Технологический процесс ремонта деталей
Качество и экономичность ремонта деталей дизеля зависят от выбора способа ремонта и правильной разработки технологического процесса.
Технологический процесс ремонта детали разрабатывают в следующей последовательности:
- выбирают способы восстановления отдельных поверхностей;
- разрабатывают общую схему технологического процесса;
- разрабатывают процессы восстановления отдельных поверхностей.
- устанавливают возможные варианты маршрутов;
- составляют общие технологические процессы ремонта детали по остальным маршрутам
Учитывая возможности восстановления изношенных поверхностей деталей различными способами, выбирают наиболее рациональные, обеспечивающие лучшее качество и меньшую стоимость. Рациональность способа ремонта детали определяют следующие факторы:
- условия работы детали;
- конструктивные особенности детали;
- материал и термическая обработка;
- характер и величина износов рабочих поверхностей;
- требования технических условий на ремонт,
- экономичность процесса;
- техническая оснащенность ремонтного предприятия.
Детали, имеющие износ более 0,3 мм, целесообразно направлять виброконтактнодуговым способом. Гладким хромом наращивают шейки валов при износе не более 0,3 мм. Детали, работающие в условиях ограниченной смазки, покрывают пористым хромом. Тонкостенные гильзы и детали сложной конфигурации не рекомендуется ремонтировать способом наплавки, так как вследствие возникающих внутренних напряжений они подвержены деформации. Кроме того, нарушается предварительная термическая обработка.
Поэтому при ремонте таких деталей выбирают способ, который не вызывает в металле структурных изменений и внутренних напряжений. Таким способом является гальваническое наращивание.
Если запас прочности и термическая обработка позволяют снять слой металла, то для восстановления геометрической формы рабочих поверхностей детали целесообразно использовать способ ремонтных размеров.
Качество ремонта детали должно удовлетворять требованиям технических условий. Износостойкость восстановленных поверхностей деталей должна быть высокая, механические свойства металла должны быть в пределах норм.
Возможные варианты способов ремонта необходимо сравнивать по экономичности. При обеспечении одинакового качества выбирают способ ремонта, который имеет меньшую себестоимость.
Кроме того, учитывают производственные возможности ремонтного предприятия, наличие станочного и специального оборудования, приспособлений и инструмента. Также учитывают возможность использования имеющейся универсальной оснастки. Для выполнения таких ответственных операций, как наплавка деталей из легированных сталей, чугуна и алюминиевых сплавов, требуется высокая квалификация специалистов-ремонтников.
Выбрав рациональные способы восстановления отдельных изношенных поверхностей, разрабатывают общую схему технологического процесса ремонта детали. Последовательность операций ремонта устанавливают с учетом иx особенностей. От правильной последовательности выполнения отдельных ремонтных операции зависит качество ремонта детали.
Для того чтобы восстановить правильное взаимное положение рабочих поверхностей, детали подвергают правке, а затем исправляют базовые поверхности.
При проверке и правке детали в приспособлении устанавливают по наиболее точным неизношенным нповерхностям.
Точность базирования и правильное закрепление детали на станке или в приспособлении оказывают влияние на точность ее обработки и продолжительность выполнения операций. Известно, что выбор и создание базы при ремонте детали является более сложной задачей, чем при изготовлении новой детали. Детали ремонтного фонда обычно имеют значительные деформации и неправильную геометрическую форму рабочих поверхностей, кроме того, нарушаются установочные базы, использованные при изготовлении детали. Целый ряд ремонтируемых деталей не имеют первоначальных установочных баз, так как их удаляют при изготовлении.
После исправления базовых поверхностей изношенные рабочие поверхности детали наращивают наплавкой, хромированием или восстанавливают другими способами. Сначала выполняют операции, для которых необходим высокий нагрев, вызывающий структурные превращения металла и деформацию детали. Такими процессами являются сварка, наплавка или термическая обработка. При необходимости после выполнения операций, вызывающих деформацию, детали подвергают вторичной правке. Затем выполняют хромирование — процесс, не вызывающий нагрева детали до высоких температур.
После наращивания отдельных рабочих поверхностей различными способами производят окончательную механическую обработку.
В процессе подробной разработки операций восстановления отдельных изношенных поверхностей деталей устанавливают переходы, необходимое оборудование, приспособления, инструмент, режимы обработки и определяют техническую норму времени. Если необходимо, то проектируют новые приспособления и инструмент. Проектирование новой оснастки должно производиться с учетом эффективности затрат на ее изготовление.
В заключение составляют маршрутные технологические процессы по группам дефектов.
Ремонт деталей может быть организован по подефектной или по маршрутной технологии.
При организации ремонта деталей по подефектной технологии на отдельных участках или цехах ремонтного предприятия ремонтные работы выполняются по технологии, составленной на каждый дефект в отдельности.
Партия деталей, подлежащих ремонту, комплектуется по наименованию, без учета однотипности дефектов и последовательности выполнения ремонтных операций. Поэтому направленная в ремонт партия деталей в процессе производства дробится на части в зависимости от характера имеющихся на деталях дефектов.
При такой организации производственного процесса ремонт детали иногда производится без соблюдения правильно установленной очередности выполнения отдельных ремонтных операций.
При подефектной технологии трудно обеспечить высокое качество и снизить себестоимость ремонта деталей, велики маршруты движения деталей по производственным участкам и цехам ремонтного предприятия. Встречаются значительные трудности в организации учета выполнения работ и проверки качества ремонта. Кроме того, затрудняется планирование производственного процесса ремонта деталей и организация ритмичного выпуска продукции.
Специальными наблюдениями и опытом работы ремонтных предприятий установлена повторяемость дефектов на деталях. Так, например, характерные и повторяющиеся дефекты кулачкового вала топливного насоса НК-10 следующие: повреждение резьбы, износ шпоночного паза, износ конусных поверхностей, износ концевых шеек, износ средних шеек и износ профиля кулачков.
Сочетание повторяемости дефектов устанавливают в результате проверки большого числа изношенных деталей.
Учитывая повторяемость дефектов, разрабатывают маршруты ремонта деталей. Следовательно, маршрут ремонта представляет собой рациональную последовательность выполнения операций для определенного повторяющегося сочетания дефектов.
Под маpшpутной тexнологиeй ремонта понимают технологические процессы ремонта деталей по группам дефектов, составленные с учетом рациональной последовательности выполнения ремонтных операций. Маршрутная технология позволяет повысить качество ремонта деталей. Кроме того, улучшается организация технологического контроля в процессе производства. При маршрутной технологии снижается себестоимость ремонта деталей и повышается производительность труда, сокращается путь внутризаводской транспортировки деталей. Маршрутная технология способствует повышению дисциплины ремонтного производства, также обеспечивается ритмичность выпуска производственной продукции.
Источник
ТЕХНОЛОГИЯ РЕМОНТА ДЕТАЛЕЙ
Под восстановлением деталей газотермическим напылением понимают процесс нанесения покрытий распылением нагретого до жидкого или вязкотекучего состояния диспергированного (порошкообразного) материала газовой струей. Перед напылением восстанавливаемая поверхность подготавливается. Частицы распыленного металла достигают поверхности в пластическом состоянии, имея большую скорость полета.
При контакте с поверхностью детали они деформируются и, внедряясь в ее неровности, образуют покрытие. Сцепление покрытия с поверхностью детали носит в основном механический характер и только в отдельных локальных точках можно наблюдать мостики сварки.
Технологический процесс восстановления:
1. Обезжиривание и мойка детали (щелочными растворами и горячей водой).
2. Предварительная механическая обработка детали (с целью получения правильной геометрической формы детали).
3. Газопламенное напыление.
4. Выдержка детали в масле (1.5-2 часа).
5. Механическая обработка шлифовальными кругами.
Восстановление деталей газотермическими покрытиями имеет ряд неоспоримых преимуществ:
- Незначительный нагрев (до 200 °С ) детали;
- Высокая производительность процессов;
- Возможность регулирования в широком диапазоне (0,1 — 10 мм) толщины наносимого покрытия;
- Простота технологического процесса и оборудования;
- Широкий диапазон материалов, используемых для получения покрытий с заданными свойствами.
Рассмотренный способ позволяет не только придавать восстанавливаемым деталям требуемую форму и размеры, но и изменять в широких пределах поверхностные свойства металлопокрытий. В результате многие детали из дорогостоящих и дефицитных металлов и сплавов можно при ремонте заменить деталями более дешевых материален. Напыление на рабочие поверхности специальных сплавов с необходимыми физико-механическими свойствами обеспечивает более низкую себестоимость восстановления деталей, а показатели их надежности и долговечности не уступают соответствующим показателям деталей, изготовленных целиком из дорогостоящего металла. Этим объясняется широкое применение газотермических методов напыления не только при ремонте, но и при изготовлении новых деталей. Но не все детали подлежат восстановлению.
Восстановление геометрии – восстановление рабочих поверхностей штока, ремонт плунжера, ремонт вала, восстановление втулок, ремонт рабочих колес. Если деталь не изношена до дыр, возможно нарастить те миллиметры, которых не хватает для ее нормальной работы. Механическая и суперфинишная обработка позволяют вернуть детали первоначальный вид, неотличимый от того, в котором она вышла от производителя.
Восстановление посадочных мест – эта точка наиболее подвержена износу и здесь нельзя рисковать. Ведь от посадки зависит не только точность, но и сама работа оборудования. Высокая прочность и адгезия металлов, позволяет говорить о повышении ресурса напыленных посадочных мест, а не просто о его восстановлении.
Остановка коррозии и восстановление коррозионного износа – восстановить износ внутренних поверхностей тонких трубок или изделий сложной формы невозможно. Но наружные и боковые поверхности изделий вполне поддаются обработке. Коррозионные язвы счищаются пескоструйной или дробеструйной обработкой, затем на поверхность наносится нержавеющий металл, близкий по электрохимическим характеристикам к материалу детали, что предупреждает появление подпленочной коррозии. В особо агрессивных средах применяются двухслойные покрытия. При необходимости подбирается материал, защищающий и от коррозии, и от эрозионного износа.
Восстановление баббитовых подшипников – газопламенное напыление позволяет не терять время, деньги и ресурсы на выплавлении баббитового слоя и повторной его заливке.
Реновация, ремонтное восстановление деталей машин – актуальнейшая задача, позволяющая существенно сократить ремонтные бюджеты предприятий, повысить их экономическую эффективность.
Изобрёл данный метод нанесения покрытий Макс Ульрих Шооп. Распыляя свинец с помощью стационарной тигельной установки он получал покрытия на различных материалах. Стоит отметить, что в отличие от современных методов, где для переноса используются в основном газы, первая установка Шоопа переносила жидкий свинец с помощью водяного пара. На основе его технологии в Цюрихе в 1909 году был открыт завод по металлизации. В 1913 году Ульрих Шооп усовершенствовал и запатентовал конструкцию газопламенного распылителя, где материал для распыления подавался в пламя газовой горелки в виде проволоки. В 1918 году он с сотрудниками разработал электродуговой распылитель, позволяющий эффективно наносить покрытия из металла. Благодаря значимому вкладу в начальное развитие технологий, методы нанесения газотермических покрытий путём распыления стали называть шоопированием, по имени изобретателя технологии. В 1921 году Ульрих Шооп запатентовал технологию металлопорошкового газопламенного распыления.
Для получения заданных параметров покрытий разработан электродуговой металлизатор, имеющий в своем составе механизм подачи проволоки, распылительную головку, пульт управления. Металлизатор имеет повышенную электрическую мощность. Эта мощность необходима для создания энергоемкой двухфазной (воздух – частицы напыляемого материала) струи.
Такая струя должна обладать определенным запасом энергии, т.к. KB дизельных двигателей имеют значительные габариты и минимальная дистанция напыления составляет 150 мм. На таком расстоянии от металлизатора напыляемые частицы должны сохранить свои скорость и температуру, поскольку их пластичность на поверхности детали зависит от начальной скорости, температуры и условий теплообмена в струе. Поэтому, металлизационная струя должна иметь высокие скорость и температуру и быть высококонцентрированной. Это обеспечивает распылительная головка. Были апробированы различные варианты создания металлизационных струй с высокими температурно-кинетическими параметрами, в т.ч. и применением сгорания пропана в специальной камере. В результате работ и газодинамических расчетов была создана распылительная головка, обеспечивающая высококонцентрированную сверхзвуковую металлизационную струю с полууглом расширения 4,5 – 6,0° и с применением только сжатого воздуха.
В качестве напыляемого материала использовалась порошковая проволока, имеющая в своем составе не менее 0,8% С, а также ряд легирующих элементов (Аl, Мп и др.). Проволока изготавливается на Череповецком сталепрокатном заводе. Использование порошковых проволок позволяет в широких пределах регулировать химический и фазовый состав покрытий и, следовательно, эксплуатационные свойства покрытий.
Адгезия покрытия с увеличением скорости истечения воздуха, следовательно, и скорости истечения металлизационной струи, повышается, а пористость снижается. При истечении воздуха с дозвуковой скоростью размер расплавленных частиц в среднем составляет 200 мкм. С увеличением скорости истечения воздуха до 2 М размер расплавленных частиц на 90% находится в пределе 30.80 мкм. Однако такое уменьшение размера расплавленных частиц напыляемого материала ведет к более интенсивному выгоранию из них легирующих элементов и, в первую очередь, углерода, что и вызывает повышенную твердость покрытий при дозвуковых скоростях истечения воздуха.
Содержание остальных легирующих элементов проволоки при увеличении скорости истечения воздуха из металлизатора и силы тока дугового разряда изменяется в меньшей степени.
Микроструктура покрытия претерпевает значительные изменения при увеличении скорости полета частиц. При дозвуковых скоростях истечения воздуха микроструктура покрытия крупнозернистая, с большим количеством пор. Отмечены частицы сферической формы, которые напор воздуха не разбил на более мелкие, и которые из-за низкой скорости полета, успели остыть до их столкновения с напыляемой поверхностью. Большинство частиц вытянутой, деформированной формы. По мере увеличения скорости истечения воздуха, покрытия имеют все более тонкую микроструктуру. Количество пор уменьшилось. Глобулярных частиц нет. Все частицы подверглись значительной пластической деформации. По всей толщине покрытия имеют равномерную структуру, что говорит о стабильности процесса. Переходная зона плотная. Отмечаются тонкие окисные пленки.
На заключительной стадии отрабатывались и уточнялись технологические параметры процесса, конструкция защитной оснастки, приспособлений и инструмента на конкретных коленчатых валах.
Источник