- Текущий и капитальный ремонт трансформаторов
- Ремонт трансформаторов тока и напряжения
- 5.2. Обслуживание трансформаторов напряжения
- Читайте также
- 2.2. Обслуживание силовых трансформаторов и автотрансформаторов
- 2.2.4. Устройство и обслуживание систем охлаждения масляных трансформаторов
- 2.4. Параллельная работа трансформаторов
- 2.5. Обслуживание устройств регулирования напряжения
- 2.10. Повреждения при работе трансформаторов
- 4.2. Обслуживание выключателей высокого напряжения
- 5.1. Обслуживание трансформаторов тока
- 8.10. Газовая защита трансформаторов
- 5.3.3. Параллельная работа трансформаторов
- 5.3.6. Регулирование напряжения трансформаторов
- 5.3.7. Нагрузочная способность трансформаторов
- 5.3.8. Технические данные трансформаторов
- 5.3.9. Мощности и напряжения КЗ трансформаторов
- 2.6. Дифференциальные защиты трансформаторов
- 3.4.1. Защита трансформаторов Т4, Т5, Т6
Текущий и капитальный ремонт трансформаторов
В процессе эксплуатации отдельные части трансформатора под влиянием термических, электродинамических, механических и других воздействий постепенно теряют свои первоначальные свойства и могут прийти в негодность.
В целях своевременного обнаружения и устранения развивающихся дефектов и предупреждения аварийных отключений для трансформаторов периодически проводятся текущие и капитальные ремонты.
Текущий ремонт трансформатора производится в следующем объеме :
а) наружный осмотр и устранение обнаруженных дефектов, поддающихся устранению на месте,
б) чистка изоляторов и бака,
в) спуск грязи из расширителя, доливка в случае необходимости масла, проверка маслоуказателя,
г) проверка опускного крана и уплотнений,
д) осмотр и чистка охлаждающих устройств,
е) проверка газовой защиты,
ж) проверка целости мембраны выхлопной трубы,
з) проведение измерений и испытаний.
Для трансформаторов с регулированием напряжения под нагрузкой производятся внеочередные ремонты регулирующего устройства в соответствии с указаниями заводской инструкции в зависимости от числа произведенных переключений.
При ремонте трансформаторов с принудительным масловодяным охлаждением следует обратить особое внимание на отсутствие подсоса воздуха в систему циркуляции масла и на проверку герметичности охладителей.
Герметичность охладителей проверяется путем создания избыточного давления поочередно со стороны масляной, а затем водяной системы согласно действующим инструкциям.
Периодичность чистки и испытания охладителей зависит от местных условий (загрязнения воды, состояния охладителей) и производится не реже 1 раза в год.
При ремонте проверяется также состояние термосифонных фильтров и воздухоосушителей.
У маслонаполненных вводов трансформаторов при ремонте производятся отбор пробы масла, доливка масла, в случае необходимости — и измерение тангенса угла диэлектрических потерь (не реже 1 раза в 6 лет).
Ввиду того что масло в вводах трансформаторов через несколько лет работы приходит в негодность, при ремонте иногда возникает необходимость смены ввода. Опыт эксплуатации также показывает, что для маслонаполненных вводов с барьерной изоляцией через 10 — 12 лет работы на трансформаторах недостаточна только смена масла, а необходим капитальный ремонт с разборкой, чисткой и при необходимости сменной изоляции ввода.
Капитальный ремонт трансформаторов
Трансформатор имеет достаточно большие запасы электрической прочности изоляции и является весьма надежным аппаратом в эксплуатации.
Трансформаторы имеют маслобарьерную изоляцию. В качестве основной твердой изоляции для трансформатора используется прессшпан. Изготовляемый до последнего времени отечественными заводами прессшпан дает с течением времени усадку, что является его существенным недостатком.
Как правило, для трансформаторов применяется жесткая система запрессовки обмотки, которая не обеспечивает автоматическую подпрессовку обмотки по мере усадки прессшпана. Поэтому после нескольких лет работы для трансформаторов предусматривается проведение капитальных ремонтов, при которых основное внимание должно быть уделено подпрессовке обмоток.
При отсутствии необходимых подъемных приспособлений капитальный ремонт допускается производить с осмотром сердечника в баке (при снятой крышке), если при этом обеспечена возможность производства подпрессовки и расклиновки обмоток.
Для ответственных трансформаторов первоначальный срок капитального ремонта после ввода в эксплуатацию установлен в 6 лет, для остальных — по результатам испытаний по мере необходимости.
Капитальный ремонт трансформатора производится в следующем объеме:
а) вскрытие трансформатора, подъем сердечника (или съемного бака) и осмотр его,
б) ремонт магиитопровода, обмоток (подпрессовка), переключателей и отводов,
в) ремонт крышки, расширителя, выхлопной трубы (проверка целости мембраны), радиаторов, термосифонного фильтра, воздухо осушителя, кранов, изоляторов,
г) ремонт охлаждающих устройств,
д) чистка и окраска бака,
е) проверка контрольно-измерительных приборов, сигнальных и защитных устройств,
ж) очистка или смена масла,
з) сушка активной части (в случае необходимости),
и) сборка трансформатора,
к) проведение измерений и испытаний.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Ремонт трансформаторов тока и напряжения
Электрические аппараты, предназначены для включения и отключения, управления, регулирования и защиты электрооборудования и участков электрических цепей. В зависимости от назначения их разделяют на четыре группы:
коммутационные — для включения и отключения электрических цепей;
защиты — защищающие электрические цепи от перегрузки, токов короткого замыкания, недопустимого повышения напряжения, снижения или исчезновения напряжения;
токоограничивающие и пускорегулирующие — для пуска, регулирования частоты вращения двигателей, изменения тока в электрических цепях, ограничения тока при коротком замыкании;
выполняющие одновременно несколько из перечисленных выше функций — включение и отключение электрических цепей, защита их от перегрузок, токов короткого замыкания и др.
В зависимости от номинального напряжения различают электрические аппараты до 1000 В (обычно до 660 В) и свыше 1000 В.
В электрических аппаратах чаще всего повреждаются подвижные и неподвижные рабочие контакты, а также промежуточные и дугогасительные, реже детали механизмов, пружины, пластины дугогасительных камер и изоляция.
Основным показателем качества любого контакта является его переходное сопротивление, которое зависит главным образом от состояния контактных поверхностей и степени прижатия их одна к другой, так как контактные поверхности соприкасаются не по всей их площади, а только в отдельных точках, называемых точками соприкосновения. Плохо обработанные и окислившиеся контакты имеют большое переходное сопротивление.
Тщательная слесарная обработка контактных поверхностей позволяет убрать оксидную пленку и получить наибольшее количество точек соприкосновения. Контактные поверхности медных контактов рекомендуется обрабатывать надфилем или напильником.
В результате эксплуатации, аварий, перегрузок и естественного износа часть электрооборудования и сетей выходит из строя и подлежит ремонту.
Ремонт — это комплекс операций по восстановлению исправности или работоспособности электротехнических устройств, восстановлению их ресурсов или их составных частей. Под операцией ремонта понимают законченную часть ремонта, выполняемую на одном рабочем месте исполнителями определенной специальности, например: очистка, разборка, сварка, изготовление обмоток и т.д.
Существует несколько методов ремонта: ремонт эксплуатирующей организацией, специализированный, ремонт предприятием — изготовителем изделия. Последние два метода имеют существенные преимущества, которые позволяют достигнуть высоких технико-экономических показателей путем применения нестандартизированного высокопроизводительного эффективного оборудования, производства запчастей, внедрения современной технологии, близкой к технологии электромашиностроительных заводов, с применением новых материалов. Эти методы позволяют создать обменный фонд из новых или отремонтированных электрических машин и другого оборудования распространенных серий и типов. Но эти методы исключают возможность оперативного ремонта ответственного и нетипового оборудования, оборудования, изготовленного зарубежными фирмами, и оборудования старых марок. Кроме того, не решается проблема технического обслуживания, составляющего более 80 % трудоемкости ремонта электрических сетей и крупногабаритного оборудования (трансформаторные подстанции, распределительные устройства, щиты управления и др.). Надежность, бесперебойность и безопасность работ электрооборудования и сетей может быть обеспечена правильной системой ремонта электрооборудования эксплуатирующей организацией. Такой системой является планово-предупредительный ремонт (ППРЭО), представляющий собой форму организации ремонта, состоящей из комплекса организационно-технических мероприятий, обеспечивающих выполнение технического обслуживания и профилактического ремонта.
Рис 5. Ремонт трансформатора тока.
При ремонте трансформаторов тока (Рис. 5) проверяют целость фарфоровых изоляторов 2, покрышек 12 и их армировки, прочность крепления стержня в изоляторе, отсутствие обрыва в цепи вторичной обмотки, состояние изоляции между первичной 1 и вторичной 3 обмотками. Изоляторы с небольшими сколами и частично разрушенными армировочными швами ремонтируют.
Цепь вторичной обмотки проверяют на отсутствие обрыва прозвонкой ее концов мегомметром. При отсутствии обрыва стрелка прибора должна стоять на нуле. Состояние изоляции между обмотками, а также между ними и металлическим корпусом трансформатора проверяют мегомметром. Сопротивление изоляции должно быть 50 — 100 МОм. Эти данные не нормируются, они взяты из практики эксплуатации и ремонта трансформаторов тока. При меньшем значении сопротивления изоляции обмотки трансформаторов тока сушат первичным или вторичным током. Ток в первичной или вторичной цепи не должен превышать номинального, температура нагрева обмоток должна быть не более 75°С.
При ремонте проходных трансформаторов тока ТПФМ и ТПОФ проверяют также наличие контакта между корпусом и шоопированной (покрытой проводящим слоем металла или графита) поверхностью изолятора. При наличии контакта стрелка прибора остановится на нулевой отметке.
При ремонте маслонаполненного опорного трансформатора тока проверяют состояние фарфоровой покрышки 12 (рис.5, б) и ее крепления к цоколю, затяжку якореобразных болтов 10, крепящих металлическую крышку 11 к покрышке. Убеждаются в плотности прилегания полухомутов 15 к покрышке и прочности крепления ее к цоколю 17. При ослаблении крепления подтягивают равномерно и не более чем на 1/4 оборота установочные и регулировочные болты. Снимают резьбовой колпачок и очищают сливное отверстие масловыпускателя 16. Проверяют правильность работы маслоуказателя 20. При сливе масла из трансформатора тока через масловыпускатель уровень масла в маслоуказателе должен соответственно понизиться. При ремонте трансформатор тока не вскрывают и не извлекают из него обмотки. Делают это только в случае крайней необходимости. Чтобы при этом обмотки не увлажнились, их не оставляют вне масла более чем на 5-6 ч. При продолжительности ремонта более 6 ч обмотки погружают в бак с маслом, электрическая прочность которого не ниже прочности масла в ремонтируемом трансформаторе. Окончив ремонт трансформатора тока, обтирают его фарфоровую покрышку ветошью, а металлические цоколь и крышку окрашивают эмалевой краской.
Ремонт трансформаторов напряжения:
Небольшие механические повреждения поверхности бака масляных трансформаторов напряжения устраняют без выемки сердечника. При сложных повреждениях трансформатора (смещение сердечника, катушек, нарушение изоляции и др.) производят его разборку с выемкой сердечника. Сердечник извлекают только в сухом помещении; он может находиться вне масла (без последующей сушки) не более 12 ч. Повышенное падение напряжения в проводах, соединяющих трансформатор напряжения со счетчиком, приводит к увеличению отрицательной погрешности. Практически это может иметь место, если длина провода превышает 15 м. Падение напряжения может быть определено опытным путем. Для этой цели пригоден вольтметр переменного тока, обладающий большим внутренним сопротивлением (1- 10 кОм/В). Вольтметр подключается к концам жилы. Измерение потери напряжения, как разности линейных напряжений на концах кабеля не может дать достоверных результатов Большая ошибка будет внесена погрешностью вольтметров, неодновременностью отсчета и прочими причинами. Для уменьшении падения напряжения необходимо увеличить сечение жил кабеля. В отдельных случаях приходится питать счетчики не от общих «шинок напряжения», а прокладывать к ним отдельный кабель.
Хорошие результаты для уменьшения падения напряжения в проводах, соединяющих трансформатор напряжения на счетчик, дает емкостная компенсация индуктивности.
Источник
5.2. Обслуживание трансформаторов напряжения
5.2. Обслуживание трансформаторов напряжения
Трансформатор напряжения (ТН) — это измерительный трансформатор, в котором при нормальных условиях применения вторичное напряжение практически пропорционально первичному напряжению и при правильном включении сдвинуто относительно него по фазе на угол, близкий к нулю (СТ МЭК 50(321)—86).
ТН является трансформатором, питающимся от источника напряжения, и служит для преобразования высокого напряжения в низкое стандартных значений: 100; 100/?3; 100/3 с целью питания измерительных приборов и различных реле управления, защиты и автоматики.
ТН (так же как и ТТ) отделяют (изолируют) измерительные приборы и реле от высокого напряжения, обеспечивая их работоспособность и безопасность обслуживания.
Применение ТН позволяет изолировать логические схемы защиты и цепи измерения от цепи высокого напряжения.
По принципу устройства и схеме включения ТН практически не отличаются от силовых трансформаторов. Отличие состоит в малых мощностях, не превышающих десятков или сотен ВА. При малой мощности режим работы ТН близок к режиму ХХ трансформаторов. Размыкание их вторичных обмоток не приводит к опасным последствиям.
На напряжение до 35 кВ ТН включаются через предохранители, чтобы при повреждении ТН был отключен — во избежание развития аварии в сети. На напряжении 110 кВ и выше из-за крайне редких повреждений ТН предохранители можно не устанавливать.
Коммутация (включение и отключение) ТН производятся разъединителями.
Для защиты ТН от токов КЗ в его вторичных цепях устанавливают съемные трубчатые предохранители или автоматические выключатели максимального тока: трехполюсные (типа АП50-3М) и двухполюсные (типа АП50-2М) с электромагнитным расцепителем на номинальные токи от 2,5 до 50 А. Предохранители устанавливают в том случае, если ТН не питает быстродействующие защиты, поскольку эти защиты могут ложно действовать при недостаточно быстром перегорании плавкой вставки. Установка же автоматических выключателей обеспечивает эффективное срабатывание специальных блокировок, выводящих из действия отдельные виды защит при обрыве цепей напряжения.
Для безопасного обслуживания вторичных цепей при пробое изоляции и попадании высокого напряжения на вторичную обмотку один из ее зажимов или нулевая точка присоединяется к заземлению. При соединении вторичных обмоток в звезду заземляется не нулевая точка, а начало обмотки фазы В, что вызвано стремлением сократить на 1/3 число переключающих контактов во вторичных цепях, поскольку заземленная фаза может подаваться на реле помимо рубильников и вспомогательных контактов разъединителей.
При использовании ТН для питания оперативных цепей переменного тока допускается заземление нулевой точки вторичных обмоток через пробивной предохранитель, что необходимо для повышения уровня изоляции оперативных цепей.
При производстве работ непосредственно на ТН и его ошиновке действующими правилами безопасности предписывается создание видимого разрыва как со стороны ВН, так и со стороны вторичных цепей, чтобы избежать появления напряжения на первичной обмотке за счет обратной трансформации напряжения от вторичных цепей, питающихся от другого ТН. С этой целью во вторичных цепях ТН устанавливаются рубильники или применяются предохранители. Отключение автоматических выключателей, а также разрыв вторичных цепей вспомогательными контактами разъединителей не создают видимого разрыва цепи и поэтому считаются недостаточными.
На ПС применяются как однофазные, так и трехфазные двух-и трехобмоточные ТН. В основном это ТН с бумажно-масляной изоляцией, магнитопроводы и обмотки которых погружены в масло. Масляное заполнение бака или фарфорового корпуса предохраняет от увлажнения и изолирует обмотки от заземленных конструкций. Кроме того, такое заполнение является охлаждающей средой.
В ЗРУ до 35 кВ используются ТН с литой эпоксидной изоляцией, которые имеют ряд преимуществ по сравнению с маслонаполненными при установке в КРУ.
На ПС 110–500 кВ применяются каскадные ТН серии НКФ. В каскадном ТН обмотка ВН делится на части, размещаемые на разных стержнях одного или нескольких магнитопроводов, что облегчает ее изоляцию.
У ТН (типа НКФ-110) обмотка ВН разделена на две части (ступени), каждая из которых размещается на противоположных стержнях двухстержневого магнитопровода. Магнитопровод соединен с серединой обмотки ВН и находится по отношению к земле под потенциалом U ф /2, благодаря чему обмотка ВН изолируется от магнитопровода только на U ф /2, что существенно уменьшает размеры и массу трансформатора.
С другой стороны, ступенчатое исполнение усложняет конструкцию трансформатора, так как появляется необходимость в дополнительных обмотках.
Каскадные ТН на 220 кВ и выше имеют два и более магнитопровода. Число магнитопроводов обычно в 2 раза меньше числа ступеней каскада. Для передачи мощности с обмоток одного магнитопровода на обмотки другого служат связующие обмотки.
Наряду с обычными электромагнитными ТН для питания измерительных приборов и релейной защиты применяют емкостные делители напряжения, которые получили распространение на ЛЭП напряжением 500 кВ и выше.
На рис. 5.1 показана принципиальная схема включения емкостного делителя напряжения типа НДЕ-500.
На схеме видно, что напряжение между конденсаторами распределяется обратно пропорционально емкостям:
где С 1 и С 2 — емкости конденсаторов;
Подбором емкостей обеспечивается получение на нижнем конденсаторе С 2 требуемой доли общего напряжения U ф. Если к конденсатору С 2 подключить понижающий трансформатор Т (рассчитан на напряжение до 15 кВ), то он будет выполнять те же функции, что и обычный ТН.
Емкостной делитель напряжения на рис. 5.1 состоит из трех конденсаторов связи типа СМР-166/?3–0,014 и одного конденсатора отбора мощности типа 0МР-15-0,017.
Первичная обмотка трансформатора Т имеет восемь ответвлений для регулирования напряжения. Заградитель L препятствует ответвлению токов высокой частоты в трансформатор Т во время работы высокочастотной связи, аппаратура которой подключена к конденсаторам через фильтр ФП. Реактор LR улучшает электрические свойства схемы при росте нагрузки. Балластный фильтр в виде резистора R служит для гашения феррорезонансных колебаний во вторичной цепи при внезапном отключении нагрузки.
Контроль исправности вторичных цепей основной обмотки ТН обычно производится при помощи трех реле минимального напряжения. При отключении автоматического выключателя или сгорании предохранителя эти реле подают сигнал о разрыве цепи.
Более совершенным является контроль с помощью комплектного реле, подключенного по схеме рис. 5.2 к шинам вторичного напряжения.
В этой схеме реле KV1 включено на три фазы фильтра напряжения обратной последовательности ZV, которое срабатывает при нарушении симметрии линейных напряжений, что имеет место, например, при обрыве одной или двух фаз. При размыкании его контактов срабатывает реле KV2, подающее сигнал о разрыве цепи напряжения. Это реле срабатывает также и при трехфазном симметричном КЗ, когда реле KV1 не работает. Таким образом обеспечивается подача сигнала при всех нарушениях цепей напряжения со стороны как НН, так и ВН. Для того чтобы исключить подачу ложного сигнала, устройство действует с выдержкой времени, превышающей время отключения КЗ в сети ВН.
Блокировка защит при повреждениях в цепях напряжения подает сигнал о возникшей неисправности и блокирует те защиты, которые могут при этом сработать, лишившись напряжения. Напряжение исчезает или искажается по фазе при перегорании предохранителей, срабатывании автоматических выключателей или обрыве фаз.
На линиях дальних электропередач 500 кВ и выше ТН устанавливаются на вводе линии. Питание цепей напряжения реле и приборов каждой линии производится от подключенного к ней ТН.
Обслуживание ТН и их вторичных цепей оперативным персоналом заключается в контроле за работой самих ТН и за исправностью цепей вторичного напряжения. В процессе надзора (осмотра) обращают внимание на общее состояние ТН, а именно:
наличие в них масла;
отсутствие течей и состояние резиновых прокладок;
отсутствие разрядов и треска внутри ТН;
отсутствие следов перекрытий на поверхности изоляторов и фарфоровых покрышек;
степень загрязненности изоляторов;
отсутствие трещин и сколов изоляции;
состояние армировочных швов.
ТН напряжением 6-35 кВ с малым объемом масла не имеют маслоуказателей и расширителей. Масло в них не доливают до крышки на 20–30 см. Оставшееся пространство выполняет роль расширителя. При обнаружении следов вытекания масла из таких расширителей необходимы срочный вывод ТН из работы, проверка уровня масла и устранение течи.
При осмотрах проверяется отсутствие щелей в уплотнениях дверей шкафов вторичных соединений, через которые могут проникнуть снег, пыль и влага; осматриваются рубильники, предохранители и автоматические выключатели, а также ряды зажимов.
В соответствии с действующими ПУЭ, номинальный ток плавкой вставки предохранителей должен быть в 3 раза меньше тока КЗ в наиболее отдаленной от ТН точке вторичных цепей.
На щитах управления и релейных защит необходимо контролировать наличие напряжения на ТН по вольтметрам и сигнальным устройствам.
При оперативных переключениях необходимо соблюдать последовательность операций не только с аппаратами высокого напряжения, но и с вторичными цепями напряжения устройств защиты и автоматики.
При исчезновении вторичного напряжения из-за перегорания предохранителей НН они подлежат замене, а отключившиеся автоматические выключатели следует включить, причем первыми должны восстанавливаться цепи основной обмотки, а потом — дополнительной.
К замене перегоревших предохранителей ВН приступают после выполнения операций с устройствами тех защит, которые могут сработать на отключение электрической цепи. Не рекомендуется установка новых предохранителей ВН без выявления и устранения причин их перегорания.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
2.2. Обслуживание силовых трансформаторов и автотрансформаторов
2.2. Обслуживание силовых трансформаторов и автотрансформаторов 2.2.1. Термины и определения Трансформаторы и реакторы являются одним из наиболее массовых типов продукции электромашиностроительных заводов и самым распространенным видом электрооборудования на
2.2.4. Устройство и обслуживание систем охлаждения масляных трансформаторов
2.2.4. Устройство и обслуживание систем охлаждения масляных трансформаторов Процесс передачи теплоты, выделяющейся в обмотках, магнитопроводе и стальных деталях конструкции работающего трансформатора в окружающую среду, можно разбить на следующие два этапа:передача
2.4. Параллельная работа трансформаторов
2.4. Параллельная работа трансформаторов Параллельная работа трансформаторов (автотрансформаторов) разрешается при следующих условиях:группы соединения обмоток одинаковы. Параллельная работа трансформаторов, принадлежащих к разным группам соединения обмоток,
2.5. Обслуживание устройств регулирования напряжения
2.5. Обслуживание устройств регулирования напряжения В соответствии с требованиями ПТЭ, устройства РПН должны быть в работе, как правило, в автоматическом режиме. Их работа должна контролироваться по показаниям счетчиков числа операций. Для автоматического управления
2.10. Повреждения при работе трансформаторов
2.10. Повреждения при работе трансформаторов В процессе эксплуатации могут возникнуть неполадки в работе трансформаторов, с одними из которых трансформаторы могут длительно оставаться в работе, а при других требуется немедленный вывод их из работы.Причинами повреждений
4.2. Обслуживание выключателей высокого напряжения
4.2. Обслуживание выключателей высокого напряжения 4.2.1. Требования к выключателям Выключатели высокого напряжения в качестве коммутационных аппаратов предназначены для коммутации электрических цепей с целью включения и отключения токов нагрузки, токов намагничивания
5.1. Обслуживание трансформаторов тока
5.1. Обслуживание трансформаторов тока Трансформатор тока (ТТ) — это измерительный элемент, в котором при нормальных условиях применения вторичный ток практически пропорционален первичному току и при правильном включении сдвинут относительно него по фазе на угол,
8.10. Газовая защита трансформаторов
8.10. Газовая защита трансформаторов Газовая защита применяется для защиты от повреждений, возникающих внутри масляного бака трансформатора, сопровождающихся выделением газов и интенсивным перемещением масла из бака в расширитель.Газовая защита — одна из немногих
5.3.3. Параллельная работа трансформаторов
5.3.3. Параллельная работа трансформаторов Параллельной работой двух или нескольких трансформаторов называется работа при параллельном соединении не менее чем двух основных обмоток одного из них с таким же числом основных обмоток другого трансформатора (других
5.3.6. Регулирование напряжения трансформаторов
5.3.6. Регулирование напряжения трансформаторов В соответствии с ГОСТ 11677—85 и стандартами на трансформаторы различных классов напряжений и диапазонов мощностей большинство силовых трансформаторов выполняются с регулированием напряжения, которое может осуществляться
5.3.7. Нагрузочная способность трансформаторов
5.3.7. Нагрузочная способность трансформаторов Нагрузочной способностью трансформаторов называется совокупность допустимых нагрузок и перегрузок трансформатора. Исходным режимом для определения нагрузочной способности является номинальный режим работы
5.3.8. Технические данные трансформаторов
5.3.8. Технические данные трансформаторов Классификация трансформаторов отечественного производства по габаритам приведена в табл. 5.13.Таблица 5.13 Окончание табл.
5.3.9. Мощности и напряжения КЗ трансформаторов
5.3.9. Мощности и напряжения КЗ трансформаторов Мощности и напряжения КЗ трансформаторов и АТ 220–750 кВ установлены в ГОСТ 17544—85 и отражают сложившуюся в 60–70 гг. прошлого столетия ситуацию с развитием энергетики СССР и потребности в силовых трансформаторах в условиях
2.6. Дифференциальные защиты трансформаторов
2.6. Дифференциальные защиты трансформаторов Принцип действия дифференциальных защит основан на пофазном сравнении токов параллельно установленных защищаемых объектов (поперечные дифференциальные защиты) или токов до и после защищаемого объекта (продольные
3.4.1. Защита трансформаторов Т4, Т5, Т6
3.4.1. Защита трансформаторов Т4, Т5, Т6 Трансформаторы 10/0,4 кВ мощностью до 0,63 МВ-А подключаются к электрической сети через предохранители. Предохранители для трансформаторов выбираются по следующим условиям:номинальное напряжение предохранителя должно соответствовать
Источник