймеру, то HL1 мигает раз в 600 мс. Если в процессе заряда исчезло питающее напряжение, то таймер стопорится. А микроконтроллер PIC12F675 получает питание от аккумулятора, через диод, внутри транзистора VT2. Пршивка к МК по ссылке выше.

Источник

Читайте также:  Капитальный ремонт двигателя камаз 740 перечень работ
Оцените статью