Технология ремонта асинхронных электродвигателей
В соответствии с Правилами технической эксплуатации в системе планово-предупредительных ремонтов электрооборудования предусмотрено два вида ремонтов : текущий и капитальный.
Текущий ремонт производится с периодичностью, установленной с учетом местных условий, для всех электродвигателей, находящихся в эксплуатации, в том числе в холодном или горячем резерве. Текущий ремонт является основным видом профилактического ремонта, поддерживающим на заданном уровне безотказность и долговечность электродвигателей. Этот ремонт производят без демонтажа двигателя и без полной его разборки.
Капитальный ремонт. Периодичность капитальных ремонтов электродвигателей Правилами технической эксплуатации не устанавливается. Она определяется лицом, ответственным за электрохозяйство предприятия на основании оценок общей продолжительности работы электродвигателей и местных условий их эксплуатации. Капитальный ремонт, как правило, производят в условиях специализированного электроремонтного цеха (ЭРЦ) или специализированного ремонтного предприятия (СРП).
Разборка электродвигателя производится в порядке, обусловленном особенностями конструкции электродвигателей.
Сборка электродвигателей после ремонта. Подшипники качения напрессовывают на вал ротора. Шариковые подшипники устанавливают целиком. У роликовых подшипников на вал насаждают внутреннее кольцо с телами качения. Внешнее кольцо устанавливают в посадочное гнездо подшипникового щита с подвижной посадкой (скользящей или движения). Перед сборкой посадочные поверхности протирают и смазывают. Внутренние крышки подшипников устанавливают на вал до посадки подшипников.
Подшипники небольших размеров насаживают на вал в холодном состоянии. Внутреннее кольцо подшипника должно плотно прилегать к заплечнику вала. Наружное кольцо должно легко вращаться вручную. Неразъемные вкладыши подшипников скольжения запрессовываются в посадочные гнезда подшипниковых щитов и фиксируются стопорным винтом.
Для этого применяют те же приспособления, что и при разборке, но обеспечивают их обратное действие. При посадке вкладышей смазочные кольца в резервуаре щита располагают концентрично посадочному отверстию.
Ротор вводят в статор, используя те же способы и приспособления, что и при выводе ротора. В подшипники качения закладывают смазку. Подшипниковые щиты устанавливают на подшипники, вал вывешивают и удаляют из-под ротора картонную прокладку. При установке на вал щитов с подшипниками скольжения смазочные кольца выводят из прорези вкладыша, чтобы не повредить их валом. Совмещают риски на станине и щитах, крепят щиты к станине крепежными болтами. Подъемные приспособления снимают. Затем проверяют свободу вращения ротора и затягивают крепежные резьбы щитов. Устанавливают мелкие детали (фланцы, крышки) и заливают масло в подшипники скольжения. Напрессовывают на рабочие концы валов соединительные или передаточные детали (полумуфты, шкивы, тормозные диски, шестерни). От точной посадки соединительных деталей зависит успешность центровки вала электродвигателя с валом производственного механизма или с валом редуктора. После сборочных операций замеряют воздушные зазоры на обоих торцах машин в диаметрально противоположных точках окружности. При больших диаметрах ротора зазор измеряют в восьми точках окружности ротора. Отклонения воздушных зазоров от среднеарифметического должны быть не более 10%.
Обкатку электродвигателя производят на холостом ходу, контролируя ток холостого хода, нагрев подшипников и шумы. Осевой разбег ротора определяют смещением вала вдоль оси до упора сначала в одну, а затем — в другую сторону при неподвижном роторе; осевой разбег ротора равен удвоенному осевому зазору. Односторонние осевые зазоры, которые должны быть одинаковыми, измеряют на холостом ходу. Для этого смазанный торец надежно укрепленного деревянного бруска упирают в торец вращающегося вала и смещают ротор до упора. Ту же операцию проделывают с другого конца вала. В обоих случаях измеряют расстояние от риски до корпуса подшипника перед нажатием на вал и во время измерений; они должны быть равны соответствующим осевым зазорам. При невозможности измерения осевых зазоров на вращающемся роторе ориентировочно оценивают их по осевому разбегу ротора. Результаты измерения осевого зазора сравнивают с допустимыми значениями.
После текущего ремонта асинхронные электродвигатели подвергают следующим испытаниям: измеряют сопротивление изоляции статоров между отдельными обмотками и относительно корпуса, испытывают повышенным напряжением частоты 50 Гц в течение 1 мин, проверяют междувитковую изоляцию на электрическую прочность, замеряют воздушные зазоры, обкатывают электродвигатель на холостом ходу, замеряют осевые зазоры в подшипниках скольжения или разбег ротора по оси.
«Капитальный ремонт асинхронных электродвигателей»
Источник
Ремонт роторов с короткозамкнутой обмоткой
У короткозамкнутых роторов асинхронных электродвигателей наиболее часто наблюдается повреждение беличьей клетки, выражающееся в ослаблении стержней в пазу, нарушении контакта в местах пайки стержня с короткозамыкаюшими кольцами, образовании трещин и обрывов стержней.
Ослабление крепления стержня в пазу приводит к увеличению его вибрации, что вызывает знакопеременные деформации, в результате которых образуются трещины в месте выхода стержня из паза и в местах соединения с короткозамыкающими кольцами. Эти трещины могут привести к надлому стержня, а надорванные концы стержня, изгибаясь под действием центробежных сил, могут повредить изоляцию лобовых частей. Такие повреждения характерны для электродвигателей, имеющих большое число пусков.
У некоторых типов электродвигателей наблюдается повышение вибрации из-за ослабления крепления или поломки распорных клиньев стержней обмотки ротора. Выявление этих дефектов производится при разборке электродвигателя.
На работающем электродвигателе на наличие в беличьей клетке оборванных стержней указывают следующие признаки.
Увеличение времени пуска.
У агрегатов с тяжелым пуском электродвигатель может вообще не развить номинальной частоты, а если оборвано несколько стержней, то даже не тронуться с места.
Усиление вибрации, вызываемой асимметрией магнитных потоков ротора и появлением дополнительных сил одностороннего магнитного тяжения.
Появление шума, не характерного для нормальной работы электродвигателя данного типа, также свидетельствующее о нарушении симметрии магнитных потоков.
При обрыве одного-двух стержней вышеуказанные признаки могут проявляться очень слабо, что практически затрудняет обнаружение по ним дефекта беличьей клетки. Поэтому обнаружение неисправностей производится осмотром ротора.
При осмотре короткозамкнутых обмоток следует обращать внимание: на наличие цветов побежалости и подгары на короткозамыкающих кольцах в местах соединений со стержнями; подгары болтов, соединяющих короткозамыкающие сегменты пусковых клеток; волнообразный изгиб короткозамыкающих колец (или сегментов), появляющийся от неравномерного удлинения отдельных стержней; изгиб концов стержней в направлении вращения ротора, возникающий от скручивания короткозамыкающим кольцом. Такие дефекты могут наблюдаться в роторах с большими окружными скоростями и массивными короткозамыкающими кольцами.
Встречается прогиб выступающих из активной стали концов стержней. Такой дефект могут иметь все или некоторые стержни беличьей клетки как асинхронных, так и синхронных электродвигателей (причем у последних это наблюдается у крайних стержней на каждом полюсе). Среди прочих неисправностей наблюдается также смещение беличьей клетки вдоль оси ротора.
Повреждения без обрыва короткозамкнутой обмотки в процессе эксплуатации ничем себя не обнаруживают. Они могут быть выявлены только при внимательном осмотре короткозамкнутой обмотки в период профилактического ремонта. С особой тщательностью следует вести поиск трещин на выступающих концах стержней, используя при этом оптический, химический (протравливанием подозрительных мест реактивами) или электромагнитный (с помощью приборов) способы.
Определение поврежденных стержней способом, основанным на измерении магнитного потока рассеяния, предполагает, что над стержнями, обтекаемыми током, магнитный поток рассеяния будет иметь максимальное значение, а между пазами над оборванными стержнями — минимальное. При неполном обрыве стержня магнитный поток рассеяния над этим стержнем будет иметь какое-то промежуточное значение. Измерение производят прибором типа ВАФ-85 (вольтамперфазоиндикатор). Питание на короткозамыкающие кольца ротора подается от понижающего трансформатора 220—127/12 В, от вторичной обмотки которого можно получить ток 10—30 А. Магнитный поток рассеяния над стержнями и между пазами измеряют по всей окружности бочки ротора.
Сравнивая относительное изменение магнитного потока рассеяния по пазам, судят об исправности стержней ротора и определяют поврежденные стержни.
Рис. 1. Схема измерения сопротивления стержней
Для определения дефектов паек, трещин и обрывов стержней короткозамкнутой обмотки путем непосредственного измерения активного сопротивления стержней используют микроомметр М-246 и игольчатые щупы, подключаемые к концам стержней в непосредственной близости от места паек их к короткозамыкающему кольцу (рис. 1). О качестве пайки или о наличии трещин и обрывов стержней судят по значению сопротивления. В случае полной исправности стержней и мест паек прибор покажет полное сопротивление всех параллельно включенных стержней ротора. При обрыве стержня (или плохом контакте в месте пайки) прибор измерит сопротивление одного стержня, которое в несколько раз больше сопротивления всей обмотки. Если сопротивление, измеряемое на этом стержне, будет в 1,5 раза и более превышать сопротивление, измеренное на других стержнях, то это будет свидетельствовать о наличии значительных дефектов в стержне или в месте пайки его к короткозамыкающему кольцу.
Повреждение в обмотке ротора может быть выявлено с использованием способа трех амперметров. К обмотке статора, в каждую фазу которого включаются амперметры, подводится напряжение, равное 0,2—0,25 номинального. Ротор медленно поворачивают и определяют максимальное и минимальное значения тока статора по амперметрам. При исправной обмотке ротора ток в фазах статора во всех положениях ротора будет одинаковым, а при обрыве или наличии плохого контакта в местах соединения стержней с короткозамыкающими кольцами будет измеряться в зависимости от положения ротора.
Критерием годности обмотки ротора является соотношение, %:
Если это соотношение не превышает 3%, то обмотка ротора считается исправной.
Следующий способ не требует специальных приборов и может быть применен в любых эксплуатационных условиях. Для нахождения поврежденных стержней ротор несколько выдвигают из статора и надежно предохраняют от проворачивания.
Рис. 2. Прибор с жестким магнитопроводом для отыскания дефектных стержней: 1 — ротор; 2 — магнитопровод; 3 — обмотка трансформатора
Рис. 3. Прибор с гибким магнитопроводом для отыскания дефектных стержней: 1 — стержни обмотки ротора; 2 — катушка-датчик; 3 — измерительная обмотка; 4 — индикаторный прибор, измеряющий разницу ЭДС; 5 — гибкий магнитопровод
Состояние стержней проверяют с помощью тонкой стальной пластины, поочередно накладываемой на каждый паз так, чтобы перекрылись два соседних зубца ротора. При отсутствии дефекта в стержне (или в месте пайки) пластина будет притягиваться и дребезжать, а над пазом с поврежденным стержнем притяжение и дребезжание значительно ослабнут или вовсе исчезнут. Эту операцию следует производить достаточно быстро, чтобы не допускать перегрева обмоток.
Способ магнитной порошковой дефектоскопии заключается в применении понижающего трансформатора, вторичная обмотка которого способна пропустить ток 300— 500 А при напряжении 1,5—2,5 В, и стальных опилок, которые насыпают на плотный слой белой бумаги, которой предварительно обертывают ротор. При протекании тока по параллельно включенным стержням роторной клетки вокруг каждого стержня создается магнитное поле, под воздействием которого опилки располагаются плотной линией вдоль целых стержней. У стержней, имеющих обрывы, плотность опилок будет резко отличаться.
Кроме вышеуказанных способов отыскание дефектных стержней может быть осуществлено приборами трансформаторного типа с жестким или гибким магнитопроводами (рис. 2, 3).
При ослаблении стержня обмотки ротора в пазу активной стали, если расклиновка уже выполнена и она не дает полного устранения ослабления, дополнительно выполняется расчеканка стержня. Эта операция производится ударами чекана по прямоугольной части стержня в пределах всей длины активной части стали ротора. При расчеканке стержней в крайних пакетах ротора во избежание надлома места спая стержня с короткозамыкающим кольцом между стержнем и нажимной шайбой прокладывают металлическую прокладку.
При ремонте роторов асинхронных электродвигателей с короткозамкнутым ротором в условиях мастерской, оснащенной необходимым станочным парком, может быть произведена полная замена беличьей клетки. Для этих целей стержни обмотки и короткозамыкающие кольца могут быть изготовлены в условиях мастерской или получены от завода-изготовителя электродвигателя.
Удаление поврежденных стержней из пазов.
Способ удаления стержня зависит от его конструкции. Так, стержни бутылочного профиля, плотно сидящие в пазах за счет их расчеканки по всей длине ротора, следует удалять высверливанием сверлами с удлиненным хвостовиком или предварительной прорезкой в стержне продольной щели шириной 2—3 мм. Эту операцию можно выполнить вулканитовым камнем, предназначенным для резки труб. Приспособление устанавливается на каретке, перемещаемой в направляющих, изготовленных из уголка и прикрепленных скобами к обойме вала ротора. Прорезанная щель ослабляет крепление стержня в пазу, и он выбивается из паза на длину 50—80 мм, необходимую для захвата его зажимом, с помощью которого производится полное извлечение стержня из паза.
Частичный ремонт короткозамкнутой обмотки может быть выполнен как в условиях мастерской, так и на месте установки электродвигателя, если для этих целей не требуется станочная обработка стержня и короткозамыкающего кольца.
Пайка медных стержней.
При обнаружении трещин на выступающих из активной стали частях стержней принимают меры к их устранению. Если глубина трещины не превышает примерно четвертой части толщины стержня, то ее заваривают, предварительно вырубив в этом месте углубление на величину, превышающую размер трещины.
Рис. 4. Пайка медного стержня:
1 — короткозамыкающее кольцо: 2 — вставка; 3 — стержень
Если трещина более глубокая, то стержень разрезают и высверливанием удаляют припаянный к короткозамыкающему кольцу участок. Через образовавшееся в короткозамыкающем кольце отверстие в торце оставшейся в пазу части стержня высверливается отверстие на глубину 6— 7 мм. Диаметр этого отверстия не должен превышать половину диаметра стержня. На место удаленной части стержня устанавливают и припаивают вставку (рис. 4), изготовленную из меди марки Ml и М2. При этом односторонний радиальный зазор а между стержнем и короткозамыкающим кольцом и между торцами ремонтируемого стержня и вставки должен быть равен: 0,2 мм при пайке медно-фосфористым припоем МФ-9; 0,1—0,15 мм — серебросодержащими припоями. Выбор марки припоя определяется условиями эксплуатации (тяжелый пуск) и окружной скоростью. При окружной скорости 50 м/с и более применяют припой ПсР-45. Для двигателей, работающих в более легких условиях, — припой МФ-9.
Перед пайкой производят обезжиривание и травление замыкающих колец. Местное обезжиривание производят чистой ветошью, смоченной в пожаробезопасной моющей жидкости, повторяя эту операцию 3—4 раза. Травление выполняют в течение 15—30 с в растворе концентрированной азотной кислоты с содержанием 250—350 г/л при температуре 20°С. Места травления промывают горячей водой, протирают сухой чистой ветошью и просушивают.
Пайку выполняют ацетилено-кислородным пламенем горелкой №4 или 5. Пайка должна выполняться не позднее чем через 8 ч после травления. В качестве флюса используют буру или флюс № 209. При выполнении пайки второй горелкой поддерживают температуру стержня и короткозамыкающего кольца и после их разогрева. Расплавление припоя производят касанием им наиболее нагретых мест. Не допускают плавления припоя в пламени горелки. Флюс наносят на спаиваемые поверхности разогретым прутком припоя. Пайку вставки с короткозамыкающим кольцом выполняют при вертикальном положении ротора. После пайки зачищают и опиливают соединенные места и проверяют лупой качество пайки. После ремонта ротор балансируют.
Ремонт алюминиевых стержней и короткозамыкающих колец. Участки с трещинами разделывают, как указано на рис. 5. Перед заваркой разделанные места и прилегающие участки шириной 30—40 мм подвергают механической зачистке с предварительным и последующим обезжириванием.
Рие. 5. Пайка алюминиевых стержней:
а — на вылете стержня; б — в месте соединения с короткозамыкающим кольцом; h — по месту (на 1—2 мм больше глубины трещины); в — приварка к кольцу спаренных стержней
Механической зачисткой удаляют плотный слой окиси алюминия. Эта операция выполняется стальной щеткой из проволоки диаметром 0,1—0,15 мм из нержавеющей стали.
Обезжиривание производят пожаробезопасной моющей жидкостью.
Полностью оборванные стержни и стержни с глубиной трещины, превышающей половину его ширины, удаляют из обмотки ротора. Заварку разделки в стержнях толщиной более 10 мм производят с предварительным и сопутствующим подогревом до температуры 100—150 °С. Подогревать можно пламенем ацетиленовой горелки или другим источником тепла. Выборки в стержнях заваривают ручной аргонодуговой сваркой на установке УДТ-501. В качестве присадочного материала применяется электродная проволока марки АО, А1 либо прутки из сплава АК, содержащего 5 % кремния.
Режимы ручной аргонодуговой сварки приведены в табл. 1.
При выполнении сварки рабочее место должно быть защищено от сквозняков, ветра и дождя. Сварка выполняется в нижнем положении, маленькой ванной, не допуская перегрева.
Таблица 1. Режимы ручной аргонодуговой сварки
Источник