Технико экономические показатели ремонта энергетического оборудования

Технико-экономические показатели ремонта энергооборудования

В настоящее время в планировании и экономическом анализе ремонта энергооборудования применяются следующие показатели:
а) режимные — длительность простоя в ремонте; коэффициент эксплуатационной готовности, определяемый как отношение времени нахождения агрегата в работе и резерве к общей длительности рассматриваемого периода (ремонтного цикла, года);
б) стоимостные — ремонтная составляющая себестоимости энергии; затраты на ремонт единицы установленной мощности (в рублях на 1 МВт); себестоимость товарной продукции ремонтного предприятия (в копейках на 1 руб.); производительность труда в виде выработки (по сметной стоимости) на одного работающего.
Режимные показатели определяются структурой ремонтного цикла (рис. 10.1). Его длительность tр.ц, под которой понимают время между началом данного капитального ремонта и первого последующего капитального ремонта, включает следующие составляющие:
а) время эксплуатационной готовности tэ.г, которое складывается из времени нахождения оборудования в работе tр и в резерве tрез;
б) время простоев в ремонте tрем, в составе которого следует различать простои в плановом капитальном ремонте
tрем к.р , плановом (и неплановом) текущем ремонте tрем тек ;
в) время аварийного простоя tав

Коэффициент эксплуатационной готовности агрегата определяется по выражению

где tр — временя нахождения оборудования в работе; tрез — время нахождения оборудования в резерве; tр.ц — длительность ремонтного цикла; tэ.г — время эксплуатационной готовности. Аналогично могут быть определены коэффициенты нахождения агрегата в простоях различного вида. Сумма коэффициентов нахождения в работе Rр, резерве Rрез, ремонте Rрем и авариях Rав равна единице. Показатель ремонтной составляющей себестоимости продукции (энергии) определяется как отношение расходов на ремонт (капитальный, текущий) продукции за определенный календарный период (например, год) к количеству отпущенной энергетической продукции:

где ∑Ирем — расходы на ремонт (капитальный, текущий), руб; Qотп — количество отпущенного тепла, Гкал, кВт·ч.
Основной недостаток этого показателя состоит в том, что его уровень существенно зависит от факторов, не имеющих отношения к ремонту. Так, при неизменных затратах на ремонт, но снижении числа часов использования установленной мощности (выработки) ремонтная составляющая себестоимости продукции повысится, и наоборот.
В этом показателе не отражаются режимные характеристики ремонта (готовность).
Показатель затрат на ремонт единицы установленной мощности определяется как отношение затрат на ремонт производственного объекта за определенный календарный период (обычно год) к установленной (или номинальной) мощности N:

Читайте также:  Человек по ремонту камаз

где Nу —установленная (или номинальная) мощность, МВт. Основной недостаток этого показателя состоит в том, что в нем не получают отражения режимные (технические) показатели ремонта — длительность простоя в ремонте, эксплуатационная готовность. Снижение удельных затрат на ремонт может быть достигнуто в ущерб обеспечиваемой ремонтом готовности энергетического оборудования к несению нагрузки. Недостатки рассматриваемого показателя особенно наглядно выявляются при отнесении его к отдельным агрегатам с длительностью ремонтного цикла, превышающей год. Только для больших совокупностей агрегатов (в масштабе крупных энергообъединений или для энергетики в целом) показатель затрат на ремонт единицы установленной мощности отражает технические и экономические закономерности функционирования энергетики. Показатель себестоимости реализованной продукции применяется на ремонтных предприятиях и определяется как отношение затрат предприятия к стоимости товарной продукции:

где ∑Ир.п — затраты ремонтных предприятий; Op — стоимость реализованной продукции. Этот показатель широко используется в промышленности и призван соизмерять затраты предприятия с полученным производственным результатом — готовой к отпуску продукции в денежном выражении. Экономические показатели, учитывающие специфику ремонта. С учетом особенностей ремонта как особого вида производственной деятельности в качестве обобщающего экономического показателя может быть рекомендовано соотношение между затратами на ремонт и обеспечиваемым уровнем готовности отремонтированного оборудования к производительному использованию — несению нагрузки. Уровень готовности может измеряться в часах нахождения агрегата в работе и эксплуатационном резерве, тогда получаются удельные затраты на час эксплуатационной готовности:

где 1 tp.ц ∑Ирем — затраты на все виды ремонта производственного объекта за рассматриваемый расчетный период t (год, ремонтный цикл), руб.; tэ.г — время эксплуатационной готовности объекта, т.е. сумма времени нахождения его в работе tр.ц и эксплуатационном резерве tрез за период tр.ц; Rэ.г — коэффициент готовности за период tр.ц; пр t ∑— суммарный простой агрегата за период tр.ц. При оценке производственного результата работы ремонтного персонала по обеспечиваемому ресурсу работы отремонтированного оборудования, т.е. в единицах потенциально возможной выработки продукции отремонтированным агрегатом при его использовании с номинальной мощностью в течение всего периода эксплуатационной готовности, получаются удельные затраты на единицу ресурса работы:

где N — номинальная мощность отремонтированного агрегата (для котельной в целом — установленная мощность). Для отдельных агрегатов (например, котлов) ресурс работы подсчитывается по следующей формуле, т пара:

где Dч — номинальная паропроизводительность котла, т/ч. Для совокупностей однородных агрегатов котельной (с nк котлами) показатели ресурса работы, т пара, получаются суммированием:

В зависимости от состава затрат удельные затраты характеризуют различные виды себестоимости или цену ремонтной продукции. Эти показатели могут определяться как по отчетным данным, так и по нормативам, принимаемым при разработке плана.

Источник

Технико-экономические показатели ремонта энергооборудования

В настоящее время в планировании и экономическом анализе ремонта энергооборудования применяются следующие показатели:
а) режимные — длительность простоя в ремонте; коэффициент эксплуатационной готовности, определяемый как отношение времени нахождения агрегата в работе и резерве к общей длительности рассматриваемого периода (ремонтного цикла, года);
б) стоимостные — ремонтная составляющая себестоимости энергии; затраты на ремонт единицы установленной мощности (в рублях на 1 МВт); себестоимость товарной продукции ремонтного предприятия (в копейках на 1 руб.); производительность труда в виде выработки (по сметной стоимости) на одного работающего.

Коэффициент эксплуатационной готовности агрегата определяется по выражению

где tр — временя нахождения оборудования в работе; tрез — время нахождения оборудования в резерве; tр.ц — длительность ремонтного цикла; tэ.г — время эксплуатационной готовности. Аналогично могут быть определены коэффициенты нахождения агрегата в простоях различного вида. Сумма коэффициентов нахождения в работе Rр, резерве Rрез, ремонте Rрем и авариях Rав равна единице. Показатель ремонтной составляющей себестоимости продукции (энергии) определяется как отношение расходов на ремонт (капитальный, текущий) продукции за определенный календарный период (например, год) к количеству отпущенной энергетической продукции:

где ∑Ирем — расходы на ремонт (капитальный, текущий), руб; Qотп — количество отпущенного тепла, Гкал, кВт·ч.
Основной недостаток этого показателя состоит в том, что его уровень существенно зависит от факторов, не имеющих отношения к ремонту. Так, при неизменных затратах на ремонт, но снижении числа часов использования установленной мощности (выработки) ремонтная составляющая себестоимости продукции повысится, и наоборот.
В этом показателе не отражаются режимные характеристики ремонта (готовность).
Показатель затрат на ремонт единицы установленной мощности определяется как отношение затрат на ремонт производственного объекта за определенный календарный период (обычно год) к установленной (или номинальной) мощности N:

где Nу —установленная (или номинальная) мощность, МВт. Основной недостаток этого показателя состоит в том, что в нем не получают отражения режимные (технические) показатели ремонта — длительность простоя в ремонте, эксплуатационная готовность. Снижение удельных затрат на ремонт может быть достигнуто в ущерб обеспечиваемой ремонтом готовности энергетического оборудования к несению нагрузки. Недостатки рассматриваемого показателя особенно наглядно выявляются при отнесении его к отдельным агрегатам с длительностью ремонтного цикла, превышающей год. Только для больших совокупностей агрегатов (в масштабе крупных энергообъединений или для энергетики в целом) показатель затрат на ремонт единицы установленной мощности отражает технические и экономические закономерности функционирования энергетики. Показатель себестоимости реализованной продукции применяется на ремонтных предприятиях и определяется как отношение затрат предприятия к стоимости товарной продукции:

где ∑Ир.п — затраты ремонтных предприятий; Op — стоимость реализованной продукции.. Уровень готовности может измеряться в часах нахождения агрегата в работе и эксплуатационном резерве, тогда получаются удельные затраты на час эксплуатационной готовности:

где 1 tp.ц ∑Ирем — затраты на все виды ремонта производственного объекта за рассматриваемый расчетный период t (год, ремонтный цикл), руб.; tэ.г — время эксплуатационной готовности объекта, т.е. сумма времени нахождения его в работе tр.ц и эксплуатационном резерве tрез за период tр.ц; Rэ.г — коэффициент готовности за период tр.ц; пр t ∑— суммарный простой агрегата за период tр.ц. При оценке производственного результата работы ремонтного персонала по обеспечиваемому ресурсу работы отремонтированного оборудования, т.е. в единицах потенциально возможной выработки продукции отремонтированным агрегатом при его использовании с номинальной мощностью в течение всего периода эксплуатационной готовности, получаются удельные затраты на единицу ресурса работы:

где N — номинальная мощность отремонтированного агрегата (для котельной в целом — установленная мощность). Для отдельных агрегатов (например, котлов) ресурс работы подсчитывается по следующей формуле, т пара:

где Dч — номинальная паропроизводительность котла, т/ч. Для совокупностей однородных агрегатов котельной (с nк котлами) показатели ресурса работы, т пара, получаются суммированием:

В зависимости от состава затрат удельные затраты характеризуют различные виды себестоимости или цену ремонтной продукции. Эти показатели могут определяться как по отчетным данным, так и по нормативам, принимаемым при разработке плана.

20.Энергетическое хозяйство промышленного предприятия
Энергохозяйство любого предприятия — это совокупность энергетических установок и вспомогательных устройств, предназначенных для обеспечения данного предприятия энергией различных видов. В этом определении два понятия нуждаются в разъяснении и уточнении: энергетическая установка (энергоустановка) и энергия различных видов.
Энергоустановка — это комплекс взаимосвязанного оборудования и сооружений, предназначенный для производства, преобразования, передачи, накопления, распределения или потребления (энергии).
Для большей точности определений целесообразно разграничить понятия:
• собственно энергетическая установка — установка, в которой производится, передается, преобразуется, распределяется энергия любого вида. Отличительной особенностью такой установки являются потребление и одновременно производство ею энергетической продукции. Например, энергетический котел потребляет химическую
энергию топлива и производит тепловую энергию; электрический трансформатор потребляет электроэнергию и выдает (производит) также электроэнергию, только с другим напряжением и т.п.;
• энергоиспользующая установка — установка, в которой потребляется энергия любого вида для производства неэнергетической продукции. Это многочисленные и разнообразные технологические установки — промышленные печи и котлы, сушилки и нагреватели, механические агрегаты и т.п. Они называются еще установками конечного использования энергии, а энергия, используемая в них, конечной энергией.
Следует отметить еще одну, чрезвычайно важную особенность всех энергоиспользующих технологических установок: они состоят из двух частей — энергетической (энергоприемника) и технологической (технологического аппарата).
Энергоприемник технологической установки — это энергетическая часть технологической установки, в которую поступает энергия извне, где при необходимости подведенная энергия преобразуется в другой вид энергии или изменяются ее параметры и откуда она передается для использования в технологическом аппарате.
В топливопотребляющих технологических установках (печах, нагревателях, котлах, реакторах и т.п.) энергоприемником являются топка, горелка, где химическая энергия топлива превращается в тепловую, термическую энергию. В теплопотребляющих процессах (варочные котлы, выпарные установки, сушилки и др.) энергоприемниками служат теплообменники, при этом тепловая энергия может менять параметры и вид теплоносителя (паром или горячей водой нагреваются холодная вода, растворы, воздух и т.п.). В электропотребляющих процессах и установках электроэнергия преобразуется либо в механическую (электродвигатели), либо в тепловую (электротермия), либо в химическую (гальваника, электролиз) энергию.
Технологический аппарат — это часть технологической энергоиспользующей установки, в которой происходит энергетическое воздействие на обрабатываемый материал и производится неэнергетическая продукция. В топливопотребляющих процессах технологический аппарат совмещен с энергоприемником (домна, мартеновская печь, конвертор, обжиговые печи и т.п.). Однако бывают установки, где конструктивно энергоприемник и технологический аппарат разделены, например в котлах при наличии выносных топок. В теплопотребляющих установках имеются свои энергоприемники (змеевик, паровая рубашка и т.п.), совмещение происходит при прямом поступлении теплоносителя в аппарат (барботаж), где в большинстве случаев теплоноситель выполняет роль рабочего тела. В электромеханических процессах всегда имеется рабочий механизм — технологический аппарат, в электротермии — нагревательный или плавильный котел, даже если нагревательный элемент (электронагреватель) конструктивно не разделен с аппаратом.
На предприятиях различают систему энергоснабжения, соответствующую понятию «общезаводское энергохозяйство», и систему энергоиспользования — совокупность технологических и вспомогательных установок конечного использования энергии. Эти системы включают элементы энергетики промышленного предприятия, имеющие каждый свои особенности и выполняющие свою особую роль в отдельных процессах производства и в энергетике в целом.
Система энергоснабжения состоит из следующих элементов:
• заводские источники энергии — топливные склады, газгольдеры, мазутохранилища, электростанции, котельные, машинокомпрессорные, холодильные, воздухоразделительные и другие станции, водозаборы и т.п.;
• заводские энергетические коммуникации — системы топливоподачи, газо- и мазутопроводы, электрические и тепловые сети, воздуховоды и трубопроводы сжатых газов, холодопроводы, водоводы и водопроводы и др.;
• заводские преобразователи энергии — газораспределительные станции, электрические трансформаторы и коммутационная аппаратура, промежуточные теплообменники (бойлеры — пароводяные и водо-водяные), редукционно-охладительные установки (РОУ), установки осушки и дросселирования сжатого воздуха и газов и т.п.;
• сама первичная энергия, подводимая к установкам конечного использования, как непременный элемент промышленной энергетики и предмет особого внимания энергетиков.
Система энергоиспользования включает:
• энергоприемники технологических установок — топки, горелки, электродвигатели, электронагреватели, теплообменники технологических установок — змеевики, паровые рубашки, барбатеры, системы охлаждения, в том числе низкотемпературные (криогенные) и т.п., пневмоприемники и приемники сжатых газов и др.;
• устройства передачи энергии из энергоприемника в технологический аппарат — технологические дымо- и газоходы, валы, редукторы и маховики, трубопроводы с горячими технологическими жидкостями и т.п.;
• технологические аппараты — технологические печи, котлы, реакторы, механизмы и т.п.;
• обрабатываемый материал, которому в процессе обработки сообщается некоторый энергетический потенциал.
Необходимо отметить одну очень важную особенность — при принятии какого-либо технического решения на производстве рассматривается большое количество вариантов, которые определяются широкими возможностями комбинирования, взаимозаменяемостью установок и видов энергетической продукции. По степени комбинирования можно различать:
• раздельные энергетические установки, производящие по одному виду продукции:
• комбинированные энергетические установки, производящие по несколько видов энергетической продукции;
• комбинированные энерготехнологические установки, производящие энергетическую и технологическую продукцию.
Взаимозаменяемость энергетических установок определяется возможностями получения одинаковой продукции от различных установок. Взаимозаменяемость видов энергетической продукции определяется возможностью использования различных взаимозаменяемых энергоносителей в конкретной промышленной установке. Кроме того, возможны дополнительные варианты, отличающиеся конструктивными решениями, количеством и параметрами оборудования и др.
Энергохозяйство предприятий является, с одной стороны, заключительным звеном топливно-энергетического комплекса и обладает многими качествами и спецификой энергетики, а с другой
— входит в состав соответствующего предприятия на правах его подразделения — вспомогательного производства.

Источник

Оцените статью